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Robotics have advanced significantly over the years, and human–robot interaction
(HRI) is now playing an important role in delivering the best user experience,
cutting down on laborious tasks, and raising public acceptance of robots. NewHRI
approaches are necessary to promote the evolution of robots, with a more natural
and flexible interaction manner clearly the most crucial. As a newly emerging
approach to HRI, multimodal HRI is a method for individuals to communicate with
a robot using various modalities, including voice, image, text, eye movement, and
touch, as well as bio-signals like EEG and ECG. It is a broad field closely related
to cognitive science, ergonomics, multimedia technology, and virtual reality, with
numerous applications springing up each year. However, little research has been
done to summarize the current development and future trend of HRI. To this
end, this paper systematically reviews the state of the art of multimodal HRI on
its applications by summing up the latest research articles relevant to this field.
Moreover, the research development in terms of the input signal and the output
signal is also covered in this manuscript.
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1. Introduction

Recent years have witnessed a huge leap in the advancement of robotics, yet it is
quite challenging to build a robot that can communicate with individuals naturally and
synthesize understandable multimodal motions in a variety of interaction scenarios. To
deliver appropriate feedback, the robot requires a high level of multimodal recognition
in order to comprehend the person’s inner moods, goals, and character. Devices for
human–robot interaction (HRI) have become a common part of everyday life thanks to the
growth of the Internet of Things. The input and output of a single sense modality, such as
sight, touch, sound, scent, or flavor, is no longer the only option for HRI.

The goal ofmultimodal HRI is to communicate with a robot utilizing variousmultimodal
signals (Figure 1), including voice, image, text, eye movement, and touch. Multimodal HRI
is a broad field that is closely associated with cognitive science, ergonomics, communication
technologies, and virtual reality. It includes both multimodal input signals from humans to
robots and multimodal output signals from robots to humans. As the carrier of the Internet
of Things in the era of big data, multimodal HRI is closely connected to the advancement
of visual effects, AI, sentimental data processing, psychological and physiological appraisal,
distance education, as well as medical rehabilitative services.
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The earliest studies on multimodal HRI date back to the
1990s, and several publications offer an interactive approach
that combines voice and gesture. Furthermore, the rise of
immersive visualization opens up a new multimodal interactive
interface for HRI: an immersive world that blends visual, aural,
tactile, and other sense modalities. Immersive visualization, which
integrates multimodal channels and multimodalities, has become
an inseparable part of high-dimensional big data visualization.

Great strides have been made in robotics over the past
years, with human-computer interaction technology playing a
critical role in improving the user experience, reducing tiresome
processes, and promoting the acceptance of robots. Novel human-
computer interaction strategies are necessary to further robotics
progress, and a more natural and adaptable interaction style is
particularly important (Fang et al., 2019). In many application
areas, robots must process output signals in the same way as human
beings. Visual and auditory signals are the most straightforward
methods for individuals to interact with home robots. With the
advancement of statistical modeling, speech recognition has been
increasingly employed in robotics and smart gadgets to enable
natural language-based HRI. Furthermore, significant progress in
picture recognition has been made (Xie et al., 2020), with some
robots able to comprehend instructions given to them in human
language and perform necessary activities by combining visual and
aural input signals.

This paper systematically follows the state of the art of
multimodal HRI and thoroughly reviews the research progress in
terms of the signal input, the signal output, and the applications
of multimodal HRI (Figure 2). Specifically, this article elaborates
on the research progress of signal input of multimodal HRI from

FIGURE 1

The various signals of multimodal HRI.

three perspectives: gesture input and recognition, speech input and
recognition, as well as emotion input and recognition. In terms of
information output, gesture generation and emotional expression
generation are covered. The latest applications of multimodal HRI,
including assistive mobile robots, robotic exoskeletons, as well as
robotic prostheses, will also be introduced.

2. Methodology

By using Preferred Reporting Items for Systematic Reviews and

Meta-analysis (PRISMA) guidelines, a systematic review of recently
published literature was conducted on recent advancements in

multimodal human–robot Interaction (Page et al., 2021). The
inclusion criteria were: (i) publications indexed in the Web of
Science, Scopus, and ProQuest databases; (ii) publication dates

between 2008 and 2022; (iii) written in English; (iv) being a review
paper or an innovative empirical study; and (v) certain search

terms covered. The exclusion criteria were: (i) editorial materials,
(ii) conference proceedings, and (iii) books were removed from
the research. The Systematic Review Data Repository (SRDR), a
software program for the collection, processing, and inspection
of data for our systematic review, was employed. The quality of
the specified scholarly sources was evaluated by using the Mixed
Method Appraisal Tool. After extracting and analyzing publicly
accessible papers as evidence, no institutional ethics approval was
required before starting our research (Figure 3).

Throughout April 2008 and October 2022 (mostly in 2022),
a systematic literature review of the Web of Science, ProQuest,
and Scopus databases was performed, with search terms including

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1084000
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Su et al. 10.3389/fnbot.2023.1084000

FIGURE 2

Major application areas of multimodal HRI (Manna and Bhaumik, 2013; Klauer et al., 2014; Gopinathan et al., 2017; Ḱ’ut́’uk et al., 2019).

“multimodal human–robot interaction,” “multimodal HRI
techniques,” “multimodalities used in HRI,” “speech recognition
in HR,” “application of multimodal HRI,” “gesture recognition in
HRI,” and “multimodal feedback in HRI.” The search keywords
were determined as the most frequently used words or phrases
in the researched literature. Because the examined research was
published between 2008 and 2022, only 359 publications met
the qualifying requirements. We chose 227 primarily empirical
sources by excluding ambiguous or controversial findings
(insufficient/irrelevant data), outcomes unsubstantiated by
replication, excessively broad material, or having nearly identical
titles (Figure 4).

3. Modalities used in human–robot
interaction

There are several modalities that are currently used in
human–robot interaction, including audio, visual, haptic,
kinesthetic, and proprioceptive modality (Navarro et al., 2015;
Li and Zhang, 2017; Ferlinc et al., 2019; Deuerlein et al.,
2021; Groechel et al., 2021). These modalities can be used
alone or in combination to enable different forms of human–
robot interaction, such as voice commands, visual gestures,

and physical touch. Additionally, some researchers work
on improving the quality of interaction and the perceived
“intelligence” of the robot by incorporating tools like natural
language processing, cognitive architectures, and social
signal processing.

3.1. Audio modality

The audio modality is an important aspect of human–robot
interaction as it allows for verbal communication between humans
and robots. In order for robots to effectively understand and
respond to human speech, they must be equipped with speech
recognition and natural language processing (NLP) capabilities.

Robots that use audio modalities can recognize and generate
human speech through the use of speech recognition and synthesis
technologies (Lackey et al., 2011; Luo et al., 2011; Zhao et al.,
2012; Tsiami et al., 2018; Deuerlein et al., 2021). Speech recognition
allows the robot to understand spoken commands or questions
from a human, while speech synthesis allows the robot to generate
spoken responses or instructions. This modality is used in several
application such as voice assistants, voice-controlled robots, and
even some language tutor robots (House et al., 2009; Belpaeme
et al., 2018; Humphry and Chesher, 2021).
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FIGURE 3

PRISMA flow diagram describing the search results and screening (Source: Processed by authors).

FIGURE 4

Topics and types of paper identified and selected.
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3.2. Visual modality

Visual modality allows the robot to perceive and interpret visual
cues such as facial expressions, gestures, body language, and gaze
direction. Robots that employ visual modalities can perceive their
environment using cameras and process visual information using
computer vision algorithms (Hasanuzzaman et al., 2007; Li and
Zhang, 2017). These algorithms can be used to recognize objects,
faces, and gestures, as well as to track the motion of humans and
other objects. This modality is used in applications such as robot
navigation, surveillance, and human–robot interaction.

