
TYPE Original Research

PUBLISHED 23 September 2022

DOI 10.3389/fnbot.2022.999658

OPEN ACCESS

EDITED BY

Yusen He,

Grinnell College, United States

REVIEWED BY

Yang Wang,

East China Normal University, China

Chong Di,

Qilu University of Technology, China

Yujin Zhang,

Shanghai University of Engineering

Sciences, China

*CORRESPONDENCE

Xudie Ren

renxudie@sjtu.edu.cn

RECEIVED 21 July 2022

ACCEPTED 22 August 2022

PUBLISHED 23 September 2022

CITATION

Ren X, Li S and Ge H (2022) A

parameter-free learning automaton

scheme.

Front. Neurorobot. 16:999658.

doi: 10.3389/fnbot.2022.999658

COPYRIGHT

© 2022 Ren, Li and Ge. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A parameter-free learning
automaton scheme

Xudie Ren1*, Shenghong Li1 and Hao Ge2

1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

Shanghai, China, 2Shanghai Data Miracle Intelligent Technology Co., Ltd., Shanghai, China

For a learning automaton, a proper configuration of the learning parameters is

crucial. To ensure stable and reliable performance in stochastic environments,

manual parameter tuning is necessary for existing LA schemes, but the

tuning procedure is time-consuming and interaction-costing. It is a fatal

limitation for LA-based applications, especially for those environments where

the interactions are expensive. In this paper, we propose a parameter-free

learning automaton (PFLA) scheme to avoid parameter tuning by a Bayesian

inference method. In contrast to existing schemes where the parameters

must be carefully tuned according to the environment, PFLA works well

with a set of consistent parameters in various environments. This intriguing

property dramatically reduces the di�culty of applying a learning automaton

to an unknown stochastic environment. A rigorous proof of ǫ-optimality for

the proposed scheme is provided and numeric experiments are carried out

on benchmark environments to verify its e�ectiveness. The results show

that, without any parameter tuning cost, the proposed PFLA can achieve

a competitive performance compared with other well-tuned schemes and

outperform untuned schemes on the consistency of performance.

KEYWORDS

parameter-free, Monte-Carlo simulation, Bayesian inference, learning automaton,

parameter tuning

1. Introduction

Learning Automata (LA) are simple self-adaptive decision units that were firstly

investigated to mimic the learning behavior of natural organisms (Narendra and

Thathachar, 1974). The pioneering work can be traced back to the 1960s by the Soviet

scholar (Tsetlin, 1961, 1973). Since then, LA has been extensively explored and it is

still under investigation as well in methodological aspects (Agache and Oommen, 2002;

Papadimitriou et al., 2004; Zhang et al., 2013, 2014; Ge et al., 2015a; Jiang et al., 2015)

as in concrete applications (Song et al., 2007; Horn and Oommen, 2010; Oommen and

Hashem, 2010; Cuevas et al., 2013; Yazidi et al., 2013;Misra et al., 2014; Kumar et al., 2015;

Vahidipour et al., 2015). One intriguing property that popularizes the learning automata-

based approaches in engineering is that LA can learn the stochastic characteristics of the

external environment it interacts with, and maximize the long-term reward it obtains

through interacting with the environment. For a detailed overview of LA, one may refer

to a new comprehensive survey (Oommen andMisra, 2009) and a classic book (Narendra

and Thathachar, 2012).

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.999658
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.999658&domain=pdf&date_stamp=2022-09-23
mailto:renxudie@sjtu.edu.cn
https://doi.org/10.3389/fnbot.2022.999658
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.999658/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

In the case of LA, accuracy and convergence rate become

two major measurements to evaluate the effectiveness of a LA

scheme. The former is defined as the probability of a correct

convergence and the latter as the average iterations for a LA

to get converged1. Most of the reported schemes in the field of

LA have two or more tunable parameters, making themselves

capable of adapting to a particular environment. An automaton’s

accuracy and convergence rate highly depend on the selection

of those parameters. Generally, ensuring a high accuracy is of

uppermost priority. According to the ǫ-optimality property of

LA, the probability of converging to the optimal action can be

arbitrarily close to one, as long as the learning resolution is

large enough. However, it will raise another problem. Taking

the classic Pursuit scheme for example, as Figure 1 illustrates,

the number of iterations required for convergence grows nearly

linearly with the resolution parameter, while the accuracy

grows logarithmically. This implies a larger learning resolution

can lead to higher accuracy, but at the cost of much more

interactions with the environment. This dilemma necessitates

parameter tuning to find a balance between convergence rate

and accuracy.

In literature, the performance of various LA schemes

is evaluated by comparing their convergence rates on the

premise of a certain accuracy. The learning parameters of

various schemes are tuned through a standard procedure to

ensure the accuracies are kept at the same level, so that the

convergence rates can be fairly compared. For deterministic

estimator-based learning automata, the smallest value of the

resolution parameter that yielded a hundred percent accuracy

in a certain number of experiments is selected. The situation is

more sophisticated when concerning the stochastic estimator-

based schemes (Papadimitriou et al., 2004; Ge et al., 2015a; Jiang

et al., 2015), because extra configurable parameters should be set

to control the perturbation added. Parameter tuning is intended

to balance the trade-off between speed and accuracy. However,

the interaction cost can be tremendous itself3, due to its trial

and error nature. In practical applications, especially where

interacting with environments could be expensive, e.g., drug

trials, destructive tests, and financial investments, the enormous

cost for parameter tuning is undesired. Therefore, we believe,

the issue of learning parameter configurations deserves more

attention in the community, which gives impetus to our work.

The scope of this research is confined to designing a learning

scheme for LA in which the parameter tuning can be omitted,

1 For this reason, the terms convergence rate and iteration are used

interchangeably.

2 E1 defined in Papadimitriou et al. (2004) corresponds to E5 defined in

Section 5 of this paper.

3 The details will be elaborated in Section 5.

FIGURE 1

The accuracy and iterations with di�erent resolution parameters

for DPri (Oommen and Lanctôt, 1990) in benchmark

environment E1, which is defined in Papadimitriou et al. (2004).

The results are averaged over 250,000 replications.2

and that’s why it is called parameter-free in the title. It

is noted that the term parameter-free does not imply that no

configurable parameters are involved in the proposed model,

but indicates a set of parameters for the scheme that can be

universally applicable to all environments. This paper is an

extension of our preliminary work (Ge et al., 2015b). The

proposed scheme in Ge et al. (2015b) can only operate in

two-action environments, whereas in this paper, our proposed

scheme can operate in both two-action environments as well as

multi-action environments. In addition, in this paper, optimistic

initial values are utilized to improve the performance further.

Moreover, a rigorous theoretical analysis of the proposed scheme

and a comprehensive comparison among recently proposed LA

schemes are provided in this paper which was not included in

Ge et al. (2015b).

The contribution of this paper can be summarized

as follows:

1. To the best of our knowledge, we present the first parameter-

free scheme in the field of LA, for learning in any

stationary P-model stochastic environment. The meaning of

the terminology parameter-free is two-fold: (1) The learning

parameters do not need to bemanually configured. (2) Unlike

other estimator-based schemes, initializations of estimators

are also unnecessary in our scheme.

2. Most conventional LA schemes in literature employ a

stochastic exploration strategy, on the contrary, we design

a deterministic gradient descent-like method instead of

probability matching as the exploration strategy to further

accelerate the convergence rate of the automaton.

3. The statistics behavior of the proposed parameter-free

learning automata (PFLA) is analyzed and rigorous proof of

the ǫ-optimality property is provided as well.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

4. Comprehensive comparison among recently proposed LA

schemes is given to validate the theoretical analyses and

demonstrate that PFLA is superior to other methods

concerning tuning cost.

This paper proceeds as follows. Section 2 describes our

philosophy and some related works. Section 3 presents

the primary results of the paper: a parameter-free learning

automaton scheme. Section 4 discusses the theoretical

performance of the proposed scheme. Section 5 provides

a numerical simulation for verifying the proposed scheme.

Finally, Section 6 concludes this paper.

