
TYPE Original Research

PUBLISHED 03 February 2023

DOI 10.3389/fnbot.2023.1078074

OPEN ACCESS

EDITED BY

Bulcsú Sándor,
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Bio-inspired neural networks for
decision-making mechanisms and
neuromodulation for motor control
in a di�erential robot
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Jason Alejandro Castaño-López 1*†, Julián Hurtado-López 2 and

David Fernando Ramirez-Moreno 3

1Department of Engineering, Universidad Autónoma de Occidente, Cali, Colombia, 2Department of

Mathematics, Universidad Autónoma de Occidente, Cali, Colombia, 3Department of Physics, Universidad

Autónoma de Occidente, Cali, Colombia

The aim of this work is to propose bio-inspired neural networks for decision-making

mechanisms and modulation of motor control of an automaton. In this work, we

have adapted and applied cortical synaptic circuits, such as short-term memory

circuits, winner-take-all (WTA) class competitive neural networks, modulation neural

networks, and nonlinear oscillation circuits, in order to make the automaton able

to avoid obstacles and explore simulated and real environments. The performance

achieved by using biologically inspired neural networks to solve the task at hand is

similar to that of several works mentioned in the specialized literature. Furthermore,

this work contributed to bridging the fields of computational neuroscience and

robotics.

KEYWORDS

bio-inspired neural network, neuromodulation network, adaptation stage, signal processing,
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1. Introduction

Decision-making is a process in animals that allow them to increase their chances of survival.

Decision-making includes, for example, knowing when to flee from a threat, avoiding the

consuming of spoiled food, or even performing attacking or breeding behaviors. Understanding

how decision-making mechanisms work within the cerebral cortex and generating a model of

their output behaviors has been a focus of research in neuroscience. In Hurtado-López et al.

(2017) and Hurtado-López and Ramirez-Moreno (2019) authors describe the model of a neural

network that mimics social behavior in mice involving breeding and attack interactions. As

mentioned in Hikosaka et al. (2018) the basal ganglia control body movements. In addition, it is

involved in behavioral changes in animals. Héricé et al. (2016) propose a neural networkmodel of

the basal ganglia based on spiking neurons. The developed model allows second-level decision-

making to be performed as in primates. There are other experiments, performed on Drosophila

flies and consisting of introducing them into a flight simulator containing green and blue

colored regions. If the fly stood on the blue regions it received a heat punishment. The results

gave evidence that these insects have the ability to adjust their flight behavior based on visual

color information. In Wei et al. (2017) a model based on Spiking Neural Networks (SNN) and

postsynaptic plasticity is proposed to describe in a mathematical way both the decision-making

behavior based on visual information received by Drosophila and the learning process.
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Providing robotic navigation systems with the capacities

mentioned above is of great interest in order to enhance their

efficiency and autonomy. Zhao et al. (2020) developed an SNN

model that allows describing the experimental behavior inDrosophila

and implementing it in a UAV (Unmanned Aerial Vehicle). The

results show that with the proposed model the UAV learns to make

decisions quickly from the available visual information similar to the

experiment. The closest approach to ours is made by Pardo-Cabrera

et al. (2022), in which a bio-inspired navigation and exploration

system for a robotic hexapod is developed. In this work, a network

of social behaviors in mice, proposed in Hurtado-López et al. (2017)

and Hurtado-López and Ramirez-Moreno (2019) is modified to

perform homing, exploration, and approaching behaviors in robots.

We propose a decision network to perform exploration in robots, and

present as a novelty the implementation of a network inspired by the

basal ganglia proposed by Ramirez-Moreno and Sejnowski (2012)

to moderate the decision taken by the main network, reducing the

reactivity of the system and providing greater safety in the navigation

of the mobile platform.

Using bio-inspired neural networks allows us to perform

numerous adaptations from animal-human behaviors and kinetics

into autonomous robots. For instance, the performance of fast

learning mechanisms for continuous adaptation or flexible plasticity

in sensory pathways, in order to generate stable self-organized

locomotion, deals with failures and adaptions to different walking

in robots. In addition, it is clear how bio-inspired networks can

work combined with distributed neural CPG, proprioceptive sensory

adaptation, and body-environment interaction, achieving adaptive

and flexible interlimb coordination for walking robots, as mentioned

in Miguel-Blanco and Manoonpong (2020).

Additionally, the use of frequency is useful in order to control

the locomotion of an automaton. Previous results show that the

integration between motor pattern mechanisms and adaptation with

a CPG-RBF leads to locomotion control of a hexapod robot in

a complex environment. This kind of frequency adaptation not

only significantly reduces energy use but also is comparable to the

biological behaviors observed in animal locomotion (Thor et al.,

2021).

As we have seen in previous works, there are numerous

architectures of bio-inspired neural networks for the motor control

of robots and automata. In this work, a novel bio-inspired neural

network was designed for the control of the right and left actuators

of a differential robot. For the latter, a reciprocal lateral inhibition

circuit was used, which projects periodic cyclic signals and generates

antagonistic nonlinear oscillations. The neuronal activity of these

synaptic circuits with reciprocal lateral inhibition is typical of the

motor control systems of periodic tasks such as breathing, swimming,

or walking in vertebrates, among others.