Recent advances in computer vision and deep learning have led
to significant improvements in the ability of robots to recognize and
interpret visual cues, making them more effective in human–robot
interactions (Celiktutan et al., 2018). One area of research in visual
modality is the use of facial expression recognition, which enables a
robot to understand a person’s emotions and respond accordingly.
This can make the interaction more natural and intuitive for the
human. Another area of research is the use of gesture recognition,
which allows a robot to understand and respond to human gestures,
such as pointing or nodding. This can be useful in tasks such
as navigation or object manipulation. In addition, visual saliency
detection, which allows the robot to focus on the most important
aspects of the visual scene, and object recognition, which enables
the robot to identify and locate objects in the environment, are also
important areas of research in visual modality.

3.3. Haptic modality

Haptic modality enables touch-based communication between
humans and robots, including the robot’s ability to sense and
respond to touch and to apply force or vibrations to the human.
Recent advances in haptic technology have led to the development
of more advanced haptic interfaces, such as force feedback devices
and tactile sensors (Navarro et al., 2015; Pyo et al., 2021). These
devices allow robots to provide a wider range of haptic cues, which
can be used in applications such as robotic surgery, prosthetics,
and tactile communication. One area of research in haptic modality
is the use of force feedback, which allows a robot to apply forces
to a person, making the interaction more natural and intuitive.
Another area of research is the use of tactile sensing, which allows
a robot to sense the texture, shape, and temperature of objects, and
to respond accordingly.

3.4. Kinesthetic modality

The kinesthetic modality is an aspect of human–robot
interaction that relates to the ability of the robot to sense and
respond to motion and movement. This includes the ability of the
robot to sense and respond to the motion of the human body,
such as posture, gait, and joint angles. Robots that use kinesthetic
modalities can sense and control their own movement. This can be
done by using sensors to measure the position and movement of
the robot’s joints, and actuators to control those joints (Groechel

et al., 2021). This modality is used in applications such as industrial
robots, bipedal robots, and robots for search and rescue.

3.5. Proprioceptive modality

Proprioception refers to the ability of an organism to sense the
position, orientation, and movement of its own body parts (Ferlinc
et al., 2019). In human–robot interaction, proprioception can be
used to allow robots to sense and respond to the position and
movement of their own body parts in relation to the environment
and the human. Robots that use proprioceptive modalities can
sense their internal state (Hoffman and Breazeal, 2008). This can
include, for example, the position of their joints and the forces
acting on their body. This information can be used to control the
robot’s movements, to detect and diagnose failures, and to plan
its actions. For example, Malinovská et al. (2022) have developed
a neural network model that can learn proprioceptive-tactile
representations on a simulated humanoid robot, demonstrating
the ability to accurately predict touch and its location from
proprioceptive information. However, further work is needed to
address the model’s limitations.

All these modalities can be combined in different ways to
provide robots with a wide range of capabilities and enhance their
ability to interact with humans in natural ways. Additionally, for
better human robot interaction, usingmodalities that are congruent
with human communication, like visual and auditory modality, are
preferred as it makes the interaction more intuitive and easy for
human participants.

4. Techniques for multimodal
human–robot interaction

In multimodal HRI, social robots frequently use multimodal
interaction methods comparable to those utilized by individuals:
speech generation (through speakers), voice recognition (through
microphones), gesture creation (through physical embodiment),
and gesture recognition (via cameras or motion trackers) (Mead
and Matarić, 2017). This section will provide a brief review on the
signal input, signal output, as well as the practical application of
multimodal human–robot interaction (Figure 5).

4.1. Multimodal signal processing for
human–robot interaction

The last decade has seen great advancement in human–robot
interaction. Nowadays, with more sophisticated and intelligent
sensors, speech, gestures, images, videos, as well as physiological
signals like electroencephalography (EEG) and electrocardiogram
(ECG), can be input into robots and recognized by them. A brief
introduction to the most common input signals employed in HRI
will be given in this section.
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FIGURE 5

Multimodal HRI (Castillo et al., 2013; Yu et al., 2016; Lannoy et al., 2017; Legrand et al., 2018; Stephens-Fripp et al., 2018; Mohebbi, 2020; Khalifa
et al., 2022; Otálora et al., 2022; Strazdas et al., 2022).

4.1.1. Computer vision
Robots equipped with cameras can recognize and track human

faces and movements, allowing them to respond to visual cues
and gestures (Andhare and Rawat, 2016; Maroto-Gómez et al.,
2023). It is an important modality in multimodal human–robot
interaction (HRI) as it allows robots to perceive and understand
their environment and the actions of humans.

Object detection and tracking: Robots can use computer vision
to detect and track objects and people in their environment
(Redmon et al., 2016). This can be used for tasks such as following
a person, avoiding obstacles, or manipulating objects.

Facial recognition: Robots can use computer vision to recognize
and identify specific individuals by analyzing their facial features
(Schroff et al., 2015). This can be used for tasks such as
personalization, security, or tracking attendance.

Gesture recognition: Robots can use computer vision to
recognize and interpret human hand and body gestures (Mitra
and Acharya, 2007). This can be used as an additional
modality for controlling the robot or issuing commands, rather
than using speech or buttons, which is particularly useful in
noisy environments.

Face and body language: Robots can use computer vision to
detect and interpret facial expressions and body language, which
can be used to infer the emotions or intent of a human, and generate
appropriate responses, which is known as affective computing
(Pantic and Rothkrantz, 2000).

Gaze tracking: Robots can use computer vision to track the gaze
of a human in order to understand where their attention is focused
(Smith et al., 2013). This can be used to infer human attention and
interest or anticipate the next action, for example, a robot assistant
can know that the human is going to pick an object by following
their gaze.

Multi-Camera system: Using multiple cameras can
enable a robot to track and understand the 3D space
and provide more robust performance, such as enabling
robots to walk without colliding with obstacles (Heikkila,
2000).

These are just a few examples of how computer vision can be
used in HRI, and many other applications are being developed and
explored in the field. Computer vision systems can be integrated
with other modalities, such as speech recognition or haptic
feedback, to create a more comprehensive HRI experience.
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It’s important to note, however, that computer vision can
be a challenging technology to implement, especially when it
comes to dealing with variations in lighting, occlusion, or
viewpoint. It also could be affected by the environment, such
as reflections, glare, or shadows, that can make it difficult
for the robot to accurately interpret visual data (Tian et al.,
2020).

4.1.2. Natural language processing
Natural language processing (NLP) is an important

modality in multimodal human–robot interaction (HRI)
as it allows robots to understand and respond to human
speech in a way that is more natural and intuitive (Scalise
et al., 2018). Here are a few ways that NLP can be used
in HRI.

Speech recognition: NLP can be used to convert
speech into text, which can then be used to interpret
human commands, queries, or requests. This allows
the robot to understand and respond to spoken
commands, such as “turn on the lights” or “navigate to
the kitchen.”

Natural Language Understanding (NLU): After the
speech is converted into text, the NLP system uses NLU
to extract the intent and entities from the text (Kübler
et al., 2011; Bastianelli et al., 2014). This allows the robot
to understand the intent of the command and the objects
or actions referred to by the entities, such as “set the
temperature to 20 degrees” intent is “set” and “temperature”
is the entities.

Natural Language Generation (NLG): Natural Language
Generation (NLG) is a subfield of Natural language processing
(NLP) that enables computers to produce natural language
responses to humans. NLG has become an important aspect
of human–robot interaction (HRI) due to its ability to allow
robots to communicate with humans in a more human-
like manner. However, the process of generating natural
language responses involves retrieving and synthesizing
relevant information from various data sources, such as open
data repositories, domain-specific databases, and knowledge
graphs. In addition, the NLG process involves the use of
complex algorithms and statistical models to generate natural
language responses that are contextually appropriate and
grammatically correct.

Question answering: NLU and NLG together allows the robot
to understand and generate answers to questions, for example
“What’s the weather today?”

Dialogue management: NLP can be used to manage the
dialogue between the human and the robot, for example to track the
state of the conversation, and allow for more seamless interactions,
for example by remembering the context of the previous turns in
the conversation and using it to generate appropriate responses.

