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Learning robotic manipulation
skills with multiple semantic goals
by conservative
curiosity-motivated exploration

Changlin Han, Zhiyong Peng, Yadong Liu*, Jingsheng Tang,

Yang Yu and Zongtan Zhou*

Department of Intelligence Science and Technology, College of Intelligence Science, National University

of Defense Technology, Changsha, China

Reinforcement learning (RL) empowers the agent to learn robotic

manipulation skills autonomously. Compared with traditional single-goal RL,

semantic-goal-conditioned RL expands the agent capacity to accomplish

multiple semantic manipulation instructions. However, due to sparsely distributed

semantic goals and sparse-reward agent-environment interactions, the

hard exploration problem arises and impedes the agent training process. In

traditional RL, curiosity-motivated exploration shows e�ectiveness in solving

the hard exploration problem. However, in semantic-goal-conditioned RL, the

performance of previous curiosity-motivated methods deteriorates, which we

propose is because of their two defects: uncontrollability and distraction. To

solve these defects, we propose a conservative curiosity-motivated method

named mutual information motivation with hybrid policy mechanism (MIHM).

MIHM mainly contributes two innovations: the decoupled-mutual-information-

based intrinsic motivation, which prevents the agent from being motivated

to explore dangerous states by uncontrollable curiosity; the precisely trained

and automatically switched hybrid policy mechanism, which eliminates the

distraction from the curiosity-motivated policy and achieves the optimal

utilization of exploration and exploitation. Compared with four state-of-the-art

curiosity-motivated methods in the sparse-reward robotic manipulation task

with 35 valid semantic goals, including stacks of 2 or 3 objects and pyramids, our

MIHM shows the fastest learning speed. Moreover, MIHM achieves the highest

0.9 total success rate, which is up to 0.6 in other methods. Throughout all the

baseline methods, our MIHM is the only one that achieves to stack three objects.

KEYWORDS

hybrid policy mechanism, sparse reward, semantic goal, reinforcement learning, deep

neural networks

1. Introduction

Enhanced by deep neural networks (DNNs), reinforcement learning (RL) (Sutton and

Barto, 2018) empowers the agent to optimize its policy and solve difficult tasks by interacting

with the task environment and exploiting the collected trajectories, which has made great

breakthroughs in game playing (Vinyals et al., 2019), robotic locomotion (Hwangbo et al.,

2019), robotic manipulation (Bai et al., 2019), etc. In standard RL, the policy is optimized for

a single implicit goal embedded in the task, which cannot satisfy many practical tasks (e.g.,

robotic manipulation tasks) where the RL agent is required to understand multiple human
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FIGURE 1

Comparison between our MIHM and previous curiosity-motivated methods. The previous curiosity-motivated methods have two defects,

uncontrollability and distraction, which deteriorate their performance in semantic-GCRL. Comparatively, our MIHM contributes two innovations, the

decoupled-mutual-information-based intrinsic rewards and hybrid policy mechanism, which e�ectively solve these defects.

control instructions and act toward various goals (Veeriah et al.,

2018). Based on universal value function approximators (UVFAs)

(Schaul et al., 2015), goal-conditioned RL (GCRL) (Colas et al.,

2022) is proposed to accomplish these tasks by leveraging the goal-

conditioned value network and policy network. The RL agent is

optimized by goal-labeled trajectories with goal-specific rewards.

However, when designing the goal-conditioned reward function,

performing appropriate reward shaping (Badnava and Mozayani,

2019) for each goal is unrealistic, which makes the sparse reward

setting become a common choice. Under this setting, the positive

rewards are only sparsely set at some key nodes (e.g., when task

goals are achieved). As a result of the lack of sufficient directive

signals from the reward function, the RL agent inevitably meets

the hard exploration problem (Ecoffet et al., 2019), which traps the

policy optimization and goal attainment.

To overcome the hard exploration problem, because modifying

goals in GCRL does not affect the environment dynamics, hindsight

experience replay (HER) (Andrychowicz et al., 2017) is proposed

to discover learning signals from the collected trajectories by

relabeling the failed goal-reaching trajectories with their already

achieved goals. However, this method only works fine when the

task goals are continuous or densely distributed (e.g., setting the

destination coordinates of objects as goals). For discrete or sparsely

distributed goals in the form of semantic configurations (Akakzia

et al., 2021) or natural language (Colas et al., 2020), which more

conform to the human habits of giving instructions, the trajectories

that can achieve the concerned goals account for a rather small

proportion. Only from these trajectories can the goal relabeling

method discover useful learning signals. The other trajectories

cannot be finely evaluated and differentiated just by the sparse

external rewards, no matter if goal relabeling is done.

In this paper, we focus on leveraging the sparse-reward

GCRL to solve the robotic manipulation task with semantic

goals. Since relying on only the external reward function makes

it difficult to discover more useful learning signals, curiosity-

motivated exploration methods become possible solutions, which

generate intrinsic rewards to encourage the agent to explore

novel states (Ostrovski et al., 2017; Burda et al., 2018b; Lee

et al., 2020) or discover unlearned environment dynamics (Stadie

et al., 2015; Houthooft et al., 2017; Pathak et al., 2017).

However, the previous curiosity-motivated methods are not well

compatible with the GCRL tasks, which we summarize into two

aspects: uncontrollability and distraction. Because the agent cannot

distinguish which novel states are more beneficial to the task,

uncontrollability denotes that the task-irrelevant or even dangerous

novelties will mislead the agent and cause the “noisy TV” problem

(Pathak et al., 2017) to trap the exploration process. In curiosity-

motivated methods, the agent policy is optimized by the weighted

combination of the external rewards and the intrinsic rewards,

which means the combined policy actually has two optimization

objectives. Thus, the combined policy cannot be best optimized

for the original goal-pursuing objective, and the agent will even

be distracted by the dynamically varying intrinsic rewards to visit

the intrinsic novelties instead of pursuing the goals. Comparison

between our MIHM and previous curiosity-motivated methods is

shown in Figure 1.

