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The Perceptual Crossing Experiment (PCE) has been the object of study for over

a decade, and aims at explaining how we perceive, interact with, and understand

each other in real-time. In addition to human participant studies, a number of

computational models have investigated how virtual agents can solve this task.

However, the set of implementation choices that has been explored to date

is rather limited, and the large number of variables that can be used make

it very di�cult to replicate the results. The main objective of this paper is to

describe the PCE Simulation Toolkit we have developed and published as an

open-source repository on GitHub. We hope that this e�ort will help make future

PCE simulation results reproducible and advance research in the understanding

of possible behaviors in this experimental paradigm. At the end of this paper,

we present two case studies of evolved agents that demonstrate how parameter

choices a�ect the simulations.
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1. Introduction

The Perceptual Crossing Experiment (PCE), has been studied for over a decade, and aims

at explaining how we perceive, interact with, and understand each other in real-time. The

experiment was inspired by the double-video projection study of Murray and Trevarthen

(1985), in which infants were observed when interacting with a video showing their mothers

in real-time vs. a prerecording from a previous interaction. The fact that infants responded

differently to these two conditions (being distressed in the playback situation) suggests that

dynamics of real-time interaction and social contingency constitute an intrinsic property of

social perception. Although, the mechanisms of this process are yet to be fully understood.

Auvray et al. (2009) first introduced PCE as a minimal experimental version of

the double-video projection study via the real-time interaction between two human

participants. A number of studies have followed, attempting to replicate the experiment

with human subjects and extending it further (Lenay et al., 2010; Auvray and Rohde,

2012; Lenay, 2012; Froese et al., 2014; Iizuka et al., 2015). Most of the studies were

conducted on adult healthy individuals, although it has also been proposed as a method

for testing real-time dyadic embodied interaction in the context of mental pathology such as

schizophrenia (Zapata-Fonseca et al., 2021). At the same time, there has also been a growing

interest in computational modeling to replicate this experiment using evolutionary robotics

algorithm (Rohde and Di Paolo, 2006; Iizuka and Di Paolo, 2007; Di Paolo et al., 2008; Froese

and Di Paolo, 2008; Froese and Di Paolo, 2010; Froese and Di Paolo, 2011; Izquierdo et al.,

2022). The objective of these studies was to gain additional insights into the dynamics of the

minimal social interaction process. Unfortunately, all these computational models make use
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of very specific implementation choices, which have been proven

hard to replicate (Izquierdo et al., 2022), as no source code has

been made available to the current date. This might constitute a

serious obstacle to the development of consistent research on PCE

simulations and underlying cognitive mechanisms.

The main contribution of the current work is providing an

open-source implementation of simulation-based PCE, in the hope

of facilitating the process of reproducing and extending simulation

results. The code is available on GitHub1 as a Python library

which incorporates a set of visualizations tools, such as plots,

network diagrams, and visual animations of the agent’s behavior,

which can serve to gather better insight into the dynamics of the

agents when attempting to solve the task. The implementation

makes use of vectorized operations using the NumPy library, and

multi-core optimization, for improving performance.2 The code

provides a large number of parameters that can be changed through

appropriate arguments while preserving enough flexibility to be

extended for new purposes. We invite other researchers interested

in using and extending this library to consult the README file

which explains its functionality in more technical detail.

The rest of the paper is organized as follows. Firstly we will

briefly introduce the Perceptual Crossing Experiment and previous

simulations using this paradigm. In Section 2, we describe the

PCE Simulation Toolkit we have implemented and detail the

implementation behind the simulated agents. Section 3 presents

two case studies of evolved agents that highlight some assumptions

made in previous studies. Finally, in Section 4, we conclude and

discuss future work.

1.1. Perceptual crossing experiment

In the perceptual crossing experiment, two agents coexist in

a one-dimensional environment, as shown in the diagram in

Figure 1. The environment wraps around forming a ring as shown

in Figure 2. The agents are placed in the environment facing each

other and can freely move around the ring in either direction. By

means of a binary sensor, covering the whole width of the agent,

they are able to sense the presence of a number of elements when

crossing them:3 (i) a static object facing the agent, (ii) the other

agent, and (iii) the shadow of the other agent which is positioned at

a fixed distance with respect to the other agent. The agents are free

to move past all perceived elements unimpeded (without collision

or friction).