Language translation: NLP can be used to translate text from
one language to another, which can enable robots to interact with
people who speak different languages.

NLP can be a challenging technology to implement, especially
when it comes to handling variations in accent, dialect, or speech

patterns, also, NLP models rely heavily on the training data, and
thus the performance may not be accurate when it comes to
handling new or unseen words, entities or concepts (Khurana et al.,
2022).

4.1.3. Gesture recognition
Gesture identification is a critical step in gesture recognition

after unprocessed signals from sensors are obtained. Gesture
identification is the discovery of gestural signals in raw data and
the separation of the relevant gestural inputs. Popular solutions
for solving the issue of gesture recognition are grounded in
visual features, ML algorithms, and skeletal models (Mitra and
Acharya, 2007; Rautaray and Agrawal, 2015). When it comes to
detecting body gestures, the comprehensive representation of the
body is ineffective from time to time. In contrast to the preceding
methodologies, the skeleton model methodology uses a human
skeleton to discover human body positions. The skeletal model
technique is also advantageous for categorizing gestures. With the
benefits listed above, the skeletal model method has emerged as an
appealing solution for sensing devices (Mitra and Acharya, 2007;
Cheng et al., 2015).

Among alternative communication modalities for human–
robot and inter-robot interaction, hand gesture recognition is
mostly employed. Hand gesture recognition can be divided into two
categories: static hand gestures and dynamic hand gestures. Static
hand gestures refer to specific hand postures or shapes that convey
meaning without the need for movement. These gestures can be
simple, such as a thumbs-up or a peace sign, or more complex,
such as those used in sign languages for the deaf community.
Static hand gestures have their advantages in specific contexts,
such as low computational complexity and less dependency on
temporal information.

In comparison to static hand gestures, the dynamic hand
gestures of robots are more humanoid. Dynamic hand gestures
are particularly versatile since the robotic hand may move
in any direction and bend at practically any angle in all
available coordinates; static hand gestures, on the other hand, are
constrained to much fewer movements (Rautaray and Agrawal,
2015). A wide range of applications, involving smart homes, video
surveillance, sign language recognition, human–robot interaction,
and health care, have recently embraced dynamic hand gestures.
All of these applications require high levels of accuracy against a
busy background, optimum recognition, and temporal precision
(Huenerfauth and Lu, 2014; Ur Rehman et al., 2022).

4.1.4. Emotion recognition
Emotions are inherent human characteristics that impact

choices along with behaviors, and they are crucial in interaction and
emotional intelligence (Salovey and Mayer, 2004), i.e., the capacity
to comprehend, utilize, and command feelings, is substantial for
effective relationships. Affective computation seeks to provide
robots with emotional intelligence, aiming to improve natural
human–robot interaction. Humanoid competencies of observation,
comprehension, and feeling output are sought in the context of
human–robot interaction. Emotions in HRI can be examined from
three distinct perspectives, as follows.
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Formalization of the robot’s internal psychological state:
Adding sentimental characteristics to individuals and bots
can increase their efficacy, adaptability, and plausibility. In
recent years, robots have been produced to mimic feelings by
determining neurocomputational frameworks, formalizing them
in pre-existing cognitive architectures, modifying well-known
mental representations, or developing specific affective designs
(Saunderson and Nejat, 2019).

The emotional response of robots: The capacity of robots to
display recognizable emotional responses has a significant influence
on human–robot interaction in complicated communication
scenarios (Rossi et al., 2020). Numerous research examined how
individuals perceive and identify sentimental reactions through
modalities (postures, expressions, motions, and voices) might
transmit emotional signals from robots to humans.

Robotic applications that can detect and comprehend human
feelings are competent in social interactions. Recent research aims
to develop algorithms for categorizing psychological states from
many input signals, including speech, body language, expression,
and physiological signals (Cavallo et al., 2018).

Furthermore, sentiment identification is a multidisciplinary
area that necessitates expertise from a variety of disciplines,
including psychological science, neurology, data processing,
electronics, and AI. It may be handled using multimodal signals,
including physiological signals like EEG, GSR, or heart rate
fluctuations measured by BVP or EKG. As with BVP and GSR,
these are inner signals that represent the equilibrium of the
parasympathetic and sympathetic nervous systems, whereas EEG
shows variations in the cortex parts of the brain (Das et al., 2016).
Externally visible indications, on the other hand, include facial
expressions, bodily motions, and voice. While internal signals are
thought to be more impartial due to the inherent qualities of several
operational parts of the central nervous system, external signals
remain subjective measures of expressed feelings (Yao, 2016).

4.2. Multimodal feedback for human–robot
interaction

Developing a socially competent robot capable of interacting
naturally with individuals and synthesizing adequately intelligible
multimodal actions in a wide range of interaction scenarios is
a difficult task. This necessitates a high degree of multimodal
perception of robots, since they must comprehend the human’s
mental moods, goals, and character aspects in order to provide
proper feedback.

4.2.1. Speech synthesis
Speech synthesis, also known as text-to-speech (TTS), is

an important approach in multimodal human–robot interaction
(HRI) as it allows robots to provide verbal feedback or instructions
to the human user in a way that is similar to how a human would
(Luo et al., 2011; Ashok et al., 2022). Robots can use text-to-speech
(TTS) technology to generate spoken responses to humans. Here is
how speech synthesis works in more detail:

1. Text is generated by the robot’s onboard computer in response to
a user request, or based on data the robot needs to communicate.
However, the generation of text to be uttered (Natural Language
Generation) is a research field. On a superficial level, responses
can either be template-based (i.e., scripted by humans), retrieved
from knowledge sources (typically, the Internet) or generated
using large-language models.

2. Once the text has been generated, it is passed to a Text-to-Speech
(TTS) engine, which uses a set of rules, or a machine learning
model, to convert the text into speech. This process involves
transforming the written text into a phonetic representation that
can be pronounced by the robot.

3. The TTS engine can be tuned to mimic different human voices,
genders, and even create a virtual robot voice. For example,
many systems make use of widely available TTS engines (e.g.,
Acapela, Cereproc, Google TTS), which offer a range of voices
in different languages and accents.

4. The generated speech is then output through the robot’s
speakers, allowing the user to hear the response. The quality of
the output speech is dependent on the TTS engine, the quality of
the audio hardware, and the environmental conditions in which
the robot is operating.

5. The output can be in different languages, depending on the
specific application and the need. For instance, some robots
may be designed to operate in multilingual environments and
require the ability to speak multiple languages to communicate
effectively with users.

Speech synthesis can be integrated with other modalities, such
as computer vision, or natural language processing (NLP), to create
a more comprehensive HRI experience. For example, a robot that
uses speech recognition and NLP to understand spoken commands
can use speech synthesis to provide verbal feedback, such as “I’m
sorry, I didn’t understand that command.”

Speech synthesis can also be used to provide instructions, such
as “Please put the object on the tray,” or to answer questions, such
as “The current temperature is 20 degrees.”

Speech synthesis can enhance the user experience by making
the interaction with the robotmore natural, intuitive, and engaging.
It can also be used to provide information or instructions in a
variety of languages, making the robot accessible to a wider range
of users.

4.2.2. Visual feedback
Visual feedback is an important output modality in multimodal

human–robot interaction (HRI) as it allows robots to provide
feedback to the human user through visual cues (Gams and Ude,
2016; Yoon et al., 2017). Here are a few ways that visual feedback
can be used in HRI.

Status indication: Robots can use lights, displays, or other visual
cues to indicate the status of the robot, such as when the robot is
ready to receive commands, when it is performing a task, or when
it has completed a task (Admoni and Scassellati, 2016).

Error indication: Robots can use visual cues such as flashing
lights or error messages to indicate an error or problem with the
robot, for example when the robot can’t complete a task due to an
obstacle or error (Kim et al., 2016).
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Wayfinding: Robots can use visual cues such as arrows or maps,
to indicate a path or a location, this can help the user to navigate and
orient themselves in the environment (Giudice and Legge, 2008).