2. Related works

Consider a P-model environment which could be

mathematically defined by a triple < A,B,C >, where

• A = {a1, a2, . . . , ar} represents a finite action set

• B = {0, 1} denotes a binary response set

• C = {c1, c2, . . . , cr} is a set of reward probabilities

corresponding to A, which means Pr{ai gets rewarded}=ci.

Each ci is assumed to lie in the open interval (0, 1).

Some other major notations that are used throughout this

paper are defined in Table 1.

The aim of LA is to identify the optimal action am, which has

the maximum reward probability, from A through interacting

with the environment. The general philosophy is to collect

feedback from the environment and use this information to

extract evidence that supports an optimal assertion.

Then we are faced with two challenges:

TABLE 1 Notations used in this paper.

Symbol Explanation

r The cardinality of the action set A

E A vector of estimates

N The number of repetitions in the Monte Carlo simulation

η The threshold to terminate the iteration

ai The ith action in A

αi A parameter of ai ’s beta distribution

βi A parameter of ai ’s beta distribution

Si The number of times that ai has been selected

Hi The hypothesis that ai is the optimal action

Beta(α,β) A beta distribution with parameter α and β

Norm(µ, σ) A normal distribution with mean µ and variance σ 2

B(α,β) The beta function

B(x;α,β) The incomplete beta function

1. How to organize the information gathered and make full use

of them?

2. When is the time to make an assertion that claims one of the

actions is optimal?

2.1. Information utilization

Lots of work have been done for the first challenge. Although

the reward probabilities C are unknown to us, we can construct

consistent estimators to guarantee that the estimates of the

reward probabilities can converge to their true values as the

quantity of samples increases.

As the feedback for one action can be modeled as a Bernoulli

distributed random variable in P-model environments, there are

two ways to construct such estimators currently.

1. One is from the frequentist’s perspective. The most intuitive

approach is to utilize the likelihood function, which is a basic

quantitative measure over a set of predictions with respect

to observed data. In the context of parameter estimation,

the likelihood function is naturally viewed as a function

of the parameters ci to be estimated. The parameter that

maximizes the likelihood of the observed data is referred to

as the maximum likelihood estimate (MLE). MLE-based LA

(Oommen and Lanctôt, 1990; Agache and Oommen, 2002)

are proved to be a great success, achieving a tremendous

improvement in the rate of convergence compared with

traditional variable structure stochastic automata. However,

as we revealed in Ge et al. (2015a), MLE suffers from one

principle weakness, i.e., MLE is unreliable when the quantity

of samples is small.

Several efforts have been devoted to improving MLE.

The concept of stochastic estimator was employed in

Papadimitriou et al. (2004) so that the influence of

lacking samples can be reduced by introducing controlled

randomnesses to MLE. In Ge et al. (2015a), we proposed

an interval estimator-based learning automata DGCPA, in

which the upper bound of a 99% confidence interval of ci

is used as estimates of reward probabilities. Both of these

two LA schemes broke the records of convergence rate when

proposed, which confirmed the defect of traditional MLE.

2. On the other hand, there are attempts from the

Bayesian perspective. Historically, one of the major

reasons for avoiding Bayesian inference is that it can be

computationally intensive under many circumstances. The

rapid improvements in available computing power over the

past few decades can, however, help overcome this obstacle,

and Bayesian techniques are becoming more widespread not

only in practical statistical applications but also in theoretical

approaches to modeling human cognition. In Bayesian

statistics, parameter estimation involves placing a probability

distribution over model parameters. Concerning LA, the

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

posterior distribution of ci with respect to observed data is a

beta distribution.

In Zhang et al. (2013), DBPA was proposed where the

posterior distribution of estimated ĉi is represented by a beta

distribution Beta(α,β), the parameter α and β record the

number of times that a specific action has been rewarded

and penalized, respectively. Then the 95th percentile of the

cumulative posterior distribution is utilized as an estimation

of ci.

One of the main drawbacks of the way that information

is being used by existing LA schemes is that they summarize

beliefs about ci, such as the likelihood function or the posterior

distribution, into a point estimate, which obviously may lead

to information loss. In the proposed PFLA, we insist on taking

advantage of the entire Bayesian posterior distribution of ci for

further statistical inference.

2.2. Optimal assertion

For the second challenge, as the collected information

accumulates, we become more and more confident to make an

assertion. But when is the exact timing?

The quantity of samples before the convergence of existing

strategies is indirectly controlled by its learning parameters.

Actually, the LA is not aware of whether it has collected

enough information or not, as a consequence, its performance

completely relies on the manual configuration of learning

parameters inevitably. As far as we’re concerned, there is no

report describing a parameter-free scheme for learning in multi-

action environments, and this research area remains quite

open.

However, there are efforts from other research areas that

shed some light on this target. In Granmo (2010), a Bayesian

learning automaton (BLA) was proposed for solving the two-

armed Bernoulli bandit (TABB) problem. The TABB problem

is a classic optimization problem that explores the trade-

off between exploitation and exploration in reinforcement

learning. One distinct difference between learning automata and

bandit-playing algorithms is the metrics used for performance

evaluation. Typically, accuracy is used for evaluating LA

algorithms while regret is usually used in bandit playing

algorithms. Despite being presented with different objectives,

BLA is somewhat related to our study and inspired our work.

Therefore, the philosophy of BLA is briefly summarized as

follows: The BLA maintains two beta distributions as estimates

of the reward probabilities for the two arms (corresponding to

actions in the LA field). At each time instance, two values are

randomly drawn from the two beta distributions, respectively.

The arm with the higher random value is selected, and the

feedback is utilized to update the parameter of the beta

distribution associated with the selected arm. One advantage

of BLA is that it doesn’t involve any explicit computation of

Bayesian expression. In Granmo (2010), it has been claimed

that BLA performs better than UCB-tuned, the best performing

algorithm reported in Auer et al. (2002).

Inspired by Granmo (2010), we constructed the PFLA by

using Bayesian inference to enable convergence self-judgment

in this paper. In contrast to Granmo (2010), however, the

probability of each arm being selected must be explicitly

computed to judge the convergence of the algorithm. In

addition, due to the poor performance of probability matching,

we developed a deterministic exploration strategy. The technical

details are provided in the next section.

3. A parameter-free learning
automaton

In this section, we introduce each essential mechanism of

our scheme in detail.

3.1. Self-judgment

Consider a P-model environment with r available actions, as

we have no prior knowledge about these actions, each of them is

possible to be the optimal one. We refer to these r possibilities

as r hypotheses H1,H2, . . . ,Hr so that each hypothesis Hi

represents the event that action ai is the optimal action.

As we discussed in Section 2, the Bayesian estimates of each

action’s reward probability just intuitively are beta distributed

random variables, denoted as E = {e1, e2, . . . , er}, where ei ∼

Beta(αi,βi).

Because the propositions H1,H2, . . . ,Hr are mutually

exclusive and collectively exhaustive, apparently we have∑
i Pr(Hi) = 1. Therefore, we can simply assert that αi is the

optimal action once Pr(Hi) is greater than some predefined

threshold η. For this reason, the explicit computation of Pr(Hi)

is necessary here to make that assertion.

3.1.1. Two-action environments

In the two-action case, Pr(H1) can be formulated in the

following equivalent forms:

Pr(H1) = Pr(e1 > e2) (1)

=

α1−1∑

i=0

B(α2 + i,β1 + β2)

(β1 + i)B(1+ i,β1)B(α2,β2)
(2)

=

β2−1∑

i=0

B(β1 + i,α1 + α2)

(α2 + i)B(1+ i,α2)B(α1,β1)
(3)

= 1− Pr(H2) (4)

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

= 1−

α2−1∑

i=0

B(α1 + i,β1 + β2)

(β2 + i)B(1+ i,β2)B(α1,β1)
(5)

= 1−

β1−1∑

i=0

B(β2 + i,α1 + α2)

(α1 + i)B(1+ i,α1)B(α2,β2)
(6)

The above formulas can be easily implemented by a

programming language with a well-defined log-beta function,

thus the exact calculation of Pr(H1) can be completed within

O(min(α1,α2,β1,β2)). However, in multi-action cases, the

closed-form of Pr(Hi) is too complex and it’s somewhat

computationally intensive to calculate it directly. So in our

scheme, a Monte Carlo simulation is adopted for evaluating

Pr(Hi) in a multi-action environment.