To accomplish the sparse-reward semantic-goal-conditioned

robotic manipulation task by curiosity-motivated exploration,

we propose a conservative curiosity-motivated exploration

method named mutual information motivation with hybrid

policy mechanism (MIHM), which successfully solves the

defects of uncontrollability and distraction in the previous

curiosity-motivated methods. The conservativeness in our

method is embodied in two aspects. Firstly, we design a more

conservative decoupled-mutual-information-based intrinsic

reward generator, which encourages the agent to explore novel

states with controllable behaviors. Secondly, the utilization of

the curiosity-motivated exploration is more conservative. We
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construct a PopArt-normalized (Hessel et al., 2018) hybrid policy

architecture, which detaches the goal-pursuing exploitation policy

and precisely trains the curiosity-motivated exploration policy.

Based on the two policies, we propose a value-function-based

automatic policy-switching algorithm, which eliminates the

distraction from the curiosity-motivated policy and achieves

the optimal utilization of exploration and exploitation. In the

robotic manipulation task proposed by Akakzia et al. (2021) with

35 different semantic goals, compared with the state-of-the-art

curiosity-motivated methods, our MIHM shows the fastest

learning speed and highest success rate. Moreover, our MIHM is

the only one that achieves stacking three objects with just sparse

external rewards.

2. Related work

Facing the hard exploration problem in sparse-reward

semantic-GCRL, the agent is urgently required to improve

its exploration ability toward unfamiliar states and unlearned

semantically valid skills. An RL algorithm based on the DNNs

can be more inclined to explore by adding action noise [e.g., the

Gaussian noise or Ornstein-Uhlenbeck noise in deep deterministic

policy gradients (Silver et al., n.d.)] or increasing action entropy

[e.g., the entropy temperature adjustment in soft actor-critic

(Haarnoja et al., 2018)]. However, lacking the exploitation of

more environmental features, the above action-level exploration

cannot help the agent to be aware of the states or state-action pairs

that are potentially worth pursuing, which does not satisfy the

circumstances when the state space or task horizon is expanded.

Inspired by the intrinsic motivation mechanism in psychology

(Oudeyer and Kaplan, 2008), intrinsically rewarding the novel state

transitions is proven to be an effective method to motivate and

guide the agent’s exploration, which is named curiosity-motivated

exploration. The intrinsic rewards are mainly generated for

two purposes: increasing the diversity of the encountered states

(Ostrovski et al., 2017; Burda et al., 2018b; Lee et al., 2020) and

improving the agent’s cognition of the environment dynamics

(Stadie et al., 2015; Houthooft et al., 2017; Pathak et al., 2017).

For the first purpose, the intrinsic reward can be determined

based on the pseudo count of the state (Ostrovski et al., 2017; Tang

et al., 2017), where lower pseudo count means a rarer state and

a higher reward. To gain adaptation to the high-dimensional and

continuous state space, in recent years, the pseudo count has been

realized by DNN-based state density estimation (Ostrovski et al.,

2017) or hash-code-based state discretization (Tang et al., 2017).

Moreover, the state novelty can also be calculated as the prediction

error for a random distillation network (Burda et al., 2018b), which

overcomes the inaccuracy of estimating the environment model.

Another state novelty evaluation method is based on reachability

(Savinov et al., 2018). By rewarding the states that cannot be

reached from the familiar states within a certain number of steps,

the intrinsic reward can be generated more directly and stably.

For the second purpose, the prediction error of the

environment dynamics model can be used as the intrinsic

reward. (Burda et al., 2018a) proved that, for training the

environment dynamics model, it is necessary to use the encoded

state space rather than the raw state space. They proposed an

autoencoder-based state encoding function. (Pathak et al., 2017)

proposed a self-supervised inverse dynamics model to learn to

encode the state space, which is robust against the noisy TV

problem. Moreover, the environment forward dynamics can be

modeled by variational inference. (Houthooft et al., 2017) proposed

motivating exploration by maximizing information gain about the

agent’s uncertainty of the environment dynamics by variational

inference in Bayesian neural networks, which efficiently handles

continuous state and action spaces.

In games (Vinyals et al., 2019) or robotic locomotion tasks

(Hwangbo et al., 2019), the agent is often required to explore states

as diverse as possible. The curiosity-based intrinsic rewards are

consistent with the task objectives and show great performance.

Moreover, replacing the traditional timestep-limited exploration

rollouts, the infinite time horizon setting (Burda et al., 2018b)

is often adopted in these tasks to further facilitate the discovery

of novel information in the environment. However, in goal-

conditioned robotic manipulation tasks, the agent is required

to discover fine motor skills about the objects, which makes

uncontrollably pursuing too diverse states easily cause interference.

The intrinsic rewards are required to work as the auxiliaries for the

external goal-conditioned rewards. Thus, it is necessary to improve

the previous curiosity-motivated methods to solve the defects of

uncontrollability and distraction. In our MIHM, we propose to

improve the quality of intrinsic rewards and the utilization method

of curiosity-motivated exploration.

3. Preliminaries

3.1. Goal-conditioned reinforcement
learning

The multi-step policy-making problem that RL concerns can

be formulated as a Markov decision process (MDP) (Sutton

and Barto, 2018) M =< S , A, P , R, γ >, where S , A, P , R

and γ represent the state space, action space, state transition

probabilities, rewards, and discount factor, respectively. At timestep

t, once interacting with the task environment, the agent can

obtain a reward rt for the state transition < st , at , st+1 >

by a predefined external reward function r. The discounted

accumulation of future rewards is called return: Rt =
∑∞

i=t γ
i−tri.