Object recognition and tracking: Robots can use visual cues
such as highlighted boxes, to indicate the objects or areas of interest
the robot is tracking or recognizing (Cazzato et al., 2020).

Expressions and emotions: Robots can use visual cues such as
facial expressions or body language, to indicate the robot’s emotions
or intent, similar to the way humans communicate non-verbally
(Al-Nafjan et al., 2017).

Multi-Camera Systems: Robots can use multiple cameras
to provide visual feedback, by showing multiple views of the
environment, or provide 3D information, which can help the user
to understand the robot’s perception of the environment (Feng
et al., 2017).

Displaying conversation: In addition to the above, visual
feedback can also be used to display the content of the conversation
in HRI, such as what the robot “hears” through automatic speech
recognition (ASR) and what it is saying. This can be particularly
useful for individuals with hearing impairments or in noisy
environments where auditory feedback may not be sufficient
(Rasouli et al., 2018).

4.2.3. Visual feedback
Visual feedback is an important output modality in multimodal

human–robot interaction (HRI) as it allows robots to provide
feedback to the human user through visual cues (Gams and Ude,
2016; Yoon et al., 2017). Here are a few ways that visual feedback
can be used in HRI.

Status indication: Robots can use lights, displays, or other visual
cues to indicate the status of the robot, such as when the robot is
ready to receive commands, when it is performing a task, or when
it has completed a task.

Error indication: Robots can use visual cues such as flashing
lights or error messages to indicate an error or problem with the
robot, for example when the robot can’t complete a task due to an
obstacle or error.

Wayfinding: Robots can use visual cues such as arrows or maps,
to indicate a path or a location, this can help the user to navigate and
orient themselves in the environment.

Object recognition and tracking: Robots can use visual cues
such as highlighted boxes, to indicate the objects or areas of interest
the robot is tracking or recognizing.

Expressions and emotions: Robots can use visual cues such as
facial expressions or body language, to indicate the robot’s emotions
or intent, similar to the way humans communicate non-verbally.

Multi-Camera Systems: Robots can use multiple cameras
to provide visual feedback, by showing multiple views of the
environment, or provide 3D information, which can help the user
to understand the robot’s perception of the environment.

Displaying conversation: In addition to the above, visual
feedback can also be used to display the content of the conversation
in HRI, such as what the robot “hears” through ASR (automatic
speech recognition) and what it is saying. This can be particularly
useful for individuals with hearing impairments or in noisy
environments where auditory feedback may not be sufficient.

4.2.4. Gesture generation
In general, gesture generation is an area that remains largely

underdeveloped in robotics research, with most of the focus
being on gesture recognition. In conventional robotics, recognition
always predominates over gesture synthesis. The term “gesture” has
been commonly utilized to refer to itemmanipulation tasks instead
of non-verbal expressive behaviors among the few extant systems
that are really devoted to gesture synthesizing. Computational
techniques to synthesize multimodal action may be divided into
three steps: identifying what to express, deciding how to transmit it,
and lastly, acting on it (Covington, 2001). Although the Articulated
Communicator Engine acts at the behavioral realization layer, the
entire system employed by the digital assistant Max consists of
a combined content and behavioral planning architecture (Kopp
et al., 2008).

Utilizing multimodal Utterance Representation Markup
Language, gesture expressions inside the Articulated
Communicator Engine (ACE) framework may be defined in
two distinct ways (Salem et al., 2012). A gesture’s exterior
representation, such as the posture of the gesture stroke, can be
clearly articulated in verbal words and co-verbal gestures, which
are classified as feature-based explanations (Gozzi et al., 2022).
By correlating temporal markers, gesture association to certain
language pieces is discovered. Secondly, gestures may be defined as
keyframe animation, where each keyframe defines a “key posture,”
a component of the general gesture motion that describes the
condition of each joint at that particular moment. Assigned time
IDs are used to gather speed data for the interpolation between
every two key postures and the related association to portions of
speech. In ACE, keyframe animations may be created manually
or via motion-capture data from a human presenter, enabling
real-time animation of virtual agents. Each pitch phrase and
co-expressive gesture expression in a multimodal utterance reflects
a single thought unit, often known as a chunk of speech-gesture
production (Kopp and Wachsmuth, 2004).

The ACE engine uses the following timing for gestures online:
The basic way to establish synchronicity within a chunk is tomodify
the gesture to match the pace and structure of speech. To this
end, the ACE scheduler gets millisecond-level scheduling details
about the synthesized voice and uses those details to determine
the beginning and end of the gesture stroke. Each individual
gesture component receives an automated propagation of these
timing limitations (Kopp andWachsmuth, 2004). Chae et al. (2022)
developed a methodology that enables robots to generate co-speech
gestures automatically, based on a morphemic analysis of the
sentence of utterance. After determining the expression unit and
the corresponding gesture type, a database of motion primitives
is used to retrieve an appropriate gesture that conveys the robot’s
thoughts and feelings. The method showed promising results, with
83% accuracy in determining expression units and gesture types,
and positive feedback from a user study with a humanoid robot.

4.2.5. Emotional expression generation
In-home robot and service robot has received much attention

recently, and the demand for service robots is expected to
expand rapidly in the coming years. Human-centerd operations are
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among the most intriguing aspects of smart service robots. Smart
interaction is an important characteristic of service robots in care
services, companionship, and entertainment. In real-world settings,
emotional intelligence will be critical for a robot to participate in
an amicable conversation. Furthermore, there has been a surge in
interest in researching robotic mood-generating methods that aim
to offer a robot more human-like behavioral patterns.

Previous research in this field demonstrates a number of
effective techniques for creating emotional robots. It has been
found that a smooth transition between mood states is crucial
for the development of robotic emotions (Stock-Homburg, 2022).
The engagement activity of the robots and the user’s perception
of the robot are both directly influenced by the robot’s emotional
shift from one mood to another. The empathy of a robot must
still be shown through responsive interaction actions. A fixed
one-to-one link between the emotional state of a robot and its
response is inappropriate. The shift between mood states would
be more intriguing and realistic if the robot’s expression remained
constant. In order to create truly sociable robots, Rincon et al.
(2019) developed a social robot that aims to assist older people in
their daily activities while also being able to perceive and display
emotions in a human-like way. The robot is currently being tested
in a daycare center in the northern region of Portugal. Shao et al.
(2020) proposed a novel affect elicitation and detection method for
social robots in HRIs, which used non-verbal emotional behaviors
of the robot to elicit user affect and directly measure it through
EEG signals. The study conducted experiments with younger and
older adults to evaluate the affect elicitation technique and compare
two affect detection models utilizing multilayer perceptron neural
networks (NNs) and support vector machines (SVMs).

Rather than being established randomly, the correlations
between the emotive response of a robot and its emotional state
may be modeled from emotional analysis and used to develop
patterns of interaction in the creation of communicative behaviors
(Han M. J. et al., 2012).

4.2.6. Multi-modal feedback
Robots can use a combination of multiple modalities to

provide feedback, for example, using speech synthesis and visual
feedback to indicate status. Multi-modal feedback is a key aspect
of multimodal human–robot interaction (HRI), as it allows robots
to convey information or commands to the human user through
multiple modalities simultaneously (Andronas et al., 2021). This
can provide a more comprehensive and engaging user experience.
Here are a few ways that multi-modal feedback can be used in HRI.

Multi-modal status indication: Robots can use a combination of
multiple modalities such as audio cues and visual cues, to indicate
the status of the robot, such as a beep sound and a flashing light
when the robot is ready to receive commands, and a different sound
and light when it has completed a task.

Multi-modal error indication: Robots can use a combination of
multiple modalities, such as a warning tone and a flashing light, to
indicate an error or problem with the robot.

Multi-modal cues and prompts: Robots can use a combination
of modalities such as speech synthesis, visual cues and sound to
prompt the user to perform a specific action, this can make the

instruction clear and easy to follow. For example, a robot assistant
in a factory might use a combination of a flashing light and speech
synthesis to prompt the user to perform a specific task (Cherubini
et al., 2019).