3.1.2. Multi-action environments

The closed-form calculation of Pr(Hi) is feasible for a small

action set, but it becomes much more difficult as the number of

actions increases.

Monte Carlo methods are a broad class of computational

algorithms that rely on repeated random sampling to obtain

numerical results.

In multi-action environments, in order to evaluate Pr(Hi),

an intuitive approach is to generate random samples from the

r beta distributions and count how often the sample from

Beta(αi,βi) is bigger than any other samples. In that way, the

following Monte-Carlo simulation procedure is proposed.

Suppose the number of simulation replications is N. Since ei

follows Beta(αi,βi), let x
n
i be one of the r random samples at the

nth replication.

Then, Pr(Hi) can be simulated as

P̂r(Hi) =
1

N

N∑

n=1

I(xni) (7)

where I(xni) is an indicator function such that

I(xni) =

{
1 if xni > xnj ,∀j 6= i (8a)

0 otherwise (8b)

It is simple to verify that
∑

i Pr(Hi) = 1.

3.2. Exploration strategy

In conventional estimator-based learning schemes, which

are the majority family of LA, a stochastic exploration strategy

is employed. A probability vector for choosing each action is

maintained in the automaton and is properly updated under

the guidance of the estimator and environment feedback after

every interaction. However, such a probability vector does not

exist in our scheme. Instead, a vector of probabilities indicating

the chance of each action being the best one is maintained

in our scheme. The exploration strategy in Granmo (2010)

is the so-called probability matching, which occurs when an

action is chosen with a frequency equivalent to the probability

of that action being the best choice. In Ge et al. (2015b),

we constructed a learning automata by adding an absorbing

barrier to BLA and applying it as a baseline for comparison.

The numerical simulation shows the low performance of the

probability matching strategy in designing parameter-free LA.

Therefore, a novel deterministic exploration strategy is proposed

accordingly to overcome this pitfall.

Because max{Pr(Hi)} > η is the stop criterion of

our scheme, in order to pursue a rapid convergence, one

straightforward and obvious approach is maximizing the

expected increment of max{Pr(Hi)} over the action set.

3.2.1. Two-action environments

In two-action environments, if Pr(H1) is greater than

Pr(H2), then we suppose action a1 is more likely to be the

optimal one, and thus attempt to find out the action that will lead

to the maximal expected increment of Pr(H1), or vice versa.

We denote Pr(H1) as g(α1,β1,α2,β2), and the following

recurrence relations are derived (Cook, 2005):

g(α1 + 1,β1,α2,β2) = g(α1,β1,α2,β2)+ h(α1,β1,α2,β2)/α1

(9)

g(α1,β1 + 1,α2,β2) = g(α1,β1,α2,β2)− h(α1,β1,α2,β2)/β1

(10)

g(α1,β1,α2 + 1,β2) = g(α1,β1,α2,β2)− h(α1,β1,α2,β2)/α2

(11)

g(α1,β1,α2,β2 + 1) = g(α1,β1,α2,β2)+ h(α1,β1,α2,β2)/β2

(12)

where h(α1,β1,α2,β2) =
B(α1+α2,β1+β2)
B(α1,β1)B(α2,β2)

.

Hence, given that action a1 is chosen, the conditional

expected increment of Pr(H1) is:

E[1Pr(H1) | a1 is chosen] (13)

= c1 × h(α1,β1,α2,β2)/α1 − (1− c1)× h(α1,β1,α2,β2)/β1

(14)

= h(α1,β1,α2,β2)(c1/α1 − (1− c1)/β1) (15)

because c1 is unknown to us, we can approximate the above

equation as

E[1Pr(H1) | a1 is chosen] (16)

≈ h(α1,β1,α2,β2)(
α1

α1 + β1
/α1 −

β1

α1 + β1
/β1) (17)

= 0 (18)

In the same way, we have

E[1Pr(H1) | a2 is chosen] ≈ 0 (19)

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

(18) and (19) indicate that no matter which action is picked,

the expected difference of max{Pr(Hi)} will approximately be

zero, which makes it difficult for us to make decisions.

Our solution is to select the action that gives the expected

maximum possible increment to max{Pr(Hi)}, as we did in Ge

et al. (2015b).More specifically, if Pr(H1) is greater than Pr(H2),

then we try to find out the action that could probably lead to the

expected maximal increment of Pr(H1), that is

argmax
i

E[max{1Pr(H1)} | ai is chosen] (20)

Otherwise, we try to maximize

argmax
i

E[max{1Pr(H2)} | ai is chosen] (21)

The events that can lead to increments of Pr(H1) are “action

a1 is selected and rewarded” and “action a2 is selected and

punished.” Hence the optimization objective of (20) can be

simplified as:





c1

α1
h(α1,β1,α2,β2) a1 is chosen (22a)

1− c2

β2
h(α1,β1,α2,β2) a2 is chosen (22b)

By employing the Maximum Likelihood Estimate of c1 and c2,

(22) can be written as





h(α1,β1,α2,β2)

(α1 + β1)
a1 is chosen (23a)

h(α1,β1,α2,β2)

(α2 + β2)
a2 is chosen (23b)

The same conclusion holds also for situation Pr(H1) < Pr(H2).

As a result, the strategy adopted in two-action environments

is selecting the action which has been observed less between the

two candidate actions at every time instance, as (24) reveals.

{
argmin

i
(αi + βi) when S1 6= S2 (24a)

randomly chosen when S1 = S2 (24b)

3.2.2. Multi-action environments

In multi-action environments, the automaton has to

distinguish the best action from the action set. Intuitively, we can

maximize the expected increment of Pr(Hi) over the selection

of actions, however, the closed form of Pr(Hi) is complicated,

making the exact solution computationally intractable.

However, from an alternative perspective, the automaton

only needs to determine which is the best of the top two

possibly optimal actions. That is, for the two actions which

are most possible to be the optimal action, denoted as action

ai1 and action ai2, we only have to maximize the probability

Pr(ei1 > ei2) or Pr(ei2 > ei1), exactly the same as it in two-

action environments. So we come to the conclusion that, in the

proposed scheme, our exploration strategy is similar to (24).

3.3. Initialization of beta distributions

In our scheme, each estimation ei is represented by a beta

distribution ei ∼ Beta(αi,βi). The parameters αi and βi record

the number of times that action ai has been rewarded and

punished, respectively.

In the beginning, as we know nothing about the actions, a

non-informative (uniform) prior distribution is advised to infer

the posterior distribution. So αi and βi should be set identically

to 1, exactly the same as in Granmo (2010) and Zhang et al.

(2013).

However, as clarified in Sutton and Barto (2018), initial

action values can be used as a simple way of encouraging

exploration. The technique of optimistic initial values is applied,

which has been reported as a quite effective simple trick on

stationary problems.

Therefore, in our scheme, the prior distribution is Beta(2, 1)

for inferring the posterior distribution, i.e., all beta random

variables are initialized as αi = 2,βi = 1.

The estimates of all actions’ reward probability are

intentionally biased toward 1. The impact of the bias is

permanent, though decreasing over iterations. When an action

has been sampled just a few times, the bias contributes a

large proportion to the estimate, thus further exploration is

encouraged. By the time an action has been observed many

times, the impact of the biased initial value is negligible.

Finally, the overall process of PFLA is summarized

in Algorithm 1.

4. Performance analysis

In this section, the statistical performance of the proposed

scheme is analyzed, an approximate lower bound of the accuracy

is derived and the ǫ-optimality of the proposed scheme is

further proved.

4.1. An approximate lower bound of the
accuracy

As declared in Owen (2013), from the central limit theorem

(CLT), we know that the error of Monte Carlo simulation

has approximately a normal distribution with zero mean and

variance σ 2/N. Hence, if we denote the error between Pr(Hi)

and its Monte-Carlo estimate as ǫi, then we get

Pr(Hi) = P̂r(Hi)+ ǫi (27)

≥ η + ǫi (28)

∼ η + Norm(0,
σ 2
i

N
) (29)

≥ η− | ǫi | (30)

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

Require: η: a convergence threshold; N: the number

of replications of Monte Carlo simulation

1: Initial αi = 2,βi = 1 for i = 1, 2, 3, . . . , r;

2: repeat

3: Evaluate the probability P̂r(Hi) according to

(7) for each action i = 1, 2, 3, . . . , r;

4: Choose the two actions with top two P̂r(Hi),

denoted as ai1 and ai2. If there are two or more

actions with identical maximum P̂r(Hi), then

choose two from them randomly.