The agents are expected to interact in the environment and

learn to identify each other from among other objects that can

be encountered (the shadow replicating the movement of the

other agent, and the fixed object). In the original experiment with

human subjects, this objective was operationalized by asking each

participant to press a button whenever they believed to be crossing

the other subject, and assessing how accurate their response was.

1 https://github.com/oist/ecsu-cnru-pce-simulation

2 As an indication, each experiment reported in the case studies at the end

of this contribution took around 6 h on a 128 AMD Epyc CPUs node.

3 The sensor outputs 1 when it crosses any part of an intervening object;

otherwise, it outputs 0.

In the simulation models, this objective has been simplified by

assessing how long agents are able to stay close together.

1.2. Previous PCE simulation work

It is beyond the scope of this paper to provide a detailed

summary of previous simulation models. However, we would like

to discuss some implementation choices that apply to most.

Firstly, in all proposed models, the evolved agents are tested

against clones of themselves. The only exception is the work of

Iizuka and Di Paolo (2007), however their model is a very simplistic

version of PCE without fixed objects and shadows. We believe

the choice of using clones is a very restricted (albeit interesting)

case to be studied because, in the human-subject experiments,

the two agents are controlled by different individuals who may

adopt different strategies. Froese and Di Paolo (2008) justifies this

choice by referring to the work by Iizuka and Ikegami (2004),

which suggests that genetically similar agents are potentially better

at coordination. This fails at capturing solutions where the two

agents may develop complementary strategies, as we will show in

Case Study II of Section 3.2. An alternative justification (Froese

and Di Paolo, 2011) is related to the claim that agents can have

an identical architecture, but they can still reach different types of

strategies because the different interaction histories they go through

may lead to different state dynamics. We are not aware of any

previous work explicitly reporting such a scenario and showing

the state dynamics. This topic will come back in Case Study I of

Section 3.1.

Secondly, all models more or less explicitly attempt to evolve

solutions thatmimic how humans solve this task, i.e., by perpetually

crossing each other in an oscillatory pattern. This is often done by

adopting implementation choices that are not cognitively plausible,

in particular by introducing an artificial sensory delay initially

proposed by Rohde and Di Paolo (2006) and preserved by others

(Rohde and Di Paolo, 2006; Iizuka and Di Paolo, 2007; Di Paolo

et al., 2008; Froese and Di Paolo, 2008; Froese and Di Paolo, 2010;

Froese and Di Paolo, 2011). This choice does not seemwell-justified

since the work of Iizuka et al. (2015) suggests that sensory delay in

human participants does not help the subjects to reach coordinated

behavior. Izquierdo et al. (2022) is the only work that tries to

move away from earlier assumptions and reports under which

circumstances agents reproduce human-like behavior. In particular,

contrary to what has been previously reported, they show that

sensory delay is not necessary to evolve perpetual crossers. This is

one of the implementation details which calls for a better way to

make results replicable.

The current work aims at being neutral with respect to the type

of agents’ behavior that emerges from their interaction, since we

believe it is important to explore and report on all possible solutions

that are found.

2. PCE simulation toolkit

We developed a Python implementation of simulation-based

PCE. The code allows for a wide range of experimental settings to

be changed, such as the environment length, number of trials, the
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FIGURE 1

A schematic illustration of the PCE environment.

FIGURE 2

The PCE simulation environment as rendered by our visualization tool for 3 di�erent time steps in a sample simulation. Gray-filled circles represent

static objects. Empty circles with a colored border (green or blue) indicate the shadows of the respective agent with the same color. Agents are

represented by filled colored circles (green or blue) with wheels, and a rectangular sensor facing outwards or inwards (depending on the agent’s

position). The sensor is depicted in yellow when the agent senses the presence of the fixed object on the opposite side (A), the shadow of the other

agent (B), or the other agent (C).

objective function, as well as the network architecture of the agents

(i.e., number of neural nodes, and parameters range).

2.1. Simulation setup

What follows is the description of the general simulation setup

which is common to every experimental setting.

Each simulation consists of a number of trials. In each trial,

two agents are placed at random positions within the environment

together with their shadows4 and the fixed objects. Agents interact

for a specific number of steps, and their performance is assessed for a

chosen objective function (such as the average distance between the

agents). Finally, after all trials are over, the overall performance is

computed based on some chosen aggregate function (such as mean

or min) on the list of trial performances.