The policy π : S → A that RL optimizes is to maximize the

expected return Eso∼p(s0)

[

Vπ (s0)
]

, where the state value function

Vπ (st) = E
π [Rt|st]. In practice, instead of Vπ (st), the state-

action value function Qπ (st , at) = E
π [Rt|st , at] is often used,

which can be updated by bootstrapping from the Bellman equation

(Schaul et al., 2016). Leveraging the representation ability of the

DNNs, the application scope of RL is extended from tabular

cases to continuous state space or action space. The well-known

RL algorithms include deep Q-networks (DQN) (Mnih et al.,

2013), deep deterministic policy gradients (DDPG) (Silver et al.,

n.d.), twin delayed deep deterministic policy gradients (TD3)

(Fujimoto et al., 2018), soft actor-critic (SAC) (Haarnoja et al.,

2018).
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FIGURE 2

The robotic manipulation environment and three examples of the semantic configurations. (A) Shows the stack of 2 blocks, with the semantic

configuration [111000100]. (B) Shows the stack of 3 blocks with the configuration [110011000]. (C) Shows a pyramid with the configuration

[111000101].

In GCRL, the goal space G is additionally introduced,

where each goal g∈ G corresponds to an MDP

Mg=< S , A, P ,Rg , γ >. Under different goals, the same

transition will correspond to different rewards. To avoid the

demand of the specific Vπg (s), Qπg (s, a) and πg(s) for every goal

g, UVFAs are proposed to use the DNN-based goal-conditioned

Vπ (s, g), Qπ
(

s, a, g
)

and π(s, g) to universally approximate

all the Vπg (s), Qπg (s, a) and πg(s). The optimization objective

of GCRL becomes balancing all the goals and maximizing

E so∼p(s0)
g∼p(g)

[

Vπ (s0, g)
]

. The universal approximators can be updated

by the similar bootstrapping techniques in standard RL algorithms

and are helpful to leverage the shared environmental dynamics

across all the goals. Schaul et al. (2015) proved that, with the help of

the generalizability of DNNs, the universal approximators can even

generalize to the previously unseen goals, making it possible to use

finite samples to learn policies for infinitely many or continuously

distributed goals.

3.2. Semantic-goal-conditioned robotic
manipulation

Compared with giving the precise destination coordinates,

goals with semantic representations more conform to human

habits and can contain more abstract and complicated intentions.

In this paper, the semantic goal representations we concern

are derived from Akakzia et al. (2021), where two semantic

predicates, the close and the on binary predicates, c (·, ·) and o (·, ·),

are defined to describe the spatial relations “close to” and “on

the surface of” for the object pairs in the task environment.

For example, o
(

a, b
)

= 1 expresses that object a is on the

surface of object b. Furthermore, the joint activation of the

predicates can express more complicated intentions. Because the

close predicate has order invariance, considering the task with 3

objects a, b and c, a semantic goal g is the concatenation of 3

combinations of the close predicate and 6 permutations of the on

predicate, as

g = [c
(

a, b
)

, c (a, c) , c
(

b, c
)

, o
(

a, b
)

, o
(

b, a
)

, o (a, c) , o (c, a) ,

o
(

b, c
)

, o
(

c, b
)

]. (1)

Thus, in the semantic configuration space {0, 1}9, the agent can

reach up to 35 physically valid goals, including stacks of 2 or 3

objects and pyramids, as Figure 2 shows. A simulation environment

for this manipulation task is built based on the MuJoCo (Todorov

et al., 2012) physics engine and OpenAI Gym interface (Brockman

et al., 2016).

4. Methodology

4.1. Decoupled mutual information and
intrinsic motivation

In the robotic manipulation task, instead of blindly pursuing

state coverage or diversity, we think the exploratory behaviors

toward the unfamiliar states must be more conservative and

controllable. To model this controllable exploration paradigm, we

adopt the information theoretic concept of mutual information.

Particularly, we propose that the exploration objective is to

maximize the mutual information I between the next state S′ and

the current state-action pair C, where C is the concatenation of

the current state S and action A. Using the definition of mutual

information, I can be expressed as the differential of the entropyH:

I
(

S
′
;C

)

= H (C)−H(C|S′) (2)

= H(S′)−H(S
′
|C). (3)

Equations 2, 3 are the inverse form and forward form

of I
(

S
′
;C

)

, respectively. Equation 2 means that to maximize

I
(

S
′
;C

)

, the agent is encouraged to increase the diversity of the

state-action pairs [maximizing H (C)], while C is required to be

unique when S
′
is given [minimizing H(C|S′)]. Equation 3 means

maximizing I
(

S
′
;C

)

corresponds to discovering more unfamiliar

states [maximizing H(S′)], while S
′
is predictable when the state-

action pair is known [minimizing H(S
′
|C)]. Thus, H (C) or

H(S′) represents the curiosity-based motivation while −H(C|S′) or

−H(S
′
|C) represents the conservativeness. Themutual information

I
(

S
′
;C

)

can be considered the KL-divergence between p(s
′
, c)

and p(s′)p(c).

I
(

S
′
;C

)

= DKL(p(s
′
, c) ‖ p(s′)p(c)). (4)
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Because the probability distributions of s
′
and c are all

unknown, following the mutual information neural estimator

(MINE) (Belghazi et al., 2021), maximizing the KL-divergence can

be represented as maximizing its Donsker-Varadhan lower bound.