5: Select one from ai1 and ai2 according to

ai =





ai1 if Si1 < Si2

ai2 if Si1 > Si2

randomly chosen if Si1 = Si2

and interacts with the environment.

6: Receive feedback from the environment and

update the parameters of beta distributions for

action ai:

{
αi = αi + 1 if a reward is received

βi = βi + 1 if a penalty is received

7: until max{P̂r(Hi)} > η

Algorithm 1. Parameter-free learning automaton.

where P̂r(Hi) is the Monte-Carlo estimate of Pr(Hi) and σ 2
i is

the variance of I(xi).

We may note that the right-hand side of (29) is irrelevant

to the characteristics of the environment. In other words, the

performance of the proposed scheme only depends on the

selection of η and N. That is the theoretical foundation of the

parameter-free property.

As the outcome of I(xi) is binary, in the worst case, the

maximum of σ 2
i is 0.25. When N equals 1,000, the probability

density function of ǫi is shown in Figure 2, which quantitatively

depicts the error. Obviously, the error is so small that could

be ignored.

Therefore, the approximate lower bound of Pr(Hi) is η.

According to the Bayesian theory, the accuracy of our scheme

is approximately larger than η.

Next, we shall describe the behavior of the proposed

scheme more precisely. Like the pioneers have done in

previous literature, the ǫ-optimality of the proposed scheme will

be derived.

4.2. Proof of ε-optimality

Recall that ei is defined as the estimated reward probability

of action ai and follows Beta(αi,βi), which is the posterior

FIGURE 2

The probability density function of Norm(0, 1
4,000

).

distribution of the estimated reward probability. The probability

density function of Beta(αi,βi) is f (xi;αi,βi) = Cix
αi−1
i (1 −

xi)
βi−1, where Ci =

1
B(αi,βi)

serves as a normalizing factor such

that
∫ 1
0 f (xi;αi,βi) = 1. Let Zi = αi − 2 and Wi = βi − 1

denote the numbers of times that action ai has been rewarded

and penalized, respectively, and Si = Zi +Wi = αi + βi − 3 be

the number of times that action ai has been selected.

Based on these preliminaries, the following Lemmas and

Theorems are proposed:

Lemma 1. The beta distribution Beta(αi,βi) becomes 1-point

Degenerate distribution with a Dirac delta function spike at

ci, provided that the number of selecting action ai approaches

infinity, i.e., ∀ε > 0,

lim
Si→∞

∫

|xi−ci|≤ε
⋂
[0,1]

f (xi;αi,βi)dxi = 1 (31)

lim
Si→∞

∫

|xi−ci|>ε
⋂
[0,1]

f (xi;αi,βi)dxi = 0 (32)

Proof 1. According to the law of large numbers, we have Zi
Si

→

ci, as Si → ∞.

Hence

lim
Si→∞

αi − 1

Si
=

Zi + 1

Si
= ci

lim
Si→∞

βi − 1

Si
=

Si − Zi

Si
= (1− ci)





⇒

{
αi − 1 = ciSi

βi − 1 = (1− ci)Si

(33)

The probability density function takes the form:

lim
Si→∞

f (xi;αi,βi) = Cix
αi−1
i (1− xi)

βi−1 (34)

= Ci[x
ci
i (1− xi)

1−ci]Si (35)

= Cig
Si (xi) (36)

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

where g(xi) = x
ci
i (1− xi)

1−ci .

Note that g(xi) is a non-negative integrable function, we have

lim
Si→∞

(∫ 1

0
gSi (xi)

) 1
Si
dxi = ||g||∞. (37)

Therefore,

lim
Si→∞

C
1
Si
i =

1
(∫ 1

0 gSi (xi)dxi

) 1
Si

=
1

||g||∞
(38)

This reveals, as Si → ∞

(∫

|xi−ci|>ε
⋂
[0,1]

f (xi;αi,βi)dxi

) 1
Si

=C
1
Si
i

(∫

|xi−ci|>ε
⋂
[0,1]

gSi (xi)dxi

) 1
Si

→
‖g‖∞,ε

‖g‖∞
(39)

where ‖g‖∞,ε is the L∞ norm of g when restricted to

|xi − ci| > ε.

By taking both sides of (39) to the Si power, we obtain

∫

|xi−ci|>ε
⋂
[0,1]

f (xi;αi,βi)dxi →

(
‖g‖∞,ε

‖g‖∞

)Si
(40)

Obviously
‖g‖∞,ε
‖g‖∞

< 1, for the fact that g is continuous and

has a unique maximum at ci, thus
∫

|xi−ci|>ε
⋂
[0,1]

f (xi;αi,βi)dxi → 0 (41)

as Si → ∞.

Note that
∫ 1
0 f (xi;αi,βi)dxi = 1 and the proof is finished.

Lemma 2. For two or more random variables ei ∼ Beta(αi,βi),

assume m is the index of action that has the maximum reward

probability such that cm = max(ci), then

lim
Si→∞

Pr{em > max
i 6=m

(ei)} = 1 (42)

Proof 2.

Pr{em > max
i 6=m

(ei)}

=

∫ 1

0
f (xm;αm,βm)

∏

i 6=m

[

∫ xm

0
f (xi;αi,βi)dxi]dxm (43)

From Lemma 1, we know that f (xi;αi,βi) → δ(xi − ci) as

Si → ∞.

By using the sampling property of the Dirac delta function,

(43) can be simplified as

lim
Si→∞

Pr{em > max
i 6=m

(ei)} = lim
Si→∞

∏

i 6=m

∫ cm

0
f (xi;αi,βi)dxi

(44)

= lim
Si→∞

∏

i 6=m

∫ cm

0
δ(xi − ci)dxi (45)

Note that ∀i 6= m, as ci ∈ [0, cm],
∫ cm
0 δ(xi − ci)dxi = 1.

And finally

lim
Si→∞

Pr{em > max
i 6=m

(ei)} = 1 (46)

This completes the proof.

Remark 1. It is noted that, Lemma 2 implies

limSi→∞ Pr{Hm} = 1

Lemma 3. Suppose one component of the vector

{Pr(H1), Pr(H2), . . . , Pr(Hr)}, say Pr(Hi) approaches 1

only if the number of each action been selected Si → ∞, for all

i ∈ {1, 2, . . . , r}.

Proof 3. As Pr(Hi) → 1, for any δ > 0, we have Pr(Hi) ≥

1− δ, hence

Pr(Hi) =

∫ 1

0
f (xi;αi,βi)

∏

j 6=i

[

∫ xi

0
f (xj;αj,βj)dxj]dxi (47)

=

∫ 1

0
f (xi;αi,βi)

∫ xi

0
f (xj;αj,βj)dxj

∏

k6=i,k6=j

[

∫ xi

0
f (xk;αk,βk)dxk]dxi (48)

≤

∫ 1

0
f (xi;αi,βi)

∫ xi

0
f (xj;αj,βj)dxj

∏

k6=i,k6=j

[

∫ 1

0
f (xk;αk,βk)dxk]dxi (49)

=

∫ 1

0
f (xi;αi,βi)

∫ xi

0
f (xj;αj,βj)dxjdxi (50)

=Pr{ei > ej} (51)

As a result, for all j 6= i,

Pr{ei > ej} ≥ Pr(Hi) → 1 (52)

⇒Pr{ej > ei} → 0 (53)

⇒

∫ 1

0
f (xj;αj,βj)

∫ xj

0
f (xi;αi,βi)dxidxj → 0 (54)

By denoting F(x) = f (x;αj,βj)B(x;αi,βi) =

f (x;αj,βj)
∫ x
0 f (xi;αi,βi)dxi, we have

∫ 1

0
F(x)dx → 0 (55)

Suppose at least one of Si and Sj is not infinity, thus three

possible cases should be discussed.