Other approaches bring us a neat use of CPGs in order to control

a sprawling quadruped robot (Suzuki et al., 2021), contributing to

decentralized control with cross-couple sensory feedback to shaping

body-limb coordination, which differs from previous research based

on CPGs that works with inter-oscillator couplings or gait patterns

based on geometric mechanics.

Ngamkajornwiwat et al. (2020) propose an online self-adaptive

locomotion control technique based on the integration of a modular

neural locomotion control (MNCL) and an artificial hormone

mechanism (AHM) for a walking hexapod robot. Their contribution

allows robot control without needing its kinematics, environmental

model, and exteroceptive sensors. The technique performed relies

only on a correlation between a predicted foot contact signal and

the incoming foot contact signal from proprioceptive sensors. The

steering and velocity regulation of the robot is achieved.

Most recent research introduces two new concepts in order to

develop bio-inspired neural networks for the motor control of an

automaton, the Self-Organizing Map (SOM) and the Spiking Neural

Networks (SNN). Zahra et al. (2022) integrate both architectures,

the SNN in a motor cortex-like differential map transforming motor

plans from task-space to joint-space motor commands, and the SOM

in a static map correlating joint-spaces of the robot and a teaching

agent, which allows a robotic arm to learn from human actions, thus,

the robotic arm learns by imitation.

Spiking Neural NetworkModels are based on the action potential

firing temporal sequences. Usually, the leaky integrate-and-fire (LIF)

neuron model is used in these networks. This model involves

biophysics properties of the neuron such as membrane capacitance,

conductance, and resting potential.

Current research shows wide implementations of SNN in mobile

automata’s navigation tasks. In Cao et al. (2015) a three-layer SNN-

based controller is designed and implemented for target tracking of

a mobile robot. Environmental information and target information

are provided by CCD cameras, encoders, and ultrasonic sensors. The

authors implemented a learning strategy based on Hebb’s rule to

modify the synaptic weights in the connections of the neural network

(NN) in charge of the tracking task. Besides, the synaptic weights

from a NN specialized in obstacle avoidance are defined by the

designer and do not change in time. This strategy seeks to have more

relevance in the obstacle avoidance task than that in the tracking task.

Shim and Li (2017), Lobov et al. (2020), and Liu et al. (2022)

addressed the use of SNN for the motor control of mobile robots. Liu

et al. (2022) proposed a biological autonomous learning algorithm

based on reward modulated spike-timing-dependent plasticity

(STDP). Taking this into consideration, an automaton can improve

its decision-making in obstacle avoidance by a few sessions of trial-

and-error in presence of new environments providing robustness

to the exploration task. Approaching the cognitive and perception

functions instrumented in automata behaviors, Macktoobian and

Khataminejad (2016) developed a high-level cognitive behavior into

a reactive agent, a Braitenberg vehicle (BV). Low-level perception is

obtained by an SNN-Curved trajectory detection (CDT) model with

which the motion of an agent in the environment is detected. The

vehicle’s control for producing the desired behaviors depending on

the perception is made by an engineering method, approaching and

fleeing behaviors are obtained.

Neurons respond to stimuli by generating action potentials.

To describe the state of a neuron, the mean firing rate (MFR)

of these action potentials can be taken. The dynamics of the

NN based on MFR models can bring a better understanding

of the expected behavior of the neuron at first sight than in

SNN. Architectures based on SNN found in the literature have

solved decision-making and motor control tasks. As mentioned

in Suzuki et al. (2021), Thor et al. (2021), and Pardo-Cabrera

et al. (2022), MFR models have been implemented to solve

these tasks as well. The literature reviewed in this work shows

that MFR models which satisfy the decision-making and control-

motor for mobile automata navigation have not been explored
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FIGURE 1

Architecture of the bio-inspired network for the exploration behavior.

widely. The present work proposes the design and implementation

of an automaton’s bio-inspired navigation framework using a

mathematical MFR neural model described by Wilson and Cowan

(1972).

SNN models have an advantage in single event-based learning

on Hebb’s rule. In our work, the advantage offered by MFR models

is that it simply assimilates the advantage given in SNN models

for single-event-based learning. We have achieved this in the meta-

control network. Single-event-based learning enables modifying the

performance of the automaton by setting the network’s parameters

in a single trial. In this work, the network’s parameters are not

modified, and for this reason, it cannot be considered a learning

mechanism. The improvement in performance is obtained through

the meta-control network. This network allows the adaptation

of the automaton’s behavior to significant environment changes

(pop-up novelties) and dynamic obstacles, this is obtained by

properly modulating the velocity applied to the robot’s wheels.

For the proposed network, the experimentation results show an

improvement in the obstacle avoidance task when the meta-

control network is involved. The literature consulted shows a

recurrence of SNN models rather than mean firing rate models

at the cost of the loss of a certain mathematical simplicity.

As already mentioned, our model advantage is the combination

of such mathematical simplicity and the formulation of single

event-based learning.

2. Materials and methods

This section will explain the implemented bio-inspired neural

circuits, the neural network design itself, the adaptation stage, and

the signal processing.

2.1. Bio-inspired neural network design

As seen in Figure 1, the information perceived from the

environment is captured by a LiDAR sensor and is processed by the

Signal processing block (Section 2.5). From this block, the signals Ar

and Al, and S1 and S2 are processed. The Ar and Al signals convey

information about the obstacle’s presence or absence in the right and

left areas, respectively. These signals enter the Short-term memory

circuits block (Section 2.2.1) which extends their information in time.