Multi-modal social presence: Robots can use a combination of
modalities such as speech synthesis, facial expressions and sound
effects to create a sense of social presence and make the robot more
relatable and human-like.

Multi-modal information: Robots can use a combination of
modalities such as speech synthesis, visual cues, and haptic
feedback to convey information, this can make the information
more intuitive and easy to understand. For example, a robot
designed to provide directions might use a combination of
speech synthesis and visual cues to display a map and provide
turn-by-turn directions.

Multi-modal dialogue management: Robots can use a
combination of modalities such as speech recognition, computer
vision, and haptic feedback to manage the dialogue between the
human and the robot, this can allow for more seamless and natural
interactions. For example, a robot assistant in a hospital might
use speech recognition to understand the user’s request, computer
vision to locate the necessary supplies, and haptic feedback to alert
the user when the supplies have been retrieved (Ahn et al., 2019).

4.3. Application of multimodal HRI

With the fast advancement in sensors and HRI innovations,
numerous applications of multimodal HRI have sprung up in
recent years. In this section, four major applications will be
briefly introduced, that is, industrial robots, assistive mobile robots,
robotic exoskeletons, as well as robotic prothesis, as shown in
Figure 6.

4.3.1. Industrial robots
In the last few years, there has been a huge leap in the

productivity and marketability of industrial robots, and the
use of industrial cobots has significantly aided in the growth
of the industry. Industrial cobots, or collaborative robots, are
designed to work alongside human operators in various tasks and
environments. As a result of the development and popularity of
Industry 4.0, industrial cobots are now expected to be increasingly
independent and smart to complete more complicated and flexible
jobs. Industrial robot growth is dependent on the development
of several technologies, of which sensing technologies are a
crucial component. Sensors can be employed to gather a wealth
of data to assist industrial cobots in carrying out their duties,
that is to say, industrial cobots need sensors to carry out
their functions.

There are four kinds of sensors used on industrial robots:
visual sensors, tactile sensors, laser sensors, and encoders
(Li and Liu, 2019). Apart from the four types of sensors,
other sensors used in industrial cobots to perform various
activities include proximity sensors, ultrasonic sensors, torque
sensors, inertial sensors, acoustic sensors, magnetic sensors, and
so on.
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FIGURE 6

Major applications of multimodal human–robot interaction (Hahne et al., 2020; Kavalieros et al., 2022; Mocan et al., 2022; Pawuś and Paszkiel, 2022;
Sasaki et al., 2022).

Sensors are widely employed to aid users in controlling
industrial cobots to perform assigned activities that include
human–robot collaboration (HRC), adaptive cruise control,
manipulator control, and so on. The notion of HRC was recently
introduced to actualize the joint operation of employees and
robots. This form of production can increase the flexibility and
agility of manufacturing systems by combining human cognition
and strain capacity with the precision and tirelessness of robots.
The fundamental issue that HRC must address is safety. Robotic
machines should be capable of detecting and recognizing things
in order to prevent conflicts or to stop movement instantly
in the event of a collision. Vision sensors, proximity sensors,
laser sensors, torque sensors, and tactile sensors are popular
sensors used to execute this function. For example, in this
paper (O’Neill et al., 2015; Fritzsche et al., 2016), tactile sensors
are used to detect physical touch and pinpoint the location of
accidents in order to protect personnel who are collaborating
with the robot. In Popov et al. (2017), inner joint torque sensors
are used to identify and categorize collisions by calculating
external forces.

Interaction between robots and humans can be crucial in
human–robot collaboration. Workers can successfully control
computer programming via HRI. In Kurian (2014), for example,
voice recognition supported by acoustical sensors is utilized
to assist people in interacting with robots. However, if the
surrounding environment is noisy, such a method may not
work well. To address this issue, hand gesture identification
using vision sensors has been presented in Tang et al. (2015).
The integration of multiple sensor types and technologies allows
cobots to adapt to various working conditions and enhances
the efficiency and safety of human–robot collaboration in
industrial settings.

4.3.2. Assistive mobile robots
For more than two decades, researchers have been adapting

mobile robotic principles to assistance devices, which corresponds
to two key applications: intelligent wheelchairs and assistive
walkers. The smart wheelchair is among the most commonly used
assistive equipment, with an estimated user base of 65 million
globally. Wheelchairs can be either manual or power-driven.
Many wheelchair users find it difficult to utilize their wheelchairs
autonomously due to the lack of skills, muscles, or vision. An
intelligent wheelchair is simply a motorized wheelchair outfitted
with sensors plus digital control systems.

The advancement of navigation algorithms for obstacle
detection, automated user transportation, and aided steering of
the wheel through cutting-edge human–robot interfaces are all
outcomes of studies on intelligent wheelchairs. The idea that
the regularly used joysticks are not always helpful, especially
for users with a low degree of neuro-muscular competence,
is the primary driving force behind these studies. Smart
wheelchairs include a variety of sensors, including cameras,
infrared, lasers, and ultrasonic (Desai et al., 2017). Modern
technologies have increasingly been incorporated into user
interfaces in an attempt to enhance user independence or entirely
automate the product’s navigation.

Touch screens, voice recognition systems, and aided joysticks
are employed to transmit the locations or routes to the robotic
machine (Schwesinger et al., 2017). Some research projects focused
on creating frameworks that let users or the controller receive
force input from the surroundings using haptic interface for
individuals with vision problems (Chuy et al., 2019). Other more
recent methods used speech commands and audible feedback to
communicate choices to the operator, such as how to navigate
around obstacles, safely approach items, and reach items from a
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certain angle (Sharifuddin et al., 2019). Many advancements have
been made to convert users’ eye, facial, and body motions into
orders for the wheelchair using the visual output for sufferers who
are unable to handle a normal joystick (Rabhi et al., 2018a,b).
The same method of classifying and recognizing gestures is used
to collect surface EMG (Kumar et al., 2019) and EEG signals
(Zgallai et al., 2019). Some research projects that employ many
input sources, including biosignals and feedback sensors, in tandem
to conduct aided navigation also examine multimodal sensory
integration (Reis et al., 2015). For aided navigation and steering
of walkers, ML algorithms are combined with sensors and bio-
signal gathering frameworks, comparable to the HRI techniques
for intelligent wheelchairs (Alves et al., 2016; Caetano et al., 2016;
Wachaja et al., 2017). These intelligent walkers may be used by
individuals with visual impairments for secure outdoor and indoor
activity.

4.3.3. Robotic exoskeletons
A robotic exoskeleton serves as an active orthosis device

that should be transportable in everyday life situations to assist
patients with movement and control limitations (der Loos et al.,
2016). Furthermore, robotic exoskeletons might be a feasible
option for industrial cargo bearing, as industrial personnel
do repetitive physical duties exposing them to musculoskeletal
problems (Treussart et al., 2020). An essential component in the
control of robotic exoskeletons is the acquisition and identification
of human intent, which is carried out by different means of human–
robot interaction and acts as an input to the control system.

Cognitive human–robot interaction (cHRI) utilizes EEG signals
from the central nervous system to the musculoskeletal system,
or surface EMG signals, to recognize the client’s needs prior
to any real body movements and then estimate the appropriate
torque or positional inputs. When compared with the lower-
limb exoskeletons, research activities on upper-limb exoskeletons
concentrate on developing interface and decoding methodologies
to enable accuracy and agility in a larger range of motions. ML
techniques are very effective for recognizing the user’s mobility
intentions grounded in categorized biological signals and may be
used to operate such equipment in live time (Nagahanumaiah,
2022).

Physical human–robot interaction (pHRI) employs force
measures or alterations in joint locations caused bymusculoskeletal
system movement as control inputs to the robotic exoskeleton.
In such circumstances, the robot’s controller seeks to minimize
the effort required to complete the tasks, resulting in compliant
action. To be more precise, in HRI, minimal contact pressures are
preferred and task-tracking mistakes should be avoided. To achieve
this, interacting forces are usually controlled using resistance or
admission controllers that employ a virtual impedance term to
simulate HRI, as described by Hogan (1984).