4 In the current implementation, consistently to previous implementation,

the shadows are always located at a constant distance from the respective

agents.

2.2. Agents network

The network architecture governing the behavior of each agent

is shown in Figure 3. It consists of three layers: the sensory layer

(top), the neural layer (middle), and the motor layer (bottom).

All sensory nodes have connections toward all neurons; all

neural nodes are fully connected: to all other neurons (in both

directions) and to themselves; finally, both motor nodes receive

input connections from all neural nodes. This architecture is the

most simple and generic since it does not define any hierarchical

structure within the neural layer.

The sensor s, at a specific time step, receives a binary signal

Is ∈ {0, 1} in input. Its output OS
s is defined as:

OS
s = Gs σ (Is + θs) (1)

where Gs and θs are the sensory gain and bias, while σ is the

standard activation sigmoid function 1/(1+ e−x). Gains and biases

will also be employed for neural nodes and motors. The first is used

to alter the output range, whereas the bias allows for shifting the

value of the input signals.
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FIGURE 3

Example of a 2-neuron agent’s network implementation.

The sensor’s output is propagated to each neural node ni in

layer N (depicted in blue in Figure 3), which can consist of any

number of nodes. The nodes in this layer are implemented via a

continuous-time recurrent neural network (CTRNN) as described

by Beer (1995). We adopted this type of neural network because

it can be easily integrated with evolutionary algorithms to evolve

the network’s parameters, and it is capable of modeling complex

dynamical systems with multiple time-varying variables.

The delta of the neuron state 1yn between two consecutive

time steps is calculated via the Euler method integration of the

differential equation governing the state change, as follows:

1yni =
1t

τni



−yni +Ws,niO
S
s +

|N |
∑

j=1

Wnj ,niO
N
nj



 (2)

Here, τn is the neural time constant,1t is the steps size constant for

the integration, and ON
n is the output of neuron n ∈ N calculated

as:

ON
n = Gn σ (yn + θn) (3)

with Gn and θn being the neural gain and bias.

Next, the output of each motorm ∈ M is calculated as:

O
M

m = Gm σ





|N |
∑

n=1

Wn,m ON
n + θm



 (4)

where Gm and θm are the motor gain and bias.

Finally, the displacement of the agent 1x at every step is

computed as the difference between the two motors:

1x = O
M

R − O
M

L (5)

2.3. Evolutionary algorithm

As done in previous simulation studies, all network parameters

are evolved for a given number of generations, using a genetic

algorithm. The choice of adopting an evolutionary approach is

justified by the fact that it is hard to formulate analytical solutions

to this task and because it is the most effective way to explore a

variety of solutions without introducing human biases. Each agent

genotype is represented by an array of real-values in the fixed range

[−1, 1]. At each generation, the parameters encoded in each agent’s

evolved genotype are converted to the correct ranges via linear

interpolation.

For the evolutionary part, our implementation makes

use of the pyevolver5 library which we previously introduced

in Reséndiz-Benhumea et al. (2021). The library contains a

Python implementation based on available C++ open-source code

by Beer (1995) and offers many parameters to fine-tune the type

of evolutionary process under study (such as mutation variance,

and cross-over probability). In addition, it accommodates the

possibility of evolving multiple populations of agents, which is

relevant to using pairs of independent (non-clone) agents, such as

in the second case study of the following section.

2.4. Parameter exploration

It is beyond the scope of this paper to provide a complete

report on the simulation results using all possible combinations

of parameters. However, since we have explored a fairly large

number of combinations, we would like to provide some general

observations on how a few important parameters affect the

simulations.

a) Objective Function:

There are many ways in which agents can be rewarded for

staying together as long as possible. Consistently with previous

work, we implemented a distance-based function (described

later in Equation 6). We also experimented with an overlapping-

based function that measures the number of time steps in which

the agents overlap each other. It seems that both functions are

able to push the agents to find each other, but the distance

function is more lenient to allow agents to stay close while not

overlapping for some part of the interaction.

b) Aggregate function:

Most of previous work use the mean as the aggregate

function of the performances of all trials. Consistently to what

has been reported in Izquierdo et al. (2022), we noticed that this

could easily lead to results with a low performance on a very

small set of trials (which is not affecting too much the average).