The projections from the previous block enter the Memory linear

chain block (Section 2.2.2) and retain and increase the intensity of

the projections. In the Comparison Circuit block (Section 2.2.3) the

projections from the Memory linear chain block are compared and

thus promote a faster decision by the Competitive Neural Network

(WTA) block (Section 2.2.4). In the Competitive Neural Network

(WTA) block, the projections of the previous block are compared,

and a proper motion decision is obtained among rightward, leftward,

and forward. With the Adaptation Stage block (Section 2.2.5) it

is possible to detect a tendency among the motions that have

been executed in a time interval and thus adapt the parameters

of the Non-linear oscillation generating circuit block (Section 2.2.7).

The Non-linear oscillation generating circuit block, produces the

signals for the automaton motor execution. Finally, theMeta-control

circuit block (Section 2.2.6) modulates the rightward, leftward, and

forwardmovements, allowing an improvement of the performance in

situations where a novelty is prioritized before a previously weighted

decision. TheMeta-control circuit block is fed by the S1 signal, which

corresponds to the information of any new obstacle, and by forced

complementarity, we obtain the S2 signal. Forced complementary is

understood as a decremental response to an incremental stimulus,

obtained by the substruction between a threshold and the stimulus.

The neuron model used in this work takes inspiration from

the basic negative feedback loop described by Wilson and Cowan
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TABLE 1 Parameters.

Parameters Value

A 100

Acn 1

B 125

C 30

D 900

Bcn 1

Ncn 40

Mcn 0.3

a 3

b 0.7

φ 1

c 1

β 1.5

θ 1

g 1

h 1

d 3.2

2 10

τ 100 ms

τǫ 1 ms

τ1 20 ms

τ2 2,000 ms

τ6 10 ms

τ4 10 ms

τ5 5,000 ms

τ7 20 ms

τ8 280 ms

Oe 1

ǫ 0.5

γ 100

ω 50

� 5

δ 300

ρ 11

ψ 0.006

f (x)

{

1 for x ≥ 0.3

0 otherwise

(1972), in which connections with arrow endings represent

excitatory projections and connections with circled endings represent

inhibitory projections.

The response (R) of a neuron to a single stimulus (P) is described

by the differential (Equation 1) (Wilson and Cowan, 1972) where τ is

the time constant.

FIGURE 2

Short-term memory circuit. Recurrent excitation. Two circuits similar

to that shown above, process the signals Ar and Al, respectively. The

four processing units shown correspond to the units named in

Equations (3)–(6) y (7)–(10).

dR

dt
=

1

τ

(

−R+9(M, P, σ )
)

(1)

9(M, P, σ ) is the Naka-Rushton activation function (Wilson and

Cowan, 1972), and is implemented as a mathematical approximation

of these responses. M is the maximum firing rate for a very intense

stimulus and σ , called the half-saturation constant, determines

the value at which 9(M, P, σ ) reaches half of its maximum. The

mathematical representation is given in Equation (2).

9(M, P, σ ) =

{

MP2

σ 2+P2
for P ≥ 0

0 for P < 0
(2)

2.2. Cortical synaptic circuits

The bio-inspired neural networks implemented in this work are

based on cortical synaptic circuits (Ramirez-Moreno and Hurtado-

Lopez, 2014). These circuits are observed in the cerebral cortex,

subcortical nuclei, and in the spinal cord.

Next, we present some cortical synaptic circuits which provide

good performance in our robot framework. The structure of the

differential equations of these circuits corresponds to that shown in

Equation (1) and the parameters used are summarized in Table 1.

These parameters were obtained by the heuristic method, some of

them were taken from Guerrero-Criollo et al. (2022).

2.2.1. Short-term memory circuits. Recurrent
excitatory

Recurrent excitatory circuits within the Central Nervous System

(CNS) allow short-term retention of information. The function of the

adapting interneurons is to execute a delayed control task over the

main units.

dZ1

dt
=

1

τ1

(

−Z1 +9(A, ωAr + aZ3, B+ cZ2)
)

(3)
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dZ2

dt
=

1

τ2

(

−Z2 + bZ1
)

(4)

dZ3

dt
=

1

τ1

(

−Z3 +9(A, aZ1, B+ cZ4)
)

(5)

dZ4

dt
=

1

τ2

(

−Z4 + bZ3
)

(6)

dY1

dt
=

1

τ1

(

−Y1 +9(A, ωAl + aY3, B+ cY2)
)

(7)

dY2

dt
=

1

τ2

(

−Y2 + bY1

)

(8)

dY3

dt
=

1

τ1

(

−Y3 +9(A, aY1, B+ cY4)
)

(9)

dY4

dt
=

1

τ2

(

−Y4 + bY3

)

(10)

The purpose of this short-term memory circuit is to extend in

time the information captured from the environment, Ar and Al.

For this purpose, each signal enters through a single channel to

the recurrent excitation circuit, where the main neurons Z1 and Y1,

respectively, process the signals. Input signals are maintained by the

delayed feedback of neurons Z2 and Y2, as shown in Figure 2.

These circuits replicate those found in the CNS associated with

the short-term memory mechanism that, for instance, serves to recall

a phone number for immediate use. Without them, the automaton,

like its biological counterpart, would not be able to remember the

previously processed information itself, in this case, it would not be

able to remember whether there was an obstacle before or not.