4.3.4. Robotic prothesis
A robotic prosthetic limb is a robot that is linked to a

sufferer’s body and replicates its capabilities in everyday routines
(Lawson et al., 2014). Robotic prostheses come into direct
contact with the body since their functions are often controlled

and directed in real-time by clients by muscular or cerebral
impulses. Physical specifications, an anthropomorphic appearance,
deciphering user’s intention, and replicating movements, force
efforts, or grip shapes of the actual body are all key characteristics
to consider while constructing a robotic prosthesis. Many recent
studies have concentrated on producing prosthetics that more
nearly resemble the abilities of a lost organic limb (Masteller
et al., 2021). The key to effective growth is to acquire a precise
technique of recognizing the client’s needs, ultimately, perceiving
the surroundings and transforming that need into action. The
mobility and dynamic control systems of the robot may capture
a mixture of bio-signals to construct an identification scheme
and actualize the user intention. These data are biometric records
of residual limb muscular electrical activity, brain function, or
contact stress in sockets. The prosthesis’s control system gets
complicated input patterns from the client and makes real-time
motor control decisions based on the learnt forecast of the user’s
purpose. Pattern recognition technologies applied to myoelectric
or other biosignals are used to identify user-intentioned behaviors.
Typically, a classifier is taught to distinguish various robotic
prosthesis joint actuators using patterns from multi-channel
EMG data.

In order to strengthen the resilience of the activities performed
by the equipment, the study on this topic is primarily focused
on enhancing the understanding of myoelectric patterns and the
concurrent pattern identification and management of numerous
functions. Essentially, assignments from everyday routines have
many degrees of freedom to move simultaneously. Hence,
integrated joint movements must be categorized differently. Deep
learning (DL) techniques have recently been used as a novel tool
to conduct classification and regression tasks straight from high-
dimensional raw EMG signals without locating and recognizing
any signal characteristics (Ameri et al., 2018).

5. Recent advancements of application
for multi-modal human–robot
interaction

Multimodal HRI has advanced greatly in the past decade, with
numerous research progress and applications coming into existence
each year. In this section, we systematically review the state of
the art of multimodal HRI, and thoroughly comb the research
progress in terms of the signal input, the signal output, as well as
the applications of multimodal HRI by listing and summarizing
relevant articles.

5.1. Multimodal input for human–robot
interaction

This section presents a systematic literature review
summarizing the latest research progress in signal input for
multimodal human–robot interaction (HRI).
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5.1.1. Intuitive user interfaces and multimodal
interfaces

In recent years, numerous studies have been conducted to
improve signal input in HRI. Salem et al. (2010) describe a method
for enabling the bipedal robot ASIMO to generate voice and
co-verbal gestures freely at runtime without being constrained
to a predefined repertoire of motor motions. Berg and Lu
(2020) summarize research methodologies on HRI in service and
industrial robotics, emphasizing that advancements in human–
robot interfaces have brought us closer to intuitive user interfaces,
particularly when adopting multimodal interfaces that include
voice and gesture detection.

5.1.2. Audiovisual UI and multimodal feeling
identification

Ince et al. (2021) present research on an audiovisual UI-based
drumming platform for multimodal HRI, creating an audiovisual
communicative interface by combining communicative
multimodal drumming with humanoid robots. Chen et al.
(2021) explore multimodal emotion identification and intent
understanding, presenting various modalities of mental feature
extraction and emotion recognition methods, and applying them
in practice to achieve HRI.

5.1.3. Natural interaction framework and
seamless communication

Andronas et al. aim to develop and implement a natural
interaction framework for human-system and system-human
communication, allowing seamless communication between
controllers and “robot companions.” An automobile sector
scenario evaluates the framework’s performance, showing how an
intuitive interface framework can enhance the effectiveness of both
humans and robots (Andronas et al., 2021).

5.1.4. Nonverbal communication, locomotion
training, emotional messaging, and multimodal
robotic UI

Various techniques and systems have been explored to improve
human–robot interaction through nonverbal communication,
locomotion training, emotional messaging, andmultimodal robotic
UI. Han J. et al. (2012) introduce a novel method to investigate
the application of nonverbal signals in HRI using the Nao system,
which includes an array of sensors, controllers, and interfaces.
The findings suggest that individuals are more inclined to interact
with a robot that can understand and communicate through
nonverbal channels.

5.1.5. Active engagement and multimodal HRI
solutions

Gui et al. develops a locomotion trainer with multiple walking
patterns that can be regulated by participants’ active movement
intent. A multimodal HRI solution, including cHRI and pHRI, is
designed to enhance subjects’ active engagement during therapy
(Gui et al., 2017). Additionally, a MEC-HRI system featuring

various emotional messaging channels, such as voice, gesture, and
expression, is presented. The robots in the MEC-HRI platform can
understand human emotions and respond accordingly (Liu et al.,
2016).

5.1.6. Spatial language and multimodal robotic UI
Research on robot spatial relations employs a multimodal

robotic UI. They demonstrate how to extract other geographical
information, such as linguistic geographical descriptions, from the
evidence grid map. Examples of spatial language are provided for
both human-to-robot input and robot-to-human output (Skubic
et al., 2004). It can be said without doubt that signal input is an
indispensable part of human–robot interaction.

5.1.7. Prosody cues, tactile communication, and
proxemics computational method

Recently, significant progress has been made in the field of
multimodal HRI, with signal recognition becoming a hot topic. Aly
and Tapus investigate the relationship between nonverbal and para-
verbal interaction by connecting prosody cues to arm motions.
Their method for synthesizing arm gestures employs coupled
hidden Markov models, which can be thought of as a cluster of
HMMs representing the streams of divided prosodic qualities and
segmented rotational features of the two arms’ expressions (Aly and
Tapus, 2012). Tactile communication might be used in multimodal
communication networks for HRI. Two studies were carried out to
evaluate the viability of employing a vocabulary of standard tactons
within a phrase for robot-to-human interaction in tactile speech
(Barber et al., 2015).

5.1.8. Collaborative data extraction and
computational framework of proxemics

Whitney et al. (2017) offer a model that relies on agent
collaboration to achieve richer data extraction from observations.
This paper proposes a mathematical formulation for an item-
fetching area that enables a robot to improve the speed and
precision with which it interprets a person’s demands by
speculating about its own ambiguity and processing implicit
messages. Mead and Mataric (2012) present a computational
framework of proxemics based on data-driven probabilistic models
of how social signals (speech and gestures) are produced by a
human and perceived by a robot. The framework and models
were implemented as autonomous proxemic behavior systems for
sociable robots.

5.1.9. Latest advancements in input signals for
multimodal HRI

The following studies highlight the latest advancements
in input signals used to improve multimodal human–robot
interaction. Alghowinem et al. (2021) provide a proxemics
computational method based on info-driven probabilistic models
of how humans make and robots receive social signals, including
gestures and speech. The structure and models were applied
as sociable robots’ autonomous proxemic behavior systems. Tuli
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et al. (2021) provide a notion for semantic visualization of
human activities and intent forecast in a domain knowledge-
based semantic info hub utilizing a flexible task ontology
interface. Bolotnikova (2021) study the subject of whole-body
anthropomorphic robot postural planning in the setting of assistive
physical HRI. They extend the non-linear optimization-based
stance-generating system with the elements required to design a
robot stance in communication with a human point cloud.

5.1.10. Multimodal features and routine
development

Barricelli et al. (2022) provide a fresh method for routine
development that takes advantage of Amazon Alexa on Echo Show
devices’ multimodal characteristics (sight, voice, and touch). It then
shows how the suggested technique makes it easier for end users
to construct routines than the traditional engagement with the
Alexa app.

The articles listed above have summarized the latest application
of input signals used in multimodal HRI.