As an alternative strategy, we have also explored the use of the

min as the aggregation function, so that the worst performance

among all trials is taken as the final performance. This choice

helps reach a higher number of successful simulations but might

suffer from overfitting, especially if the number of trials tested is

low.

c) Object positioning:

All previous models assume that static objects are placed at

a fixed position across all trials (typically at opposite sides of the

ring). We observed that agents evolved with such a positioning

do not generalize to trials in which objects are disposed in a

5 https://github.com/oist/ecsu-pyevolver
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FIGURE 4

(A–F) Signals, states, motors, velocities, positions, delta of two best

evolved agents of Case Study I (neurons = 3, seed = 24, trial = 23).

FIGURE 5

(A–F) Signals, states, motors, velocities, positions, delta of two best

evolved agents of Case Study I (neurons = 4, seed = 23, trial = 23).
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FIGURE 6

(A–F) Signals, states, motors, velocities, positions, delta of two best

evolved agents in Case Study II (neurons = 1, seed = 3,

trial = 23).

different manner. Therefore, we decided to mainly focus on the

random disposition of objects. Even if these cases are harder to

evolve, the ones that succeed result in a more robust solution.

3. Case studies

In this section, we illustrate two case studies where we vary the

number of populations: in the first, one population is used, whereas,

in the second one, two populations are used. In both cases, we test

networks with a variable number of neural nodes: we start with 1

node as the most simple architecture and increase them up to 4. A

higher number of nodes is likely to exhibit more complex behavior,

which might be interesting as a follow-up study.

In both cases, we use the following experimental setup:

a) Simulation: as the objective function, we use the normalized

average distance between two agents, defined as:

f = 1−
2d̄

L
(6)

where d̄ is the average distance between the center points of the

two agents within a trial, and L is the environment length. This

function ranges between 0 (when agents always stay perfectly

aligned) and 1 (when agents always stay at the opposite sides

of the environment). As the aggregate function we use min, so

that the worse performance among all the trials is used as the

fitness value for the evolutionary algorithm. Moreover, we use

the following parameters: environment length: 300 units; agents

and objects length: 4 units; number of steps: 2, 000; number of

trials: 30; agents positioning: random uniform for each trial;

objects positioning: random uniform for each trial; shadow

displacement6 from agent: 75 units;

b) Network: number of neurons: variable, from 1 to 4; gains range

(Gs, Gm): [1, 10]; neural gain (Gn): 1; biases range (θs, θn, θm):

[−3, 3]; weights range (Ws): [−8, 8]; time constant range (τ ):

[1, 2]; steps size constant for the integration (1t): 0.1.

c) Evolutionary Algorithm: number of populations: 1 (case study I)

and 2 (case study II); population size: 48; number of generations:

2, 000; fitness normalization mode: fitness proportionate

selection; selection mode: roulette wheel selection; reproduction

mode: genetic algorithm; mutation variance: 0.1; elitist fraction:

0.05; mating fraction: 0.85; filling fraction: 0.1; crossover

probability: 0.5; crossover mode: uniform.

3.1. Case study I

In this first case study, we evolve a single population of agents,

where each agent is tested against a clone of itself. This is consistent

6 The displacement is calculated clockwise for both agents.
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FIGURE 7

Network with parameters of the two best evolved agents in Case Study II (neurons = 1, seed = 3, trial = 23) automatically rendered by our toolkit.

with what has been done in all previous models, except for Iizuka

and Di Paolo (2007).

We evolved simulations for agents with 1, 2, 3, and 4 neurons,

each with 40 random seed initializations. The random seed affected

only the evolutionary algorithm in order to generate different

evolved populations (all initial configurations of the trials were

identical for all seeds). We observe that no solution was reached

for agents with 1 and 2 neurons. To be precise, some solutions were

found for the training settings (initial configurations of the trials

during evolution), but none were robust to other initializations.7

For simulations with 3-neuron agents, only 2 seeds reached

successful and robust solutions. Both of them show very similar

dynamics. One of them is reported in Figure 4. Here, we can see

that both agents move in opposite directions. To avoid ambiguity,

we always report the directions with respect to an external observer,

but we should not forget that since agents are facing each other,

this means that they are moving toward the same side (right-

wards in this case) relative to themselves. When they meet (around

step 500), they cross each other and repeat oscillating back and

forward touching their edges perpetually. Most interesting, we can

see that from this point onward, their state dynamics is identical

and perfectly synchronized. We believe this is related to the agents

dynamics previously reported for the 3-neuron manually-coded

solution in Froese and Di Paolo (2010).