2.2.2. Memory linear chain
Projections from recurrent excitatory circuits (Figure 2) enter a

memory linear chain of five neurons (Figure 3).

dM1

dt
=

1

τ

(

−M1 +9(A,Z1,C)
)

(11)

dMi

dt
=

1

τ

(

−Mi +9(A, M(i−1), C)
)

, i = 2, 3, . . . , 5. (12)

dAM

dt
=

1

τǫ

(

−AM +9(A,

5
∑

i=1

Mi, C)

)

(13)

dN1

dt
=

1

τ

(

−N1 +9(A, Y1, C)
)

(14)

dNi

dt
=

1

τ

(

−Ni +9(A, N(i−1), C)
)

, i = 2, 3, . . . , 5. (15)

dAN

dt
=

1

τǫ

(

−AN +9(A,

5
∑

i=1

Ni, C)

)

(16)

Implementation of the memory linear chain above seeks to retain

and enhance the intensity of the projections. Each memory unit is

separated from each other by delay units (1t) and their projections

are accumulated in the accumulation neurons AM (Equation 13) and

AN (Equation 16), respectively, for each processing channel, Figure 3.

Putting together the memory linear chain and the short-term

memory circuits, it is possible to obtain an approximation to working

memory. And thus, like its biological counterpart, the automaton

could retain the previously processed information.

2.2.3. Comparison circuit
Units U1 and U2 in Figure 4B act as comparison neurons. These

units receive the reciprocal excitatory and inhibitory projections from

the accumulation neurons AM and AN , see Figure 4.

dU1

dt
=

1

τǫ

(

−U1 +
max(0, A(AM − AN))

D+ AM − AN

)

(17)

dU2

dt
=

1

τǫ

(

−U2 +
max(0, A(AN − AM))

D+ AN − AM

)

(18)

Projections from accumulation neurons AM and AN are

compared in order to promote a faster and clearer decision by

the WTA (winner-take-all) decision circuit. U1 and U2 units from

Equations (17), (18) produce the Ou and Od signals, which together

with a tonic activity Oe, feeds the WTA circuit. This allows to know

which neuron (AM or AN) has an advantage in decision-making.

These circuits are based on a circuit present in the orbito-frontal

cortex in primates. Without them, the automaton, like its biological

counterpart, would not be able to take decisions, in this case, would

not be able to take a decision between each processing channel (AM

or AN).

2.2.4. Competitive neural networks. Decision
circuit

Winner-take-all (WTA) decision circuits are neural networks

that identify and choose the strongest input stimulus presented to

the neural network. The decision-making mechanisms presented are

inspired by those found in the Central Nervous System in primates.

In mammals and complex animals, we observe behaviors that

come from decisions made in the face of different options, decisions

that bring short- or long-term gains or benefits. For example,

searching for food in the presence of predators, fleeing or fighting in

threatening situations, or mating competition. The same applies to a

mobile automaton that makes decisions based on stimuli taken from

the environment, for instance, the slope of a terrain, its humidity,

radioactivity, and viscosity, among others (Guerrero-Criollo et al.,

2022).

Ramirez-Moreno and Hurtado-Lopez (2014) proposed a basic

neural network that chooses an option between two alternatives

presented. In this work, that network was modified in order to make

a selection among three alternatives, see Figure 5.

dO1

dt
=

1

τ

(

−O1 +9(�A, U1 − a(O2 + O3), B)
)

(19)

dO2

dt
=

1

τ

(

−O2 +9(A, U2 − a(O1 + O3), B)
)

(20)

dO3

dt
=

1

τ

(

−O3 +9(A, Oe − a(O1 + O2), B)
)

(21)

Our aim is to make units O1, O2 and O3 to compete and reach

a decision among leftward, rightward, and forward movements, see

Figure 5. These signals O1, O2, and O3 are passed to the nonlinear

oscillation generator circuits, individually, and in this way generate

the motor control of the mobile automaton.

2.2.5. Adaptation stage
The memory linear chain with delay units (1t) feeds the

accumulation neurons AP and AQ Equation (24), respectively.
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FIGURE 3

Memory linear chain. Two circuits similar to that shown above, process the propagation of the short-term memory circuit (Figure 2). The five processing

units shown correspond to the units named in Equations (11), (12) y (14), (15).

dP1

dt
=

1

τ

(

−P1 +9(A, αO1, C)
)

(22)

dPi

dt
=

1

τ

(

−Pi +9(A, P(i−1), C)
)

, i = 2, 3, . . . , 5. (23)

dAP

dt
=

1

τ

(

−AP +9(A,

5
∑

i=1

Pi, C)

)

(24)

Our aim is to have the behaviors tendency in a period of

time and thus adapt the parameters in the nonlinear oscillation

generator circuits, see in Figure 6.

Similar to the Memory linear chain (Section 2.2.2), this circuit

oversees retaining the previously processed information in a time

interval, and without it, the automaton would not be able to adapt

its parameters in order to prioritize one of its three behaviors.

2.2.6. Meta-control circuit
The CNS has neuromodulators in charge of transforming or

changing the result of a primary operation under a pop-up novelty.