1. Case Si < ∞ and Sj < ∞.

In this case, f (xj;αj,βj) is a continuous function and

strictly positive on (0, 1). As
dB(x;αi,βi)

dx
= f (xi;αi,βi) is

continuous, B(x;αi,βi) is continuously differentiable which

implies it is a continuous function. In addition, B(x;αi,βi) is

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

strictly positive on (0, 1). Clearly, the product of two strictly

positive continuous functions F(x) is continuous and F(x) > 0

on the interval (0, 1), hence

∫ 1

0
F(x)dx > 0 (56)

which contradicts (55).

2. Case Si < ∞ and Sj = ∞.

Similarly, we can prove that B(x;αi,βi) is strictly positive

and continuous on (0, 1), and f (x;αj,βj) → δ(x− cj).

Hence, (54) can be written as:

B(cj;αi,βi) → 0 (57)

that contradicts the fact that B(x;αi,βi) is strictly positive on

(0, 1).

3. Case Si = ∞ and Sj < ∞.

Similarly, we can prove that f (xj;αj,βj) is strictly positive

and continuous on (0, 1), and f (xi;αi,βi) → δ(x− ci).

Hence, (54) can be written as:

∫ 1

ci

f (x;αj,βj)dx → 0 (58)

which implies f (xj;αj,βj) = 0 on (ci, 1), that contradicts the

fact that f (xj;αj,βj) is strictly positive on (0, 1).

By summarizing the above three cases, we conclude that the

supposition is false and both Si and Sj must be infinity.

As i, j enumerate all the action indexes, the proof is completed.

Remark 2. From Lemma 3 and Remark 1, one can immediately

see that given a threshold η → 1, PFLA will converge to the

optimal action w.p.1 whenever it gets converged.

Lemma 4. The Monte Carlo estimation of Pr(Hi) will converge

almost surely as the number of Monte Carlo replications N tends

to infinity, i.e.,

Pr{ lim
N→∞

P̂r(Hi) = Pr(Hi)} = 1 (59)

Proof 4. This lemma can be easily derived according to the strong

law of large numbers.

Let us now state and prove the main result for

algorithm PFLA.

Theorem 1. PFLA is ǫ-optimal in every stationary random

environment. That is, given any ε > 0, there exists a N0 < ∞,

a t0 < ∞, and a η0 < 1 such that for all t ≥ t0, N ≥ N0 and

η > η0:

P̂r(Hm) > 1− ε (60)

Proof 5. The theorem is equivalent to showing that,

Pr{ lim
N→∞
t→∞
η→1

P̂r(Hm) = 1} = 1 (61)

From Lemma 4, we know that (61) is equivalent to

Pr{ lim
t→∞
η→1

Pr(Hm) = 1} = 1 (62)

And according to Remark 2, we only need to prove that

the scheme can definitely get converged, i.e., at least one of the

components {Pr(H1),Pr(H2), . . . , Pr(Hr)} approaches 1, as t →

∞ and η → 1.

Suppose the scheme has not converged yet at time t1, because

exactly one action will be explored at each time instant, we have∑
i Si = t1.

As t1 → ∞, a finite series has an infinite sum, which indicates

that at least one of the terms Si has an infinite value.

Then denote the set of actions, whose corresponding

observation times Si(t1) → ∞, as A1, and denote the absolute

complement set of A1 as A2.

1. If A2 = ∅, then for any action ai, we have Si → ∞.

By considering Remark 1, we have

Pr(Hm) → 1 (63)

2. We will show that if A2 6= ∅, then it is impossible that both the

top two possibly optimal actions belong to set A1.

Denote the action inA1 with the highest reward probability

as am1, then according to Lemma 2, ∀ai ∈ A1 and i 6= m1,

Pr(Hi) → 0. (64)

While for actions aj ∈ A2,

Pr(Hj) =

∫ 1

0
f (xj;αj,βj)

∏

k6=j

[

∫ xj

0
f (xk;αk,βk)dxk]dxj

(65)

=

∫ 1

0
f (xj;αj,βj)

∏

ak1∈A1

[

∫ xj

0
f (xk1;αk1,βk1)dxk1]

∏

k2 6=i,ak2∈A2

[

∫ xj

0
f (xk2;αk2,βk2)dxk2]dxj (66)

=

∫ 1

0
f (xj;αj,βj)

∏

ak1∈A1

I(xj ≥ ck1)

∏

k2 6=i,ak2∈A2

[

∫ xj

0
f (xk2;αk2,βk2)dxk2]dxj (67)

=

∫ 1

cm1

f (xj;αj,βj)

∏

k2 6=i,ak2∈A2

[

∫ xj

0
f (xk2;αk2,βk2)dxk2]dxj (68)

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

TABLE 2 Accuracy (number of correct convergences/number of experiments) of the compared algorithms in environments E1 to E9, when using the

“best” learning parameters (250,000 experiments were performed for each scheme in each environment).

Env. DPri DGPA DBPA DGCPA SEri GBSE LELAR PFLA

E1 0.997 0.998 0.997 0.997 0.998 0.998 0.998 0.999

E2 0.997 0.997 0.998 0.998 0.997 0.998 0.998 0.999

E3 0.996 0.996 0.996 0.997 0.997 0.997 0.997 0.998

E4 0.998 0.997 0.998 0.997 0.998 0.998 0.998 0.999

E5 0.995 0.997 0.996 0.997 0.997 0.997 0.997 0.997

E6 0.994 0.996 0.994 0.996 0.996 0.996 0.996 0.999

E7 0.993 0.995 0.993 0.995 0.995 0.995 0.995 0.996

E8 0.996 0.997 0.996 0.998 0.998 0.998 0.997 0.999

E9 0.994 0.997 0.994 0.997 0.997 0.997 0.997 0.997

TABLE 3 Comparison of the average number of iterations required for convergence of the compared algorithms in environments E1 to E9.

Env. E1 E2 E3 E4 E5 E6 E7 E8 E9

DPri Para.a n = 22 n = 29 n = 74 n = 18 n = 298 n = 653 n = 2,356 n = 216 n = 881

Iter.b 46 61 127 64 1,086 2,500 9,613 783 2,363

DGPA Para. n = 20 n = 28 n = 70 n = 32 n = 33 n = 65 n = 204 n = 28 n = 55

Iter. 52 66 141 72 880 1,677 5,191 754 1,445

DBPA Para. n = 20 n = 24 n = 57 n = 13 n = 102 n = 216 n = 820 n = 57 n = 326

Iter. 44 54 105 52 646 1,419 5,423 432 1,384

DGCPA Para. (12, 1) (18, 2) (38, 3) (18, 3) (3, 5) (6, 9) (17, 20) (2, 4) (5, 7)

Iter. 41 52 99 50 351 678 2032 298 598

SEri Para. (15, 3) (18, 3) (38, 5) (12, 3) (16, 8) (32, 12) (105, 25) (13, 6) (33, 12)

Iter. 43 51 99 54 426 834 2,540 325 729

GBSE Para. (12, 3) (14, 3) (22, 5) (8, 3) (1, 7) (3, 9) (6, 17) (1, 5) (3, 8)

Iter. 43 53 97 55 401 772 2,262 306 612

LELAR Para. n = 13 n = 16 n = 41 n = 9 n = 9 n = 17 n = 59 n = 9 n = 24

Iter. 51 65 137 63 629 1,129 3,733 586 1,072

PFLA Iter. 44 51 102 54 510 934 2,737 538 735

For all schemes, the “best” learning parameters for each environment are used (250,000 experiments were performed for each scheme in each environment).
aPara., Parameter. And for methods that have more than one tunable parameter, a tuple is used to represent the parameters. For example, n = 38, γ = 5 is represented as (38, 5) in the table.
bIter., Iteration.

As cm1 < 1, and the integrand is strictly positive and

continuous. Obviously, (68) is larger than zero trivially.

For actions in A1 other than am1, Pr(Hi) → 0, while

for actions in A2, all Pr(Hi) equal some constants that are

larger than zero. Hence, at least one action of the top two most

probably optimal actions is from A2 and this action will be

chosen to draw feedback.

As time t → ∞, once A2 6= ∅, one action in A2 will be

explored. As a consequence, we can always find a t0 > t1 such

that all actions in A2 will be explored infinite times and yield

an empty A2.