However, in practical RL tasks, because the initial ability of the

agent is weak and it cannot initially acquire an extensive coverage

of s
′
and c, directly exploring to maximize the mutual information

lower bound in the form of KL-divergence or JS-divergence (Kim

et al., 2019) will make the agent more likely to confirm its actions

in the experienced states than to explore the unfamiliar novel

states (Campos et al., 2020). Consequently, the direct mutual-

information-based exploration is too conservative to discover fine

goal-conditioned manipulation skills with sparse rewards, while

it is mainly adopted for unsupervised motion mode discovery

(Eysenbach et al., 2018; Sharma et al., 2020) or high-operability

state discovery (Mohamed and Rezende, 2015).

To explain this phenomenon, due to p
(

s
′
, c

)

= p
(

s
′
∣

∣

∣
c
)

p(c),

we rewrite DKL

(

p
(

s
′
, c

)

‖ p
(

s
′
)

p (c)
)

as

DKL

(

p
(

s
′
, c

)

‖ p
(

s
′
)

p (c)
)

=

∫

p(s
′
, c) log

p
(

s
′
∣

∣

∣
c
)

p
(

s
′
) ds′dc

= E
p
(

s
′
,c
)[log

p(s
′
|c)

p(s
′
)
] (5)

where s
′
, c are sampled from the RL rollouts with the agent’s

current policy π . The mutual information I
(

S
′
;C

)

can be

maximized by optimizing the agent’s policy in an RL manner with

the intrinsic reward function rint = log q
(

s
′
∣

∣

∣
c
)

− log q(s′), where

q
(

s
′
∣

∣

∣
c
)

and q(s′) are the online estimations of p
(

s
′
∣

∣

∣
c
)

and p(s′)

based on the collected < s′, c >. Assuming that q(s′) can be

approximated by plenty of q
(

s
′
∣

∣

∣
c
)

, i.e., q
(

s
′
)

= 1
N

∑

∀ci
q(s

′
|ci),

the intrinsic reward can be rewritten as

rint = log q
(

s
′
∣

∣

∣
c
)

− log
1

N

∑

∀ci

q
(

s
′
∣

∣

∣
ci

)

= log
q
(

s
′
∣

∣

∣
c
)

∑

∀ci
q
(

s
′
∣

∣ci
) + logN

= log
q
(

s
′
∣

∣

∣
c
)

1+
∑

∀ci 6=c

q
(

s
′
∣

∣

∣
ci

)

+ǫ

q
(

s
′
∣

∣

∣
c
)

+ǫ

+ logN. (6)

In the experienced states, for s
′
generated from c, the forward

dynamics q
(

s
′
∣

∣

∣
c
)

is updated to be close to 1. For other ci 6= c,

q
(

s
′
∣

∣

∣
ci

)

is close to 0. Therefore, the typical intrinsic reward rint ≈

log1 + logN = logN > 0. Comparatively, in the unexperienced

states, for any ci, q
(

s
′
∣

∣

∣
ci

)

is nearly 0. The typical intrinsic reward

r
′

int ≈ log
(

1
N

)

+ logN = 0 < rint . Thus, the agent is more likely

to obtain higher intrinsic rewards in the experienced states, which

prevents its exploration to the unfamiliar states.

To solve this problem, different from (Kim et al., 2019;

Belghazi et al., 2021), we propose to decouple the calculation of

mutual information and respectively maximize the two entropy

components H(S′) and −H(S
′
|C) in Equation 3 with different

paces. The pace of H(S′) is fixed and the pace of −H(S
′
|C)

is adjusted with a decay factor to ensure a curiosity-motivated,

conservativeness-corrected exploration. We firstly introduce how

to maximize H(S′) and −H(S
′
|C) then the adjustment of the

pace. To approximate H
(

S′
)

= −Ep(s′) log[p(s
′)], because p(s′)

is high-dimensional and hard to be estimated, we adopt the non-

parametric particle-based entropy estimator proposed by Singh

et al. (2003) that has been widely researched in statistics (Jiao

et al., 2018). Considering a sampled dataset {s′i}
N
i=1, H

(

S′
)

can be

approximated by considering the distance between each s′i and its

kth nearest neighbor.

Ĥparticle(S
′) =

1

N

N
∑

i=1

log
N ·

∥

∥

∥
s
′

i − s
′ k−NN

i

∥

∥

∥

D
S
′

2
· π

D
S
′

2

k · Ŵ(
D
S
′

2 + 1)
+ b(k)

(7)

∝
1

N

N
∑

i=1

log

∥

∥

∥

∥

s
′

i − s
′ k−NN

i

∥

∥

∥

∥

2

(8)

where s′k−NN
i denotes the kth nearest neighbor of s′i in the

dataset {s′i}
N
i=1, b(k) denotes a bias correction term that only

depends on the hyperparameter k, DS
′ is the dimension of s′, Ŵ

is the gamma function, and ‖·‖2 denotes the Euclidean distance.

The transition from Equations 7, 8 always holds for DS
′ > 0. To

maximize H
(

S′
)

, we can treat each sampled transition < s′, c >

as a particle (Seo et al., 2021). Following (Liu and Abbeel, 2021),

we use the average distance over all k nearest neighbors for a more

robust approximation, so the intrinsic reward r
H(S

′
)

int is designed as

r
H(S

′
)

int = log(m+
1

k

∑

si
k−NN
i ∈Nk

(

s
′
i

)

∥

∥

∥

∥

s
′

i − s
′ k−NN

i

∥

∥

∥

∥

2

) (9)

where m = 1 is a constant for numerical stability, Nk(s
′

i)

denotes the set of k nearest neighbors around s
′

i.

Compared with p(s′), the posterior probability p(s′|c) in

−H(S
′
|C) = Ep(s′ ,c) log[p(s

′|c)] is relatively easier to be

estimated, because it follows the forward dynamics and can be

simply treated as a Gaussian distribution. Thus, we leverage a

factored Gaussian DNN DG(s
′|c;ψ) with the reparameterization

trick (Li et al., 2017) to predict p(s′|c), which is updated by

descending with gradients −Ep(s′ ,c)[∇ψ logDG(s
′|c;ψ)]. Actually,

Ep(s′ ,c) log[DG(s
′|c)] is the lower bound of −H(S

′
|C) and becomes

tight when Ep(c)[DKL(p(·|c)||DG(·|c))] → 0 (Chen et al., 2016).