In this work for the processing of this novelty, the modulation neural

network described in Ramirez-Moreno and Sejnowski (2012) was

implemented. Unit G5 in Figure 7 projects an inhibition signal to

the motor behaviors. The modulation of these behaviors allows a

better performance that mimics the reactions of complex animals

in situations where a novelty is prioritized before a previously

weighted decision.

dX1

dt
=

1

τ4

(

−X1 +9(A, ωS1 + aX3, B+ cX2)
)

(25)

dX2

dt
=

1

τ5

(

−X2 + bX1

)

(26)

dX3

dt
=

1

τ4

(

−X3 +9(A, aX1, B+ cX4)
)

(27)

dX4

dt
=

1

τ5

(

−X4 + bX3

)

(28)

dG1

dt
=

1

τ6

(

−G1 +9(Acn, X1 − φG4 + G6, Ncn)
)

(29)

dG2

dt
=

1

τ6

(

−G2 +9(Acn, S2− θG3 + G7, Ncn)
)

(30)

dG3

dt
=

1

τ6

(

−G3 +9(Bcn, G1, Mcn)
)

(31)

dG4

dt
=

1

τ6

(

−G4 +9(Bcn, G2, Mcn)
)

(32)

dG5

dt
=

1

τ6

(

−G5 +
Acn

1+ e−2(gG1−hG2)

)

(33)

dG6

dt
=

1

τ6

(

−G6 +9(Acn, G1, Ncn)
)

(34)

dG7

dt
=

1

τ6

(

−G7 +9(Acn, G2, Ncn)
)

(35)

To feed the meta-control circuit, first, the information of the

novelty S1 is extended for a longer time by entering a short-

term memory circuit. By forced complementarity, the signal S2 is

obtained. This signal together with X1 enters the control network

that modulates the appropriate behaviors in the nonlinear oscillation-

generating circuits, whose outputs are shown in Figure 13.

These circuits take inspiration from studies of the amygdala and

cingulate cortex via Pontine Tegmental Nucleus (PTN) (Ramirez-

Moreno and Sejnowski, 2012). Without them, the automaton, like its

biological counterpart, in this case, would not be able to differentiate

either extreme risk or security.

2.2.7. Non-linear oscillation circuits. Lateral
inhibition

In CNS, the non-linear oscillation circuits are responsible for

generating repetitive oscillating signals, presented in the execution

of motor actions such as breathing, eating, and swimming, among

others. In this work, the magnitude of these oscillations will be the

speed level applied to each actuator of the differential robot.

dLn

dt
=

1

τ7

(

−Ln +9(A− ρG, λ, B+ L(n+2))
)

(36)

dLi

dt
=

1

τ8

(

−Li + βL(i−2)

)

(37)

λ = Kj f (O1 + AP − AQ)− dL(2−(n−1)) + (−1)n+1ψAP (38)

n ∈ {1, 2}, i ∈ {3, 4}, j ∈ {1, 2} (39)

In Figure 8A the O1 projection will be in charge of giving the

order to generate the oscillations to perform a left-turn behavior.

This will be fed to a parameter adaptation stage, note the order in

which the connections coming from AP and AQ are given, these

units refer to what is obtained in a stage of adaptation of left and

right turning. Consequently, the left-turn adaptation (AP) presents

an excitatory connection contrary to the inhibition of the right-turn
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FIGURE 4

Architecture of the bio-inspired network for the exploration behavior. (A) Architecture of the bio-inspired network for the exploration behavior. (B)

comparison circuit.

adaptation (AQ). Our aim is to prolong this behavior over time.

The projections of this stage continue to the nonlinear oscillation

generator circuit. In this circuit, a left-turn adaptation unit is added

again with the intention of increasing the difference between the

widths of the oscillations and generate a torque that allows to change

the orientation of the robot. Themathematical representation is given

in Equations (36)–(39).

dRn

dt
=

1

τ7

(

−Rn +9(A− ρG, λ, B+ R(n+2)

)

(40)

dRi

dt
=

1

τ8

(

−Ri + βR(i−2)

)

(41)

λ = Kj f (O2 + AQ − AP)− dR(2−(n−1)) + (−1)nψAQ (42)

n ∈ {1, 2}, i ∈ {3, 4}, j ∈ {2, 1} (43)

For the generation of the right-turn swing oscillations

(Figure 8B), the same structure and principle is used. However,

care must be taken, once again, with the connections of the

adaptation units. In this case, the right-turn adaptation (AQ)
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has excitatory connections, and the left-turn adaptation (AP)

has inhibitory connections. Likewise, the right-turn adaptation

unit is added to the oscillation generator circuit to generate the

difference in the width of the oscillations, in this case in the opposite

signal to that of the right-turn and, in that way, to rotate in the

opposite direction. The mathematical representation is given in

FIGURE 5

Competitive neural network. Class winner-take-all (WTA).

Equations (40)–(43).

dFn

dt
=

1

τ7

(

−Fn +9(A− ρG, K(2j+1)λ, B+ F(n+2))
)

(44)

dFi

dt
=

1

τ8

(

−Fi + βF(i−2)

)

; (45)

λ = f (O3 − AP − AQ)− dF2−(n−1) (46)

n ∈ {1, 2}, i ∈ {3, 4}, j ∈ {0, 1} (47)

Finally, for the generation of oscillations corresponding to the

forward motion (Figure 8C), both adaptations (AP and AQ) project

inhibitory connections, taking into account that in the established

design the forward motion is expected to be less predominant. The

mathematical representation is given in Equations (44)–(47).