7 These could be considered cases of overfitting, and we still need to test

if a higher number of trials would prevent this from happening.

Finally, for simulations with 4-neuron agents, 3 seeds reached

successful and robust solutions. While 2 of them present solutions

similar to the one described above, the third one shows a rather

different dynamics. This is illustrated in Figure 5. The difference

here is that initially the agents both move in opposite directions

(both left-wards with respect to themselves). After crossing each

other a number of times and both inverting their directions, around

step 400 they end up crossing each other and moving in the same

direction. More interestingly, when looking at the internal states,

while before step 400 the state dynamics is rather similar between

the two agents, after this point it follows completely different

trajectories. This outcome seems related to what was reported in

experiment 3 of Froese and Di Paolo (2011) (even though in that

case they explicitly reward agents for traveling together, and there

is no report of their states dynamics).

3.2. Case study II

In the second case study, we evolve two populations of agents

so that the pair of agents interacting in the simulation are evolved

independently. However, the agents interacting in the simulation

are those sharing the same rank in the two populations (i.e., the n-

th best agent of the first population is paired with the n-th best agent

of the second population). Since the objective function (normalized

distance) is common for both agents, each pair stays aligned across

the various generations, even though the individual agent may

undergo separate mutation processes.
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We evolved simulations for agents with 1, 2, 3, and 4 neurons,

each with 10 random seed initializations. The random seed affected

only the evolutionary algorithm in order to generate different

evolved populations. Differently from the previous case study, all

seeds resulted in successful solutions (min performance among

all trials was greater than 0.9) including for agents with a single

neuron. We also tested the robustness of the solution for different

random initialization of the positions of the agents and fixed objects

and varying the distance of the shadows, and confirmed that all

solutions are robust to those changes.

In all the simulations, we observe that agents exploit

complementary strategies to find each other. A typical behavior is

illustrated in Figure 6. Here, both agents move clockwise from the

perspective of an external observer (although theymove in opposite

directions with respect to themselves because they are facing

opposite sides of the environment). However, while the first agent

goes slow and accelerates only when perceiving any other object,

the second agent goes fast and decelerates only when perceiving any

other object. Because the two agents evolved together, they were

able to fine-tune the final velocities of when they both cross each

other to be about the same (around 2.5 units per step), but since the

final velocity is not exactly the same, this leads to a repeated catch-

and-wait oscillatory dynamics. The network and parameters of the

two agents is illustrated in Figure 7.

4. Conclusions and future work

In this paper, we presented the first open-source toolkit for

PCE simulations. We hope this framework will stimulate more

replicable results in this type of research in the future.We described

the various parameters that it offers, and demonstrated how it

can evolve successful solutions in two case studies. It is important

to stress that our implementation did not include any artificial

sensory delay, and consistently to Izquierdo et al. (2022) (but

contrary to previous work), we confirm it is not necessary to

evolve successful solutions. In the first case study, we detailed

some specific solution evolved for agent clones (single population)

consistent with previous literature. In the second case, we reported

on a very simple solution evolved by pairs of single neuron

agents exhibiting complementary strategies. The triviality of the

solution reflects a number of simple assumptions underlying the

experiments that we wish to remove in future work: first, we

would like to explore what complementary strategies could arise

in a simulation where noise is introduced (both in the signals

and in the motors), similar to what has been done in Froese and

Di Paolo (2008). Second, we would like to bring the experimental

setup closer to the human-subject experiments where each agent

is required to activate an additional motor to press a button when

it is confident to be crossing the other agent. Finally, a completely

different scenario to be explored, which is currently supported by

the toolkit, is to generalize the PCE simulation to more than 2

agents.

From a user perspective, the toolkit would benefit from

implementing additional functionalities to simplify parameter

exploration and analysis of resulting solutions. We aim to continue

this work, but we will welcome the contributions of other

researchers to this open project.
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