We use DG(s
′|c) to intrinsically reward each sampled transition

< s′, c >. Thus, to maximize−H(S
′
|C), the intrinsic reward r

H(S
′
|C)

int

is designed as

r
−H(S

′
|C)

int = log[m+ DG(s
′|c)] (10)

wherem = 1 is a constant for numerical stability.

Based on Equations 9, 10, considering the adjusting pace λ

for −H(S
′
|C) to control the conservativeness, the whole intrinsic

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1089270
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Han et al. 10.3389/fnbot.2023.1089270

reward is represented as

rint = r
H(S

′
)

int + λ · r
−H(S

′
|C)

int

λ = [min(1− ξ ep, β)] ·
σS′

σS′ |C
(11)

where 0 < ξ < 1 is the decaying factor, ep is the number of

training epoch, β < 1 is the cutoff threshold for the increasing

1−ξ ep, σS′ and σS′ |C are the running estimated standard deviations

of previously generated r
H(S

′
)

int and r
−H(S

′
|C)

int . The adjusting pace λ

serves two purposes:min(1−ξ ep, β) controls the proportion of the

conservativeness part r
−H(S

′
|C)

int especially in the early stage of the

training process to encourage the curiosity-based exploration;
σ
S
′

σ
S
′
|C

balances the variation amplitude of r
H(S

′
)

int and r
−H(S

′
|C)

int for better

proportionality of the curiosity-based part and the conservativeness

part. The decoupled-mutual-information-based intrinsic reward is

actually a conservative curiosity-motivated intrinsic reward, which

encourages the agent to explore diverse states but penalizes the

uncontrollable actions or states.

4.2. Hybrid policy architecture with PopArt
normalization

Traditionally, in the curiosity-motivated goal-conditioned

robotic manipulation task, the agent policy is a combined policy

πc, and the reward of each experienced transition is the weighted

sum of the external reward and the z-score normalized intrinsic

reward: rc = rext + τ · nr(rint), where τ is the proportionality

coefficient, and nr(·) represents the reward normalization that

is necessary in proportionating the dynamically varying rint . On

the one hand, the intrinsic reward rint facilitates exploration and

assists the agent in discovering more external rewards. On the

other hand, the existence of the varying rint interferes with the

original optimization of the goal-pursuing policy and will even

cause the agent to visit the intrinsic novelties but not to pursue

the task goals. Thus, we think it is necessary to construct a hybrid

policy architecture to detach the goal-pursuing exploitation policy

πd from the curiosity-motivated combined exploration policy πc.

Then, by automatically switching between the two policies, a better

hybrid policy πhybrid can be obtained and adopted in the trajectory

sampling of the RL training process (introduced in value-function-

based policy-switching algorithm section), which eliminates the

distraction from curiosity-motivated policy πc. The hybrid policy

architecture and the policy-switching algorithm constitute our

hybrid policy mechanism.

Note that the hybrid policy architecture must be updated by

the off-policy RL algorithms, because a shared experience buffer

B is leveraged in the updates, where the stored trajectories are

sampled by the hybrid policy πhybrid. A straightforward hybrid

policy architecture can be constructed by using the combined

reward rc = rext + τ · nr(rint) to train πc and using rd = rext
to train πd. However, because the dynamic rint has varying mean

and variance, the output precision of the combined exploration Q-

function Qc

(

st , at , g
)

will be decreased once the reward normalizer

nr(·) is updated (van Hasselt et al., 2016). Moreover, a combined

reward function is adverse to making the utmost of every reward

component (van Seijen et al., 2017). Thus, it is necessary to propose

a better way to train Qc

(

st , at , g
)

.

For the combined reward rc and the shared trajectory-sampling

policy, there exists

Qc

(

st , at , g
)

= E

[

∞
∑

t=0

γ trc|st , at , g, st+1

]

= E[

∞
∑

t=0

γ t(rext + τ · nr (rint))|st , at , g, st+ 1]

= E

[

∞
∑

t=0

γ trext|st , at , g, st+1

]

+ τ · E

[

∞
∑

t=0

γ tnr (rint) |st , at , st+1

]

= Qext

(

st , at , g
)

+ τ · Q
nr
int (st , at) . (12)

According to Equation 12, for the optimization of πc, learning

the Q-function Qc

(

st , at , g
)

with the combined reward rc is equal

to learning and combining the external Q-function Qext

(

st , at , g
)

and the reward-normalized intrinsic Q-function Q
nr
int (st , at). Here,

we adopt the PopArt normalization for the Q-network (Hessel

et al., 2018), nPopArt(Qint (st , at)), to replace the reward-normalized

Q
nr
int (st , at), which not only adaptively normalizes the Q-values to

fluctuate around 0 (similar to Q
nr
int (st , at)) without breaking the

original reward function structure (Schulman et al., 2018), but also

preserves the output precision of the Q-network against the varying

mean and variance of the normalizer. Thus, the combined Q-

function is Qc

(

st , at , g
)

= Qext

(

st , at , g
)

+ τ · nPopArt(Qint (st , at )).

Our hybrid policy architecture is shown in Figure 3. The

combined exploration policy πc is optimized by minimize the

KL-divergence between Qc

(

st , at , g
)

and πc:

Jπc (θ
πc ) = Esi∼D[DKL(πc(·|si, g; θ

πc )||

exp( 1
α
(Qext(si, ·, g)+ τ · nPopArt(Qint (si, ·))))

Zc(si)
)]. (13)

whereZc(si) =
∑

ai
exp( 1

α
(Qext(si, ·, g)+ τ · nPopArt(Qint (si, ·))))

is the normalization constant and can be omitted in

the optimization.