5.2. Multimodal output for human–robot
interaction

This section follows the recent research development in
multimodal HRI signal input by presenting a comprehensive
literature review and identifying related studies in this field.

As robots become increasingly sophisticated, they are capable of
generatingmultimodal signals, drawing the attention of researchers
in the field. Gao et al. (2021) present a strategy based onmultimodal
information fusion and multiscale parallel CNN to increase the
precision and validity of hand gesture identification. Yongda et al.
(2018) describe a multimodal HRI method that combines voice
and gesture, creating a robot control system that converts human
speech and gestures into instructions for the robot to perform.
Li et al. (2022) present a unique Multimodal Perception Tracker
for monitoring speakers using both auditory and visual modalities,
leveraging a lens model to map sound signals to a localization space
congruent with visual information.

The latest developments in multimodal output for multimodal
human–robot interaction include unique emotion identification
systems, multimodal conversation handling, and voice and gesture
recognition systems for natural interaction with humans. Cid et al.
(2015) offer a unique multimodal emotion identification system
that relies on visual and aural input processing to assess five
different affective states. Stiefelhagen et al. (2007) present systems
for recognizing utterances, multimodal conversation handling, and
visual processing of a user, including localization, tracking, and
recognition of the user, identification of pointing gestures, and
recognition of a person’s head orientation. Zlatintsi et al. (2018)
investigate new aspects of smart HRI by automatically recognizing
and validating voice and gestures in a natural interface, providing
a thorough structure and resources for a real-world scenario with
elderly individuals assisted by an assistive bath robot.

Rodomagoulakis et al. (2016) develop a smart interface
featuring multimodal sensory processing abilities for human

action detection within the context of assistive robots, exploring
cutting-edge techniques for automated-localization cognition and
visual activity recognition to multimodally identify commands
and activities. Loth et al. (2015) measure the recognizer modes
that are important at various levels of human–robot interaction,
providing insight into social behavior in humans to create socially
adept robots.

In recent years, many contributions have been made to
investigate how multimodal signal output influences HRI. Bird
(2021) explore ways to give a robot social understanding
through emotional perception for both verbal and non-verbal
interaction, demonstrating how the framework’s technology,
organizational structure, and interactional examples address several
outstanding concerns in the field. Yadav et al. (2021) provide a
thorough analysis of various multimodal techniques for motion
identification, using different sensors and analytical strategies
with methodological fusion methods. Liu et al. (2022) investigate
multimodal information-driven robot control for cooperative
assembly between humans and robots, creating a human–robot
interface free of programming using function blocks to combine
multimodal human instructions that precisely activate specified
robot control modes.

Khalifa et al. (2022) present a robust framework for face
tracking and identification in unrestricted environments, designing
their framework based on lightweight CNNs to increase accuracy
while preserving real-time capabilities essential for HRI systems.
Shenoy et al. (2021) improve the interaction capabilities of
Nao humanoid robots by combining detection models for facial
expression and speech quality, using the microphone and camera
to assess pain and mood in children receiving procedural therapy.
Tziafas and Kasaei (2021) introduce a software architecture that
isolates a target object from a congested scene based on vocal
cues from a user, employing a multimodal deep neural net as
the system’s core for visual grounding. The research proposes the
CFBRL-KCCA multimodal material recognition framework for
object recognition challenges, demonstrating that the suggested
fusion algorithm provides a useful method for material discovery
(Wang et al., 2021).

The application ofmultimodal signal output inHRI has become
a fast-growing field; however, there are still many challenges to
be addressed. As human–robot interaction continues to be a hot
research topic, researchers will undoubtedly explore new methods
and solutions to enhance multimodal signal output and improve
the overall HRI experience.

5.3. Major application areas of multimodal
HRI

This section provides a comprehensive review and summarizes
recent research advances in the application of multimodal HRI by
examining numerous recent publications.

The emergence of sensing technologies and the increasing
popularity of robotics have enabled researchers to study
multimodal HRI, with numerous papers published each year.
Gast et al. (2009) present a novel outline for real-time multimodal
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information processing, designed for scenarios involving human-
human or human–robot interaction and including modules for
various output and input signals. Chen et al. (2022) develop a real-
time, multi-model HRC scheme using voice and gestures, creating
a collection of 16 dynamic gestures for human-to-industrial robot
interaction and making a data collection of dynamic gestures
publicly available.

Haninger et al. (2022) introduce a unique approach for
multimodal pHRI, creating a Gaussian process model for human
power in each state of a joint effort, and applying these frameworks
tomodel predictive command and Bayesian inference of the style to
forecast robot responses. Thomas et al. (2022) present amultimodal
HRI platform that combines speech and hand sign input to control
a UGV, translating vocal instructions into the ROS environment to
drive the Argo Atlas J8 UGV using Mycroft, an accessible digital
assistant. Švec et al. (2022) introduces a multimodal cloud-based
system for HRI, with the key contribution being the construction
of the architecture based on industry-recognized frameworks,
protocols, and JSON messages that have been verified.

A self-tuning multimodal fusion method is proposed to address
the issue of helping robots achieve better intention comprehension.
This method is not constrained by the manifestations of interacting
individuals and surroundings, making it applicable to diverse
platforms (Hou et al., 2022). Weerakoon et al. (2022) present
the COSM2IC system, which uses a compact Task Complexity
Predictor and multiple sensor data input to evaluate the
instructional richness to reduce loss in precision. This structure
dynamically switches between a collection of models with different
computational intensities so that computationally less demanding
models are instantiated whenever viable.

Jooyeun Ham et al. introduce a versatile and elastic multimodal
sensor system coupled with a soft bionic arm. They employ a
manufacturing strategy that uses both UV laser metallic ablation
and plastic cutting concurrently to construct sensor electrode
designs and elastic conducting wires in a Kirigami pattern,
implementing the layout of wired sensors on an adjustable
metalized film (Bao et al., 2022). Bucker et al. (2022) provide a
versatile language-based user interface for HRC, taking advantage
of recent developments in big language models to encapsulate the
operator command, and employing multimodal focus transformers
to integrate these characteristics with trajectory data. The mobility
signal of the robot and the client’s cardiac signal are gathered
and combined to provide multimodal data as the input node
vector of the DL framework, which is utilized for the control
system’s model of HRI (Wang W. et al., 2022). Maniscalco
et al. (2022) evaluate and suitably filter all the robotic sensory
data required to fulfill their interaction model, paying careful
attention to backchannel interaction, making it bilateral and visible
through audio and visual cues. Wang R. et al. (2022) offer
Husformer, a multimodal transformer architecture for multimodal
human condition identification, suggesting the use of cross-
modal transformers, which motivate one signal to strengthen
itself by directly responding to latent relevancy disclosed in
other signals. The focus on multimodal HRI has brought many
concepts into practice.

Multimodal HRI has been developing rapidly, with numerous
new methods for HRI using different modalities being proposed.
Strazdas et al. (2022) create and test a novel multimodal scheme

for non-contact human-machine interaction based on voice,
face, and gesture detection, assessing the user experience and
communication efficiency of their current scheme in a large study
with many participants. Zeng and Luo suggest a solution for
enhancing the precision of multimodal haptic signal detection
by improving the SVM multi-classifier using a binary tree. The
modified particle swarm clustered technique is utilized to optimize
the binary tree structure, minimize the error piling of the binary leaf
node SVM multi-classifier, and increase multimodal haptic signal
identification accuracy (Zeng and Luo, 2022). Nagahanumaiah
(2022) develops a tiredness detection algorithm based on real-
time information collected from wearable sensors, with the goal
of understanding more about how humans feel fatigued in a
supervisory human-machine setting, examining machine learning
techniques for tiredness identification, and employing robots to
modify their interactions.

Schreiter et al. (2022) aim to deliver high-quality tracking data
from activity capture, eye-gaze trackers, and robotic sensors in a
semantically rich context, using loosely scripted tasks to produce
natural behavior in the videotaped participants, which leads the
attendees to move through the changing lab setting in a natural
and deliberate manner. In an HRC scenario, Armleder et al.
(2022) develop and implement a control scheme that can enable
the implementation of large-scale robotic skin, demonstrating
how entire tactile feedback may enhance robot abilities during
dynamic interplay by delivering information about various contacts
throughout the robot’s exterior.