2.3. Software configuration

For the virtual implementation, we made use of the robot

Burger from the TurtleBot3 open source libraries (Open Source

Robotics Foundation, 2020). The simulated environment was

performed in the Gazebo simulator (Foundation, 2014). The middle-

ware used was ROS (Robotics, 2021).

FIGURE 6

Memory linear chain for the adaptation stage. Two circuits similar to that shown above, process the propagation of O1 and O2 in the meta-decision

circuit (Figure 5). The five processing units shown correspond to the units named in Equations (22)–(24).

FIGURE 7

Meta-control circuit.
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FIGURE 8

Non-linear oscillation generator circuit. (A) Non-linear oscillation

circuit for turning left. (B) Non-linear oscillation generator circuit for

turning right. (C) Non-linear oscillation generator circuit for forward

motion.

2.4. Hardware configuration

A TurtleBot3 Burger platform was used as the mobile automaton.

This robot is configured with a 360-degree LDS-01 LiDAR sensor, a

Raspberry Pi 3 Model B board for processing, and an OpenCR board

for hardware control. The wheels actuator is the Dynamixel XL430-

W250 motor. All the system is powered by a 3 cell LiPo battery of

11.1v and 2.2 Ah. The robot dimensions are visualized in Figure 9.

The robotic platform was configured with ROS Kinectic

middleware installed on a Raspbian Buster operating system. The

processing of the bio-inspired exploration system was tested both

on the embedded and on an external computing unit, the latter

configured with ROS noetic, Ubuntu 20.04, an Intel Icore i7 8th

generation processor, and 16 GB ram memory. The communication

between the embedded and the computational unit was done

viaWiFi.

2.5. Signal processing

Considering that the objective of the terrestrial navigation

platform is to perform an obstacle avoidance exploration behavior, it

was proposed to make use of the information captured by the LiDAR

sensor to generate the input signals to the bio-inspired network.

This was processed as shown in Figure 10. Just frontal information

provided by the sensor was considered and was divided into two areas

Ar (0◦–90◦) and Al (90
◦–180◦). A safety area of 0.5 m radius was

defined, with which it is defined that: points belonging to the degree

range of the Ar area are classified into points inside the safety area

(Pri ) and points outside the safety area (Pro ), likewise for the Pli and

Plo points ofAl. Points inside the safety area are penalized with a value

of−1, while points outside the safety area are assigned with a value of

+1. So, the values assigned to the areasAl andAr are defined as shown

in Equations (48), (49). The former processing is intended to define

in which direction (right or left) obstacles are closer to the robot so

that the robot will head toward the clearest area.

As mentioned in Section 2.2.6, the aim of incorporating a basal

ganglia-inspired meta-control network is to mediate the decisions

made by the main network. It is proposed that the meta-control

network will act on decisions where the robot’s environment changes

dramatically, for instance, when there is the presence of dynamic

objects. To detect this, it is proposed to keep a record of the result

obtained from the areas at instant t − 1 and compare it with those

obtained at instant t. If a difference greater than a threshold ǫ exists, a

value of 100 will be given to the signal S1 of the meta-control network

in Equation (50) (Section 2.2.6).

Ar =

90◦
∑

k=0◦

Pkro + Pkri ; Pkro = +1, Pkri = −1 (48)

Al =

180◦
∑

k=90◦

Pklo + Pkli ; Pkli = −1, Pklo = +1 (49)
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FIGURE 9

Turtlebot3 Burger model dimensions. Taken from Robotis (2022).

S1 =







100,
|Art−1−Art |

Art−1
> ǫ and

|Alt−1
−Alt

|

Alt−1
> ǫ

0, otherwise
(50)

S2 = γ − S1 (51)

3. Results

In this section, the results obtained from both the simulation part

and its implementation in the TurtleBot3 Burger robot are presented.

The performance of the automaton in the exploration task and in the

obstacle avoidance task was measured.

3.1. Simulation

3.1.1. Exploration task
To evaluate the performance of the exploration behavior, as

well as its obstacle avoidance task, controlled by the bio-inspired

neural network, the adaptation and simulation of the environments

for exploration proposed in Yan et al. (2015) were implemented in

Gazebo. In this work, the environments have a maximum exploration

area of 4 m2. The maze walls are rigid and fully reflective surfaces,

and the corridor width is, at least, 3 times the outside diameter

of the robot. These mazes are denominated loop, cross, zigzag and

traditional maze. In Figures 11A–D, the navigation in an established

way is evaluated. In Figures 11E–H the environments are simulated

until a collision or a deadlock situation takes place. The simulation

results of these environments are presented in Figure 11.

Figure 11 illustrates the performance of the automaton without

the meta-control network (left column, Figures 11A, C, E, G) and

with the meta-control network (right column, Figures 11B, D, F, H).

It is observed how the network modulates the right and left behaviors

in the left column allowing better performance in the right column

along the same path.

In the results shown in Figure 11, the mazes have a total area

of 4.0 x 4.0 m with walls 1.0 m high and corridors 0.50 m wide.