Similarly, the exploitation policy πd is optimized by minimize

the KL-divergence between Qd

(

st , at , g
)

= Qext

(

st , at , g
)

and πd:

Jπd (θ
πd ) = Esi∼D[DKL(πd(·|si, g; θ

πd )||
exp( 1

α
Qext(si, ·, g))

Zd(si)
)].

(14)

where Zd(si) =
∑

ai
exp( 1

α
Qext(si, ·, g)) is the

normalization constant.

4.3. Value-function-based policy-switching
algorithm

As introduced in hybrid policy architecture with PopArt

normalization section, the combined Q-function Qc

(

st , at , g
)

is
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FIGURE 3

The overview of our hybrid policy architecture. The solid arrows show the inputs and outputs of the Q-functions and policies, while the dotted arrows

show the additional sources used for the updates of the Q-functions and policies. The external Q-function and the intrinsic Q-function are updated

by the Bellman bootstrapping with rext and rint, respectively. After the intrinsic Q-function is PopArt-normalized, the exploitation policy πd is updated

by the gradient ascent of Qext (st, at,g) and the exploration policy πc is updated by the gradient ascent of Qext (st, at,g)+ τ · nPopArt(Qint (st, at)).

constituted by two parts, where the curiosity-based part is

normalized and dynamically varies around 0. However, pursuing

semantic goals (especially complicated semantic goals) cannot

avoid leveraging learned skills or trajectories with negative novelty.

Thus, in the previous curiosity-motivated methods that only adopt

the combined policy, the distraction occurs when pursuing goals

following part of the familiar trajectories has less attraction than

visiting the novelties, i.e., ∃s ∈ S, ∃g ∈ G, Qc

(

s, acuriosity, g
)

>

Qc

(

s, agoal, g
)

, where acuriosity denotes the action toward the

novelties and agoal denotes the action toward the goals. Based on

the hybrid policy architecture, our detached exploitation policy

πd is unaffected by the intrinsic rewards, whose Q-function can

reflect the more accurate expected return of goal pursuing. Thus,

we propose the following hybrid policy πhybrid switching between

πd and πc for every (s, g) and prove that it takes advantage of both

πd and πc.

πhybrid(s, g) =

{

πd(s, g) Vc

(

s, g
)

< Vd

(

s, g
)

πc(s, g) Vc

(

s, g
)

≥ Vd

(

s, g
) (15)

where Vc

(

s, g
)

= Eac∼πc(s,g)Qc

(

s, ac, g
)

, Vd

(

s, g
)

=

Ead∼πd(s,g)Qd

(

s, ad, g
)

. In the algorithm implementation, for

simplicity, we do not train additional V-networks and use

Qc

(

s, ac, g
)

, Qd

(

s, ad, g
)

to approximate Vc

(

s, g
)

and Vd

(

s, g
)

.

Assuming there exists a Vhybrid

(

s, g
)

for policy πhybrid, we prove

∀s ∈ S, ∀g ∈ G, Vhybrid

(

s, g
)

≥ Vc

(

s, g
)

, Vhybrid

(

s, g
)

≥ Vd

(

s, g
)

.

At a state si ∈ S, g ∈ G, we define the advantageous policy

between πd and πc as

π
si ,g

adv
(s, g) =

{

πd(s, g)&Vc

(

si, g
)

< Vd

(

si, g
)

πc(s, g)&Vc

(

si, g
)

≥ Vd

(

si, g
) . (16)

Obviously, we have V
si ,g

adv

(

si, g
)

≥ Vd

(

si, g
)

, V
si ,g

adv

(

si, g
)

≥

Vc

(

si, g
)

and V
si ,g

adv

(

si, g
)

≥ V
s
′
,g

adv

(

si, g
)

, where s
′
is another state

different from si. Compared with the hybrid policy πhybrid in

Equation 15, π
si ,g

adv
can be considered as switching between πd and

πc only once at
(

si, g
)

. Starting from state si, we follow policy πhybrid
for n steps and then follow π

si+n ,g

adv
. A value function is obtained as

Vn

(

si, g
)

=

{

E(si+1 ,ri)∼πhybrid(si ,g)[ri + γVn−1

(

si+1, g
)

]&n ≥ 1

V
si ,g

adv

(

si, g
)

&n = 0
.(17)

When n = 1, there exists

V1

(

si, g
)

= E(si+1 ,ri)∼πhybrid(si ,g)[ri + γV0

(

si+1, g
)

]

= E(si+1 ,ri)∼πhybrid(si ,g)

[

ri + γV
si+1 ,g

adv

(

si+1, g
) ]

≥ E(si+1,ri)∼πhybrid(si ,g)[ri + γV
si ,g

adv

(

si+1, g
)

]

= E
(si+1,ri)∼π

si ,g

adv
(si ,g)

[ri + γV
si ,g

adv

(

si+1, g
)

]

= V
si ,g

adv

(

si, g
)

= V0

(

si, g
)

. (18)

By induction, we obtain ∀n ≥ 1, Vn

(

si, g
)

≥ Vn−1

(

si, g
)

≥

· · · ≥ V0

(

si, g
)

= V
si ,g

adv

(

si, g
)

≥ Vc

(

si, g
)

and Vn

(

si, g
)

≥

Vd

(

si, g
)

. When n → ∞, we have Vhybrid

(

s, g
)

≥ Vc

(

s, g
)

and Vhybrid

(

s, g
)

≥ Vd

(

s, g
)

. In our task, because of the

fluctuations of the curiosity-based part of the combined exploration

policy, at some states Vc

(

s, g
)

> Vd

(

s, g
)

and at other

states Vd

(

s, g
)

> Vc

(

s, g
)

. On this occasion, Vhybrid

(

s, g
)

>

Vc

(

s, g
)

and Vhybrid

(

s, g
)

> Vd

(

s, g
)

, which means that

πhybrid is strictly better than πd and πc. Thus, our πhybrid can

automatically switch between goal-pursuing and novelty-visiting,

reducing the distraction from curiosity-based motivation as much

as possible.