Combining the above two cases, we may infer that all actions

will be explored an infinite number of times and Pr(Hm) → 1.

This completes the proof.

5. Simulation results

During the last decade, SEri has been considered as the state-

of-the-art algorithm for a long time, however, some recently

proposed algorithms (Ge et al., 2015a; Jiang et al., 2015) claim

a faster convergence than SEri. To make a comprehensive

comparison among currently available techniques, as well as to

verify the effectiveness of the proposed parameter-free scheme,

in this section, PFLA is compared with several classic parameter-

based learning automata schemes, including DPri (Oommen

and Lanctôt, 1990), DGPA (Agache and Oommen, 2002),

DBPA (Zhang et al., 2013), DGCPA∗ (Ge et al., 2015a), SEri

(Papadimitriou et al., 2004), GBSE (Jiang et al., 2015), and

LELAR (Zhang et al., 2014).

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

FIGURE 3

Convergence rate improvements of the compared algorithms

relative to PFLA in benchmark environments, calculated by using
Iterations{PFLA}−Iterations{ComparedAlgorithm}

Iterations{PFLA}
. (A) Two-action environments.

(B) Ten-action environments.

All the schemes are evaluated in four two-action benchmark

environments (Ge et al., 2015b) and five 10-action benchmark

environments (Papadimitriou et al., 2004). The actions’ reward

probabilities for each environment are as follows:

E1 :{0.90, 0.60}

E2 :{0.80, 0.50}

E3 :{0.80, 0.60}

E4 :{0.20, 0.50}

E5 :{0.65, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}

E6 :{0.60, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}

E7 :{0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}

E8 :{0.70, 0.50, 0.30, 0.20, 0.40, 0.50, 0.40, 0.30, 0.50, 0.20}

E9 :{0.10, 0.45, 0.84, 0.76, 0.20, 0.40, 0.60, 0.70, 0.50, 0.30}

The comparison is organized in two ways:

1. Comparison between PFLA and parameter-based schemes

with their learning parameters being carefully tuned.

2. Comparison between PFLA and parameter-based schemes

without parameter tuning, using either pre-defined or

randomly selected learning parameters.

5.1. Comparison with well-tuned
schemes

Firstly, the parameter-based schemes are simulated with

carefully tuned best parameters. The procedure for obtaining

the best parameters is elaborated in the Appendix. The proposed

PFLA, by contrast, takes identical parameter values of η = 0.99

and N = 1, 000 in all nine environments.

The results of the simulations are summarized in Tables 2, 3.

The accuracy is defined as the ratio between the number of

correct convergence and the number of experiments, whilst the

iteration as the averaged number of required interactions between

automaton and environment for a correct convergence. It is noted

that the initialization cost of estimators is also included. The

number of initializations for each action is 10.

In Table 2, PFLA converges with relatively high accuracy

consistently, coinciding with our analytical results in Section 4,

and verifying the effectiveness of our proposed parameter-free

scheme. And since the accuracies of all schemes are close, their

convergence rates can be “fairly” compared4.

In the aspect of convergence rate, obviously, in Table 3,

PFLA is outperformed by the top performers, namely SEri,

GBSE, and DGCPA∗. Figure 3 depicts the improvements of

the competitors over PFLA. Take E7 as an example, the

convergence rate of PFLA is improved by DGCPA∗, SEri,

and GBSE with 25.76, 7.20, and 17.35%, respectively. While

other schemes, DPri, DGPA, and LELAR are outperformed

by PFLA significantly. Generally speaking, FPLA is faster

than deterministic estimator-based schemes and slower than

stochastic estimator-based algorithms.

However, taking the parameter tuning cost of the

competitors into consideration, the parameter-free property

begins to show its superiority. In order to clarify that point,

we record the number of interactions between automaton

and environment during the process of parameter tuning for

each parameter-based scheme. The results are summarized in

Table 45. It can be seen that the extra interactions required for

parameter tuning by deterministic estimator-based schemes

4 Technically speaking, the comparison is not completely fair, that’s

the reason the word “fairly” are quoted. An explanation will be given in

later subsections.

5 It is noted that the numerical value shown in Table 4 may di�er

according to the way parameter tuning being implemented, still it

gives qualitatively evidence to the heavy parameter tuning cost of the

parameter-based schemes. The technical details of the parameter tuning

procedure used here are provided in the Appendix.

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

TABLE 4 The parameter tuning cost (number of extra interactions) of the compared algorithms in environments E1–E9.

Env. DPri DGPA DBPA DGCPA SEri GBSE LELAR

E1 3.075× 106 3.023× 106 2.523× 106 3.046× 107 2.062× 107 1.881× 107 2.471× 106

E2 3.866× 106 4.552× 106 3.373× 106 3.633× 107 2.669× 107 2.241× 107 3.346× 106

E3 1.521× 107 1.554× 107 1.045× 107 9.192× 107 8.704× 107 6.180× 107 1.042× 107

E4 2.616× 106 5.331× 106 2.147× 106 3.445× 107 2.215× 107 2.025× 107 2.362× 106

E5 3.947× 108 6.248× 107 1.033× 108 2.421× 108 1.268× 109 3.443× 108 2.437× 107

E6 1.813× 109 1.708× 108 4.117× 108 7.442× 108 6.905× 109 9.331× 108 6.262× 107

E7 1.503× 1010 1.369× 109 4.931× 109 7.618× 109 1.207× 1011 9.158× 109 3.910× 108

E8 2.008× 108 5.264× 107 4.146× 107 1.808× 108 7.079× 108 2.714× 108 2.209× 107

E9 1.802× 109 1.208× 108 5.933× 108 5.495× 108 6.266× 109 8.092× 108 7.029× 107

(DGPA, DBPA, and LELAR, except DPri) are slightly less than

stochastic estimator-based schemes (DGCPA∗, SEri, and GBSE).

Both families of schemes cost millions of extra interactions

for seeking the best parameter. The proposed scheme can

achieve a comparative performance without relying on any

extra interactions/information.

For better visualization, a scatter map is used to illustrate the

performance of different methods. In the scatter map, each dot

represents a specific method discussed in this section. The x-

axis indicates the averaged accuracy achieved by each method

in the benchmark environments, and the y-axis indicates the

averaged iterations need for each method to get converged

in the benchmark environments, as shown in Figure 4. It is

noted that the iterations are normalized with respect to each

environment before being averaged over different environments

for each method. As we are always pursuing a method with

higher accuracy and convergence rate, the method approaching

the right bottom corner of the figure is better than the others.

From Figure 4B, we can draw the conclusion that taking the

parameter tuning cost of the competitors into consideration, the

proposed PFLA is the best of all competitors.

5.2. Comparison with untuned schemes

In this part, the parameter-based algorithms are simulated

in benchmark environments without their learning parameter

specifically tuned. Their performance will be compared with

PFLA under the same condition—no extra information about

the environment is available.

5.2.1. Using generalized learning parameter

Firstly, the best parameter in E2 and E6 are applied for

learning in other environments respectively to evaluate how well

they can “generalize” in other environments. The results are

shown in Tables 5, 6, respectively.

FIGURE 4

Averaged iterations vs. averaged accuracy in the nine

benchmark environments of compared methods. (A) Without

considering the parameter tunning cost. (B) With consideration

of the parameter tunning cost.

5.2.2. Using random learning parameter

Secondly, randomly selected learning parameters are

adopted to evaluate the expected performance of each algorithm

in fully unknown environments. The random resolution

parameter takes value in the range from 90% of the minimal

value to 110% of the maximal value of the best resolution

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

TABLE 5 Comparison of convergence rate and accuracy of the parameter-based algorithms in all environments other than E2, when using the

“best” learning parameters in E2.

Env. DPri DGPA DBPA DGCPA SEri GBSE LELAR

Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc.