The environments in Figures 11A–D have 0.15 m wide walls, and

the environments in Figures 11E–H have 0.05 m wide walls. The

LiDAR sensor has a 360◦ field of view with a reading range of 0.12–

3.50 m. Considering the safety area defined on the robot, Section

2.5, this field of view is reduced to 180◦ and a range of 0.12–0.50

m. In environments such as cross or traditional maze, if the width

of its corridors is increased, it would cause the automaton to make

a late decision between its three behaviors at interceptions, due to

its actual change of vision, colliding with the outside corners while

taking a wide-open curve. Considering the average speed of 0.04 m/s

at which the automaton travels, this does not favor such decision-

making. The opposite is true for loop and zigzag environments, where

the automaton only decides between one of its behaviors.

3.2. Implementation

The bio-inspired neural network with neuromodulation designed

in this work was mounted in the automaton TurtleBot3 Burger in

order to measure its performance.

3.2.1. Exploration task
To evaluate the performance of the automaton in a natural

environment, a hand-made maze was built, as shown in Figure 12.
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FIGURE 10

Signal processing. Take l for left and r for right. Take i for inside and o

for outside.

Each environment has a minimum of 1.0 m2 and a maximum of

2.0m2; except for the simple maze that was built freely.

Figure 13 shows the signals obtained in the physical

implementation of a zigzag environment. Figure 13A illustrates the

information obtained from the real environment and its processing

in time, top left image exhibits the LiDAR’s points processing inside a

corridor of the zigzag-maze, blue points correspond to points inside

the safety zone and red points are those outside it. S1, Ar , and Al

curves are the signals mentioned in Section 2.5, these were sampled

within an interval of 360 ms. Notice that S1 fires when there is an

appropriate change in the values of Ar and Al from one instant to

another one. For instance, near sample 99 the Ar signal changes from

90 to 50 and Al from 30 to 0, then, S1 triggers from 0 to 100. The

automaton’s trajectory seen in Figure 12E is a result of processing

Ar and Al signals. The biggest values of Ar and Al appear when the

robot executes turns. The projection of the meta-control network

is shown in Figure 13B. Approaching sample 230 of S1, Ar , and

Al signals, there were more obstacles inside the left area, thus, the

robot must turn to the right. Figure 13C shows the wheels’ motor

action corresponds to this time, this signal was sampled within an

interval of 1.0 ms. The blue signal corresponds to the left wheel

and the orange to the right. Blue oscillations are wider than orange

oscillations, then, the left wheel spins more than the right wheel,

and the right turn is made. When S1 fires, the modulation in the

wheels’ motor action is applied, and this generates a reduction in the

amplitude of the oscillating signals. This reduces the automaton’s

velocity which gives time to taking a better decision.

3.2.2. Meta-control circuit test
The performance of the neuromodulation network was tested

by putting an obstacle (box) in the automaton’s area vision. The

automaton automatically avoids the obstacle and continues exploring

(see Supplementary Videos 6, 8).

3.3. Metrics

To quantify the performance of the exploration in the different

established environments the next metrics are proposed:

FIGURE 11

Simulation environment results. Figures on the left side show the

Gazebo simulation environment without the meta-control circuit. The

right side images show the trajectory made by the robot in the

exploration behavior with the meta-control circuit. (A, B) Loop. (C, D)

Zigzag. (E, F) Cross. (G, H) Traditional maze. In (B, D, F, H), one can

observe how we obtain a better performance using the meta-control

network and allowing to achieve a greater trajectory in (F, H).

• Covered distance (Td): Covered distance by the robot measured

in meters.

• Elapsed time (Tt): Spent time in seconds.

• Average speed reached (Tv): Quotient between Td and Tt .

• Exploration area (Ea): Percentage of the total environment area

covered by the robot.

These metrics values obtained for each simulated environment

are presented in Table 2A.

In order to compare quantitatively the performance evaluation

of the automaton’s trajectory and the optimum trajectory we added

point-to-point metrics. The automaton’s trajectory evaluation was

evaluated considering the optimum trajectory, defined as the way that
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FIGURE 12

Implementation environment results. The path made by the automaton was drawn with red lines in each type of environment. Green circles are initial

positions and blue circles are final positions. (A) Loop. (B) Cross. (C, D) Traditional maze part 1 and part 2, respectively. (E) Zigzag. (F) Simple maze. There

one can be observed how the automaton completed the (A, E, F) environments successfully. In the (B) environment the automaton’s performance started

in the middle of the cross-environment and finished doing circles around the environment. In the (C, D) environments, there can be observed how the

automaton’s trajectory finishes at its starting point.

keeps in the middle of the corridors. In this comparison, the RMSE,

mean error, standard deviation error, minimum error, and maximum

error were computed for each axis. The results of the error metrics for

each environment presented in Figure 11 are shown in Tables 2B, C.

4. Discussion and conclusion

The framework proposed in this work faces strong difficulties

when it comes to navigate much more complex mazes (see

Figures 11B, D). The automaton shows a very good performance in

environments like those seen in Figures 11A, C. That difficulty is

linked to the analysis of the environment information. Reducing the

analysis to a specific area provoked a delay in the decision-making

when an object appeared suddenly in front of the robot in open

environments. Shortly, this problem could be solved by increasing the

safety area, nevertheless, this could affect the performance in reduced

space environments as shown in Figures 11A, C. The sensed area

could be penalized with negatives. Due to this fact, it is proposed

as part of future work the development and implementation of a

bio-inspired strategy that allows a dynamic adjustment of the robot’s

safety area depending on the environment (wide or narrow areas).