Note that we only implement the policy-switching algorithm

in the RL training process. In the RL evaluation process,

because curiosity-motivated exploration is unnecessary,

we adopt only the exploitation policy πd. In conclusion,

the whole pseudocode of our MIHM is available in

Algorithm 1.
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Require: Q-function Qπext
(

st , at , g
)

and Qπint (st , at), policy

πd and πc, a factored Gaussian network DG(s
′|c;ψ), a

replay buffer B, a semantic goal set G

1: Initialize Qext

(

st , at , g
)

, Qint (st , at), πd, πc, DG(s
′|c;ψ),

B

2: for epoch = 1 to L do

3: for rollout = 1 to M do

4: Initialize the task environment and the

desired goal g

5: for timestep = 1 to T do

6: Interact with the environment by πhybrid

toward g by Equation 15

7: end for

8: Store the transitions of the rollout in B

9: for step = 1 to N do

10: Sample minibatch B from B and do goal

relabeling by HER

11: Calculate r
H(S

′
)

int , r
−H(S

′
|C)

int , λ and intrinsic

rewards rint by Equations 9-11

12: Update Qext

(

st , at , g
)

, nPopArt(Qint (st , at))

13: Update πc, πd by Eqs 13, 14

14: end for

15: end for

16: end for

Algorithm 1. Mutual information motivation with hybrid policy

mechanism (MIHM).

5. Experiments

5.1. Experiment settings

As introduced in semantic-goal-conditioned robotic

manipulation section, we adopt the semantic-goal-conditioned

robotic manipulation task derived from Akakzia et al.

(2021) for experiments. In the task, the actions of the

agent are 4-dimensional: 3 dimensions for the gripper

velocities and 1 dimension for the grasping velocity. The

state observation is 55-dimensional: the agent can observe

the Cartesian and angular positions and velocities of its

gripper and the objects. The currently achieved goal gac is

available for the agent. A binary sparse reward setting is

adopted as

rg(s, a, s
′) ,



















1,

φ
(

s
′
)

= g

0,

otherwise

(19)

where φ(s) : S → G is the function to abstract the achieved goal

gac from state s.

In our experiments, we adopt four state-of-the-art algorithms

to compare with our MIHM, including intrinsic curiosity module

(ICM) (Pathak et al., 2017) and random network distillation (RND)

(Burda et al., 2018b), diversity actor-critic (DAC) (Han and Sung,

2021), random encoders for efficient exploration (RE3) (Seo et al.,

2021). The UVFA-based off-policy RL algorithm soft actor-critic

(SAC) (Haarnoja et al., 2018) is adopted for the agent, where the

goal-conditioned Q-networks and policy networks are constructed

by the Deep Sets (Zaheer et al., 2018). When implementing each

algorithm, we use 500 epochs with 16 CPU workers running on

16 different initialization seeds and the policy evaluation is based

on the average performance over the 16 seeds. Each epoch has 50

cycles while each cycle has 2 rollouts. To avoid interference from

the task-irrelevant states, different from the previous curiosity-

motivated methods, we do not adopt the infinite time horizon

setting. Instead, each rollout has a fixed horizon of 50 timesteps.

We set k in Equation 9 for the k-NN-based particle entropy

estimator as 3, β and γ in Equation 11 as 0.7 and 0.99, the policy

combination proportionality coefficient τ in Equation 13 as 0.2.

To facilitate the training process, we adopt a biased initialization

trick (Akakzia et al., 2021): after 80 epochs, the task environment

is initialized with stacks of 2 blocks 21% of times, stacks of 3

blocks 9% of times, and a block is initially put in the agent’s

gripper 50% of times. We also utilize a simple curriculum learning

setting: the desired goals of the rollouts are uniformly sampled

in the already visited semantic goals, which means the agent

will not be assigned goals that are too hard at the early stage

of training.

5.2. Results and analyses

To facilitate the presentation and comparison of results,

according to the number of layers the objects are desired to be

stacked into, we classify the semantic goals into three categories:

one-layer goals, two-layer goals and three-layer goals. Achieving

the one-layer goals only requires the agent to realize the close

predicates. Achieving the two-layer goals requires the agent to

discover the stack skill and realize the on predicates. Achieving

the three-layer goals requires the sophisticated stacking skill. The

number of goals belonging to each category is shown in Table 1.

We record the learning processes of six algorithms (vanilla

SAC, ICM, RND, DAC, RE3 and MIHM) in Figure 4. The number

of learned semantic goals (whose success rates are >80%) for

each category is shown in Table 2. It is shown that the sparse-

reward semantic-goal-conditioned robotic manipulation is a rather

difficult task for the vanilla SAC. Without curiosity-motivated

exploration, only by random exploration cannot the agent obtain

sufficient learning signals. After 500 epochs, the vanilla SAC agent

cannot fully learn the one-layer goals. Comparatively, the curiosity-

motivated methods effectively improve the agent performance,

which make it possible to achieve some of the two-layer goals after

epoch 80 (because our biased initialization trick starts to work in

epoch 80). However, none of the success rates of two-layer goals

in RND and ICM can be stabilized above 80%. RND performs

slightly better than ICM, because by leveraging the random target-

encoding network, RND overcomes the problem in ICM that the

agent cannot distinguish the novelty of state-action pairs from the

randomness of the environmental forward dynamics. DAC and

RE3 improve the efficiency perform better than RND and ICM,

achieving some of the two-layer goals. However, due to the two

defects of curiosity-motivated methods, the four baseline methods

cannot achieve the three-layer goals. Our MIHM solves these

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1089270
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Han et al. 10.3389/fnbot.2023.1089270

TABLE 1 The number of goals in each goal category.