E1 55 0.998 65 0.999 49 0.998 53 0.995 47 0.999 48 0.999 59 0.998

E3 63 0.975 70 0.976 57 0.976 61 0.972 57 0.979 62 0.983 67 0.976

E4 90 0.999 66 0.996 79 0.999 45 0.994 69 0.999 80 0.999 96 0.999

E5 264 0.895 767 0.995 301 0.967 640 0.999 286 0.962 701 0.998 1,026 0.999

E6 319 0.804 835 0.971 408 0.927 821 0.996 351 0.897 836 0.987 1,068 0.995

E7 393 0.658 976 0.858 577 0.806 1,249 0.957 443 0.748 1,093 0.905 1,155 0.909

E8 253 0.918 752 0.997 280 0.979 616 0.999 273 0.981 648 0.999 954 0.999

E9 246 0.801 827 0.981 275 0.869 751 0.997 299 0.903 636 0.984 758 0.986

TABLE 6 Comparison of convergence rate and accuracy of the parameter-based algorithms in all environments other than E6, when using the

“best” learning parameters in E6.

Env. DPri DGPA DBPA DGCPA SEri GBSE LELAR

Iter. Acc.a Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc.

E1 812 1 125 0.999 282 1 29 0.783 95 1 26 0.769 61 0.999

E2 923 1 126 0.999 320 1 28 0.777 103 0.999 29 0.781 68 0.998

E3 899 1 133 0.996 317 1 31 0.725 124 0.998 29 0.716 70 0.978

E4 1572 1 126 0.999 535 1 28 0.791 137 1 46 0.846 101 0.999

E5 1879 0.999 1,582 0.999 969 0.999 501 0.972 641 0.999 599 0.999 1,085 0.999

E7 3961 0.942 1,939 0.945 2,358 0.965 1,055 0.929 1,203 0.942 1,110 0.948 1,219 0.917

E8 1641 0.999 1,555 0.999 845 0.999 495 0.974 629 0.999 592 0.999 1008 0.999

E9 1923 0.987 1,667 0.998 1,078 0.988 673 0.973 725 0.996 675 0.997 799 0.989

aAcc., Accuracy.

parameter in the nine benchmark environments6, and a range

from 1 to 20 for the perturbation parameter if needed. The

simulation results are demonstrated in Table 7.

From the three tables, there is a significant decline in

accuracy in some environments. As the accuracies differ greatly

in those cases, the convergence rates cannot be compared

directly. Still, several conclusions can be drawn. One is that the

performance of untuned parameter-based algorithms is unstable

when learning in an unknown environment, and thus cannot

be used in practical applications without parameter tuning.

Another conclusion is that those algorithms, that use generalized

learning parameters or random learning parameters, are either

have a lower accuracy or a slower convergence rate than PFLA

in the benchmark environment. In other words, none of them

can outperform PFLA in both accuracy and convergence rate

without the help of prior information.

6 For example, the resolution parameter of DPri is range from ⌊90%∗18⌋

to ⌈110% ∗ 2356⌉, i.e., from 16 to 2,592.

5.3. Discussion of the fairness of the
comparison

Technically speaking, the comparison between PFLA

and well-tuned schemes is not fair. This is because the

interactions can be perceived as information exchanges

between automaton and the environment. So if the number

of interactions is unlimited, the algorithm can simply use

the empirical distributions. The outperforming of the

well-tuned schemes owes to their richer knowledge about

the environment acquired during the parameter tuning

process. And for this reason, a fair comparison between

PFLA and untuned schemes is carried out. Despite the

unfairness of the first comparison, the significance lies in

providing baselines for evaluating the convergence rate of

PFLA qualitatively.

By the way, the comparison within parameter-based

algorithms is not fair either, because the amount of prior

information acquired is different. This method is widely

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

TABLE 7 Comparison of the average number of iterations required for convergence of the parameter-based algorithms in environments E1 to E9.

Env. DPri DGPA DBPA DGCPA SEri GBSE LELAR

Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc. Iter. Acc.

E1 1,606 0.999 216 0.999 574 0.999 76 0.924 121 0.999 71 0.943 108 0.999

E2 1,824 0.999 217 0.999 652 0.999 73 0.922 132 0.999 78 0.943 121 0.999

E3 1,767 0.999 224 0.996 638 0.998 87 0.896 152 0.996 95 0.927 124 0.990

E4 3,121 0.999 217 0.999 1,105 0.999 66 0.928 189 0.999 109 0.953 192 0.999

E5 3,253 0.996 2,821 0.999 1,476 0.997 836 0.977 687 0.993 925 0.997 2,153 0.999

E6 3,995 0.988 2,922 0.995 2,072 0.993 1,042 0.975 886 0.979 1,158 0.991 2,229 0.996

E7 6,260 0.951 3,309 0.963 3,626 0.970 1,647 0.952 1,302 0.911 1,699 0.952 2,395 0.958

E8 2,859 0.997 2,774 0.999 1,288 0.999 810 0.978 647 0.996 878 0.998 2003 0.999

E9 3,031 0.985 2,919 0.997 1,615 0.987 1,041 0.976 768 0.979 988 0.988 1547 0.993

The randomly selected learning parameters are used and 250,000 experiments were performed for each scheme in each environment.

used by the research community to compare the theoretically

best performance of their proposed algorithms, however, the

hardness of the algorithm can achieve theoretically best is

usually ignored.

6. Conclusion

In this paper, we propose a parameter-free learning

automaton scheme for learning in stationary stochastic

environments. The proof of the ε-optimality of the proposed

scheme in every stationary random environment is presented.

Compared with existing schemes, the proposed PFLA possesses

a parameter-free property, i.e., a set of parameters that can

be universally applicable to all environments. Furthermore,

our scheme is evaluated in four two-action and five 10-action

benchmark environments and compared with several classic

and state-of-the-art schemes in the field of LA. Simulations

confirm that our scheme can converge to the optimal action

with high accuracy. Although the rate of convergence is

outperformed by some schemes that are well-tuned for specific

environments, the proposed scheme still shows its intriguing

property of not relying on the parameter-tuning process.

Our future work includes optimizing the exploration strategy

further.

Data availability statement

The original contributions presented in the

study are included in the article/supplementary

material, further inquiries can be directed to the

corresponding author.

Author contributions

All authors listed have made a substantial, direct,

and intellectual contribution to the work and approved it

for publication.

Funding

This research work was funded by the National Nature

Science Foundation of China under Grant 61971283, Shanghai

Municipal Science and Technology Major Project under

Grant 2021SHZDZX0102, and Shanghai AI Innovation and

Development Project under Grant 2020-RGZN-02026.

Conflict of interest

Author HG was employed by company Shanghai Data

Miracle Intelligent Technology Co., Ltd.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

References

Agache, M., and Oommen, B. J. (2002). Generalized pursuit learning schemes:
new families of continuous and discretized learning automata. IEEE Trans. Syst.
Man Cybern. Part B 32, 738–749. doi: 10.1109/TSMCB.2002.1049608

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time
analysis of the multi-armed bandit problem. Mach. Learn. 47, 235–256.
doi: 10.1023/A:1013689704352

Cook, J. D. (2005). Exact Calculation of Beta Inequalities. Technical
report, Technical report, UT MD Anderson Cancer Center Department of
Biostatistics.

Cuevas, E., Wario, F., Zaldivar, D., and Pérez-Cisneros, M. (2013). Circle
Detection on Images Using Learning Automata. Berlin; Heidelberg: Springer Berlin
Heidelberg. 545–570. doi: 10.1007/978-3-642-29694-9_21

Ge, H., Jiang, W., Li, S., Li, J., Wang, Y., and Jing, Y. (2015a). A
novel estimator based learning automata algorithm. Appl. Intell. 42, 262–275.
doi: 10.1007/s10489-014-0594-1

Ge, H., Yan, Y., Li, J., Ying, G., and Li, S. (2015b). “A parameter-
free gradient bayesian two-action learning automaton scheme,” in Proceedings
of the International Conference on Communications, Signal Processing, and
Systems (Berlin; Heidelberg).