The discussion presented above is also supported by the

information presented in Table 2A. It shows the good performance

exhibited by the cortical synaptic circuits adapted and applied,

as mentioned in Section 2.2, for the exploration of unstructured

environments in their entirety (Ea). In addition, the performance of

the automaton with and without meta-control network is shown in

the error metrics in Tables 2B, C. The results illustrate that we obtain

better performance with the implementation of this network. On

average, the TurtleBot3 Burger’s navigation speed was approximately

0.04 m/s. By comparing with Miguel-Blanco and Manoonpong

(2020) our exploration system is slow, similar to the one developed

by Pardo-Cabrera et al. (2022).

A first approximation of the motor control of a mobile

autonomous was proposed in Guerrero-Criollo et al. (2022). In that

work, the input signals were simulated rather than being captured

by a robust system. The meta-control network, which is responsible

for detecting novelties, is also absent. In this work, we implement

both the sensor part of the system that measures environmental
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FIGURE 13

Implementation of the zigzag environment. (A) Real signals obtained from the environment and its processing in time. The top left image exhibits the

LiDAR’s points processing inside a corridor of the zigzag environment. Blue dots correspond to the points inside the safe area and red dots are the points

outside the safe area. S1, Ar , and Al curves are the inputs signals for the bio-inspired network (Section 2.5), these were sampled within an interval of

360 ms. The automaton’s trajectory seen in Figure 12E is a result of processing Ar and Al signals. The biggest values of Ar and Al appear when the robot

executes turns. (B) Meta-control circuit projection G. (C) Motor control signals of the mobile automaton. This signal was sampled within an interval of

1.0 ms. Blue and orange signals correspond to the left wheel and the right wheel, respectively.
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TABLE 2 Metrics values for simulation environments in Figure 11.

(A) Proposed metrics

Proposed metrics
Loop Cross Zigzag Traditional maze

W W/O W W/O W W/O W W/O

Td [m] 13.4 13.3 15.25 5.25 22.76 22.1 4.48 2.94

Tt [s] 334 315 364 125 573 524 107 72

Tv [m/s] 0.040 0.042 0.042 0.042 0.039 0.042 0.042 0.040

Ea [%] 100 100 66.66 18.75 100 100 18.75 9.34

(B) Error metrics for Loop and Cross maze

Error metrics

Loop Cross

x y x y

W W/O W W/O W W/O W W/O

RMSE [m] 0.0194 0.0227 0.0324 0.0391 0.1906 0.2020 0.1904 0.2011

Mean error [m] –0.0013 0.0018 0.0143 0.0185 0.0366 0.0403 –0.0483 -0.0515

Std error [m] 0.0193 0.0226 0.0291 0.0344 0.1871 0.1979 0.1842 0.1944

Max error [m] 0.0798 0.0839 0.0807 0.0807 1.610 1.610 0.1352 0.1352

Min error [m] –0.0697 –0.0697 –0.0654 –0.0639 –0.0966 –0.0966 –1.613 –1.613

(C) Error metrics for Zigzag and Traditional maze

Error metrics

Zigzag Traditional maze

x y x y

W W/O W W/O W W/O W W/O

RMSE [m] 0.0298 0.0374 0.0268 0.0373 0.8881 0.9140 0.3396 0.3494

Mean error [m] –0.0047 –0.0058 –0.0090 0.0025 –0.3256 –0.3452 0.0750 0.0787

Std error [m] 0.0294 0.0369 0.0253 0.0371 0.8263 0.8463 0.3312 0.3404

Max error [m] 0.1371 0.1709 0.1048 0.0955 1.682 1.682 1.413 1.414

Min error [m] –0.1046 –0.1293 –0.1079 –0.1259 –1.857 –1.857 –1.252 –1.252

W refers toWith meta-control circuit and W/O refers toWithout meta-control circuit.

data for inputs and the meta-control network. The bio-inspired

network was implemented into the TurtleBot3 Burger embedded

system. In this work, the design, simulation, and implementation of

a bio-inspired neural network allows a differential robot to perform

a safe exploration. An exploration task is defined as the behavior

of traversing a terrain indefinitely while avoiding obstacles. Here,

a framework is proposed to extract information from a LiDAR

sensor that generates the input signals to the neural network online.

Additionally, the implementation of a modulatory or meta-control

network inspired by the basal ganglia is carried out. This network

allows modulating the exploration behavior of the robot by reducing

its speed progressively when drastic changes occur in the robot’s

environment within a safety area of 0.5 m radius (see Figure 13D).

As the robot advances through the mazes, this network detects

novelties with greater priority, enabling it to avoid obstacles much

more effectively. This was done with the aim of adding robustness

to the bio-inspired exploration system against dynamic objects and

reducing the reactivity of decision-making, thus improving the

autonomy of the navigation system.

Frequently, to perform autonomous navigation tasks, it is

required either that an operator previously walks with a registration

system through the environment in which the robot will operate

or that the operator teleoperates the robot while the registration of

the area is being done. Either of the above two situations presents

difficulties, the most obvious of which is the dependence on an

operator in the robot’s workflow for its operation. There are scenarios

that can put the operator’s safety at risks such as environmental

disaster zones or mines. In addition, in these areas connectivity can

be problematic to operate the robot remotely. For these reasons, it is

considered that the proposed work can have a significant impact on

exploration systems and the identification of unknown environments

for ground platforms.
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