The application of multimodal HRI is extensive, including
using multiple sensors and inputs to evaluate social interactions,
incorporating time delay and context data to improve recognition
and emotional depiction, and developing unique models that
combine different modalities. Tatarian et al. (2022) provide a
multimodal interaction that focuses on proxemics of interpersonal
navigating, gaze mechanics, kinesics, and social conversation,
examining the impact of multimodal actions on relative social IQ
using both subjective and objective assessments in a seven-minute
encounter with 105 participants. Moroto et al. (2022) develop a
recognition approach that considers the time delay to get genuinely
near the reality of the occurring mechanism of feelings, with
experimental findings demonstrating the usefulness of taking into
account the time lag between gazing and brain function data.

He et al. (2022) present a unique multimodal M2NN model
using the merging of EEG and fNIRS inputs to increase the
recognition speed and generalization capacity of MI, combining
spatial-temporal extraction of features, multimodal feature
synthesis, and MTL. Zhang et al. (2022) retrieve effective active
parts from sEMG data acquired by theMYOwristband using active
element detection, then extracting five time-domain parameters
from the main section signal: the root average square value, wave
duration, number of zero-crossing spots, mean absolute value, and
maximum-minimum value. Yang et al. incorporate context data
into the current speech by embedding prior statements between
interlocutors, which improves the emotional depiction of the
present utterance. The suggested cross-modal converter module
then focuses on the interconnections between text and auditory
modalities, adaptively fostering modality fusion (Yang et al.,
2022). Based on the proposed papers listed above, it is clear that
multimodality currently plays a significant role in HRI research.

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1084000
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Su et al. 10.3389/fnbot.2023.1084000

In conclusion, multimodal HRI has seen rapid development
and a wide range of applications in recent years. Researchers are
exploring various methods and techniques to improve human–
robot interaction by using multiple modalities, such as voice,
gestures, and facial expressions. As more advancements are made
in this field, it is expected that multimodal HRI will continue to play
a crucial role in shaping the future of human–robot interaction.
The application of multimodal HRI has expanded across various
fields, including robotics, healthcare, COVID-19 diagnosis, secure
planning/control, and co-adaptation. Researchers have explored
the use of multiple modalities in emotion recognition, gesture
recognition, EEG and fNIRS data merging, sensor data processing,
speech recognition, and human mobility assessment. Additionally,
multimodal HRI has shown potential in medical diagnosis
and prognosis, such as epilepsy, creating robots with advanced
multimodal mobility, AI-aided fashion design, and the integration
of robotics and neuroscience.

The advantages of multimodal HRI include natural and
intuitive interaction between humans and robots, increased
accuracy and robustness in sensing and control, and the ability
to handle complex tasks and situations. However, challenges
remain, such as data fusion, algorithm development, and
system integration.

Multimodal HRI is a growing field with many areas yet to be
explored. As research continues, it is expected that multimodal
HRI will play a crucial role in shaping the future of human–robot
interaction, leading to more efficient, user-friendly, and versatile
robotic systems.

6. Discussion

Multimodal human–robot interaction is a field of research
that aims to improve the way humans and robots communicate
with each other. It is based on the idea that humans use multiple
modalities, such as speech, gesture, and facial expression, to convey
meaning and that robots should be able to understand and respond
to these modalities in a natural and intuitive way.

6.1. Natural language processing and
computer vision

Natural language processing is widely used in multimodal
HRI for speech recognition and understanding, which has the
advantage of being able to handle a wide range of spoken languages.
However, NLP’s accuracy and performance are heavily dependent
on the quality and quantity of the training data, which can be a
challenge for rare or dialectal languages. Moreover, the recognition
of ambiguous phrases or slang can lead to incorrect interpretations.

Computer vision techniques, such as gesture and facial
expression recognition, have shown great potential in enhancing
the naturalness and expressiveness of robot interactions. These
techniques can detect subtle and nuanced movements that may be
difficult for humans to perceive. However, limitations of computer
vision include its sensitivity to lighting conditions, occlusions,
and variations in appearance across individuals. Furthermore,
these techniques require high computational power, making them
unsuitable for resource-constrained robots.

6.2. Machine learning and haptic feedback

Machine learning techniques are essential for integrating and
interpreting different modalities, including speech, vision, and
haptic feedback. ML algorithms enable the robot to recognize
and understand complex patterns in multimodal data, making it
possible to provide natural and adaptive interactions. However,
models may be biased or fail to generalize to unseen data, leading
to reduced performance in real-world scenarios.

Haptic feedback and motion planning techniques are
particularly useful for physical interaction between humans and
robots. Haptic feedback provides a sense of touch, allowing
robots to respond to human gestures and movements in a
natural way. Motion planning algorithms enable the robot to
navigate in a human environment safely and efficiently. However,
haptic feedback and motion planning require high precision and
accuracy, which can be challenging to achieve in complex and
dynamic environments.

6.3. Deep learning and touch-based
interaction

Although deep learning techniques have shown great potential
in recognizing and interpreting human gestures and expressions,
there are still some challenges that need to be addressed. One
challenge is the need for a large amount of labeled data to
train deep learning models, which can be time-consuming and
expensive to obtain. Another challenge is the need for robustness
to variations in lighting, background, and appearance of human
gestures and expressions. Despite these challenges, deep learning
techniques have the potential to significantly improve the accuracy
and robustness of gesture and expression recognition in human–
robot interaction.

The use of haptic feedback for touch-based interaction has
great potential for improving the naturalness and intuitiveness of
human–robot communication. However, there are still challenges
that need to be addressed, such as the need for high-quality
and responsive haptic feedback that can mimic human touch,
and the need for effective motion planning algorithms that can
ensure safe and efficient interactions between humans and robots.
Nevertheless, with the ongoing advancements in haptic technology
and motion planning algorithms, it is expected that touch-
based interaction will become an increasingly important aspect of
multimodal human–robot interaction in the future.

6.4. Future directions

In the future, there will be more emphasis on creating more
natural and intuitive interaction, as well as improving the robots’
ability to understand and respond to human emotions. This will
be achieved through the integration of emotion recognition and
generation algorithms, making robots more human-like. Another
trend will be the use of multi-robot systems, in which multiple
robots work together to accomplish a task. This will allow for more
complex and efficient interactions between humans and robots.
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In addition to the integration of emotion recognition and
generation algorithms, there will also be a focus on creating robots
that can adapt to individual differences in communication style and
preferences. This could be achieved through personalized learning
and adaptation techniques. Finally, ethical considerations in
human–robot interaction will become increasingly important, and
there will be a need for ethical guidelines and regulations to ensure
the safe and responsible use of robots in various applications.

7. Conclusion

The current state and emerging directions of multimodal
human–robot interaction is thoroughly discussed in this paper.
Also, we have thoroughly combed the research progress in terms
of the information input for multimodal HRI, the information
output for multimodal HRI, as well as the concrete applications
of multimodal HRI. Specifically, this review elaborates on the
research progress of information input for multimodal HRI from
three perspectives: gesture recognition, speech recognition, as well
as emotion recognition. In terms of information output, gesture
generation and emotional expression generation are covered.
Research in this area has focused on developing various modalities,
such as speech, gesture, and facial expression, to enable robots to
understand better and respond to human intentions and emotions.
The integration of multiple modalities is also crucial for achieving
robust and flexible human–robot interaction. The major limitation
of the study lies in the limited number of real-world deployments
of multimodal human–robot interaction systems, so the impact of
the technology on users may not be well understood. Also, there are

technical challenges, such as high computational requirements and
system complexity that limit the scalability of multimodal human–
robot interaction systems. Hopefully, this paper will reflect the
current research trend in human–robot interaction and provide
guidance for future research.
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