Granmo, O.-C. (2010). Solving two-armed Bernoulli bandit problems using
a Bayesian learning automaton. Int. J. Intell. Comput. Cybern. 3, 207–234.
doi: 10.1108/17563781011049179

Horn, G., and Oommen, B. (2010). Solving multiconstraint assignment
problems using learning automata. IEEE Trans. Syst. Man Cybern. Part B 40, 6–18.
doi: 10.1109/TSMCB.2009.2032528

Jiang, W., Li, B., Tang, Y., and Philip Chen, C. L. (2015). A new prospective for
learning automata: a machine learning approach. Neurocomputing 188, 319–325.
doi: 10.1016/j.neucom.2015.04.125

Kumar, N., Misra, S., and Obaidat, M. (2015). Collaborative learning automata-
based routing for rescue operations in dense urban regions using vehicular sensor
networks. IEEE Syst. J. 9, 1081–1090. doi: 10.1109/JSYST.2014.2335451

Misra, S., Krishna, P., Kalaiselvan, K., Saritha, V., and Obaidat, M. (2014).
Learning automata based QoS framework for cloud IAAS. IEEE Trans. Netw.
Service Manage. 11, 15–24. doi: 10.1109/TNSM.2014.011614.130429

Narendra, K. S., and Thathachar, M. (1974). Learning automata-a survey. IEEE
Trans. Syst. Man Cybern. 4, 323–334. doi: 10.1109/TSMC.1974.5408453

Narendra, K. S., and Thathachar, M. A. (2012). Learning Automata: An
Introduction. New York, NY: Courier Dover Publications.

Oommen, B., andHashem,M. (2010).Modeling a student-classroom interaction
in a tutorial-like system using learning automata. IEEE Trans. Syst. Man Cybern.
Part B 40, 29–42. doi: 10.1109/TSMCB.2009.2032414

Oommen, B. J., and Agache, M. (2001). Continuous and discretized pursuit
learning schemes: various algorithms and their comparison. IEEE Trans. Syst. Man
Cybern. Part B 31, 277–287. doi: 10.1109/3477.931507

Oommen, B. J., and Lanctôt, J. K. (1990). Discretized pursuit learning automata.
IEEE Trans. Syst. Man Cybern. 20, 931–938. doi: 10.1109/21.105092

Oommen, J., and Misra, S. (2009). “Cybernetics and learning automata,” in
Springer Handbook of Automation, ed S. Y. Nof (Berlin; Heidelberg: Springer),
221–235. doi: 10.1007/978-3-540-78831-7_12

Owen, A. B. (2013). Monte carlo theory, methods and examples.

Papadimitriou, G. I., Sklira, M., and Pomportsis, A. S. (2004). A new class of
ε-optimal learning automata. IEEE Trans. Syst. Man Cybern. Part B 34, 246–254.
doi: 10.1109/TSMCB.2003.811117

Song, Y., Fang, Y., and Zhang, Y. (2007). “Stochastic channel selection
in cognitive radio networks,” in Global Telecommunications Conference, 2007,
GLOBECOM ’07 (Washington, DC), 4878–4882. doi: 10.1109/GLOCOM.2007.925

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Cambridge, MA; London: The MIT Press.

Tsetlin, M. (1973). Automaton Theory and Modeling of Biological Systems. New
York, NY: Academic Press.

Tsetlin, M. L. (1961). On the behavior of finite automata in random media.
Avtom. Telemekh. 22, 1345–1354.

Vahidipour, S., Meybodi, M., and Esnaashari, M. (2015). Learning automata-
based adaptive petri net and its application to priority assignment in queuing
systems with unknown parameters. IEEE Trans. Syst. Man Cybern. Syst. 45,
1373–1384. doi: 10.1109/TSMC.2015.2406764

Yazidi, A., Granmo, O.-C., and Oommen, B. (2013). Learning automaton
based online discovery and tracking of spatiotemporal event patterns. IEEE Trans.
Cybern. 43, 1118–1130. doi: 10.1109/TSMCB.2012.2224339

Zhang, J., Wang, C., and Zhou, M. (2014). Last-position elimination-
based learning automata. IEEE Trans. Cybern. 44, 2484–2492.
doi: 10.1109/TCYB.2014.2309478

Zhang, X., Granmo, O.-C., and Oommen, B. J. (2013). On incorporating
the paradigms of discretization and Bayesian estimation to create a
new family of pursuit learning automata. Applied Intell. 39, 782–792.
doi: 10.1007/s10489-013-0424-x

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://doi.org/10.1109/TSMCB.2002.1049608
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/978-3-642-29694-9_21
https://doi.org/10.1007/s10489-014-0594-1
https://doi.org/10.1108/17563781011049179
https://doi.org/10.1109/TSMCB.2009.2032528
https://doi.org/10.1016/j.neucom.2015.04.125
https://doi.org/10.1109/JSYST.2014.2335451
https://doi.org/10.1109/TNSM.2014.011614.130429
https://doi.org/10.1109/TSMC.1974.5408453
https://doi.org/10.1109/TSMCB.2009.2032414
https://doi.org/10.1109/3477.931507
https://doi.org/10.1109/21.105092
https://doi.org/10.1007/978-3-540-78831-7_12
https://doi.org/10.1109/TSMCB.2003.811117
https://doi.org/10.1109/GLOCOM.2007.925
https://doi.org/10.1109/TSMC.2015.2406764
https://doi.org/10.1109/TSMCB.2012.2224339
https://doi.org/10.1109/TCYB.2014.2309478
https://doi.org/10.1007/s10489-013-0424-x
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Ren et al. 10.3389/fnbot.2022.999658

Appendix

The standard parameter tuning
procedure of learning automata

As emphasized in Section 1, parameter tuning is intended

to balance the trade-off between speed and accuracy. And

the standard procedure of parameter tuning is pioneered in

Oommen and Lanctôt (1990) and become a common practice in

follow-up researches (Oommen and Agache, 2001; Agache and

Oommen, 2002; Papadimitriou et al., 2004; Zhang et al., 2014;

Ge et al., 2015a; Jiang et al., 2015).

The basic idea is, that the smallest value of resolution

parameter n that yielded the fastest convergence and that

simultaneously resulted in zeros errors in a sequence of NE

experiments are defined as “best” parameters. Besides, to reduce

the variance coefficient of the “best” values of n, Papadimitriou

et al. (2004) advocate performing the same procedure 20

times and computing the average “best” value of n in these

experiments. For tuning stochastic estimator-based learning

automata, which have a perturbation parameter γ in addition

to the well-known resolution parameter n. A two-dimensional

grid search should be performed to seek the best parameter pair

(n, γ). The method used in Papadimitriou et al. (2004) is to

obtain the “best” resolution parameter n for each value of γ ,

and then evaluate the speed of convergence for each of the (n, γ)

pairs and choose the best pair.

Based on these instructions, we use the following procedure

for parameter tuning in our experiment:

The resolution parameter is initialized to 1 and increased by

1 each time a wrong convergence emerges until a certain number

of successive No Error experiments is carried out. Repeat this

process 20 times, averaging over these 20 resulting values, and

denote it as the best resolution parameter. The value of number

of successive No Error experiments is set as NE = 750, as the

same value in Papadimitriou et al. (2004), Zhang et al. (2014),

Jiang et al. (2015), and Ge et al. (2015a). For tuning the “best” γ ,

in our simulation settings, for the four two-action environments,

the search range of γ is from 1 to 10; For the five ten-action

environments except E7, the search range of γ is from 1 to 20,

while for E7, the most difficult one, the range is a little wider,

from 1 to 30.

It is noted that the above standard procedure has been widely

adopted by the research community, but it does not mean this

is the most efficient way. Apparently, it can be improved by

several methods, such as random search or two-stage coarse-

to-fine search. This issue is worth further investigation and is

beyond the scope of this paper.

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2022.999658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	A parameter-free learning automaton scheme
	1. Introduction
	2. Related works
	2.1. Information utilization
	2.2. Optimal assertion

	3. A parameter-free learning automaton
	3.1. Self-judgment
	3.1.1. Two-action environments
	3.1.2. Multi-action environments

	3.2. Exploration strategy
	3.2.1. Two-action environments
	3.2.2. Multi-action environments

	3.3. Initialization of beta distributions

	4. Performance analysis
	4.1. An approximate lower bound of the accuracy
	4.2. Proof of -optimality

	5. Simulation results
	5.1. Comparison with well-tuned schemes
	5.2. Comparison with untuned schemes
	5.2.1. Using generalized learning parameter
	5.2.2. Using random learning parameter

	5.3. Discussion of the fairness of the comparison

	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References
	Appendix
	The standard parameter tuning procedure of learning automata