Categories One-layer goals Two-layer goals Three-layer goals Total

Number of goals 8 21 6 35

FIGURE 4

Learning processes of six algorithms (vanilla SAC, ICM, RND, DAC, RE3 and MIHM) for di�erent categories of goals. (A) Shows the variations of

average success rates of all 35 goals. (B–D) Show the variations of the average success rates of one-layer goals, two-layer goals and three-layer

goals, respectively. Vanilla SAC agent can only achieve some of the one-layer goals with low success rates. ICM, RND, DAC, and RE3 enable the

agent to achieve most of the one-layer goals and some of the two-layer goals. Comparatively, our MIHM enables the agent to learn all one-layer

goals and two-layer goals. For the three-layer goals, our MIHM obtains an average success rate of 33%.

TABLE 2 The number of finally learned goals (whose success rates are >80%) in each goal category for four algorithms.

Algorithms One-layer goals Two-layer goals Three-layer goals Total

Vanilla SAC 1 0 0 1

ICM 4 0 0 4

RND 4 0 0 4

DAC 6 3 0 9

RE3 7 5 0 12

MIHM 8 21 2 31

defects and shows the best performance, learning up to 31 goals

and is the only one to achieve three-layer goals.

To further illustrate the differences among the intrinsic rewards

generated by MIHM and other curiosity-motivated methods, we

take ICM and RND as comparisons and artificially control the

robotic arm for two episodes: one episode is to pick and stack

objects; the other is to push objects off the table. These two episodes

reflect the typical scenarios that are novel and controllable, novel
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but uncontrollable. We store the intrinsic reward generators of the

three algorithms in epoch 100 and use them to generate intrinsic

rewards for these two episodes. The variations of intrinsic rewards

when picking and stacking objects are shown in Figure 5A. It shows

that the intrinsic rewards from three algorithms have a broadly

similar trend with slight differences. High intrinsic rewards are

generated in special and key operations, e.g., ①, ④, and ⑦ (gripper

closing), ② and ⑤ (object lifting). However, compared with ICM

and RND, which prefer to reward the critical nodes (e.g., ②, ⑤,

and ⑦), our MIHM tends to reward the whole controllable and

important operation processes (e.g., ① → ② and ④ → ⑤).

Moreover, compared with lifting an object, lowering an object is

given lower intrinsic rewards (② → ③ and ⑤ → ⑥). The

variations of intrinsic rewards when pushing objects off the table

are shown in Figure 5B. Different from ICM and RND that generate

high intrinsic rewards when an object falls off the table (③, ⑤,

and ⑥), our MIHM gives these uncontrollable and dangerous

operations low intrinsic rewards. Comparatively, a controllable

pull (④) that prevents the green object from dropping gains

higher reward in our MIHM. Figure 5 proves that our MIHM

can effectively reward novel behaviors and prevent uncontrollable

operations, successfully solving the defect of uncontrollability in the

previous curiosity-motivated methods.

In the hybrid policy mechanism of our MIHM, to construct

the combined Q-function Qc

(

st , at , g
)

, we propose adopting the

PopArt-normalized Q-function nPopArt(Qint (st , at)) to replace the

reward-normalized Q
nr
int (st , at). To show the effect of our proposal,

we maintain the two types of Q-functions in the training process

and store them in epoch 100. We record their Q-value outputs

for the above two artificially controlled episodes in Figures 6A,

B. It is shown that the two curves have similar trends that

are broadly consistent with the trends of intrinsic rewards in

Figures 5A, B, which proves that both Q-functions can effectively

learn from intrinsic rewards. However, compared with the outputs

of Q
nr
int (st , at), the outputs of nPopArt(Qint (st , at)) are smoother and

closer to zero, which are more beneficial to the optimization of

the DNN-based networks. Based on the PopArt-normalized hybrid

reward architecture, when training the RL agent, we record the

policy-switching process between the goal-pursuing exploitation

policy πd and the combined exploration policy πc. Figure 6C shows

the epoch-averaged duration proportion of πd in the training

rollouts. Because nPopArt(Qint (st , at)) is normalized and fluctuates

around zero from a macro perspective, the proportion of πd
fluctuates around 0.5. An interesting point we find is that a rapid

rise of the success rate curve often corresponds to more utilization

of the exploitation policy πd (epoch 0 to 40, epoch 100 to 200),

because at that time the agent finds skills for some goals and

tends to consolidate them. When the growth of success rate slows

down, the agent turns to make more use of the exploration policy

πc (epoch 40 to 100, epoch 200 to 300). The above phenomena

prove that our MIHM can dynamically switch between exploration

and exploitation as needed, which is helpful to solve the defect of

distraction in the previous curiosity-motivated methods.

Furthermore, we perform ablation experiments to test the

respective performance of the two components of our MIHM:

mutual information motivation (MI) and hybrid policy mechanism

(HM). Based on the existing ICM, RND and our MIHM, we

perform three additional algorithms: ICM+HM, RND+HM and

MI alone. The learning processes of different goal categories

are recorded in Figure 7. The number of learned semantic goals

(whose success rates are >80%) for each category is shown in

Table 3. Compared with original ICM and RND in Figure 4, taking

advantage of HM, ICM+HM and RND+HM learn faster and

increase the final success rates of one-layer goals and two-layer

goals by ∼10 and 30%, which proves overcoming the defect of

distraction can effectively improve the performance of previous

curiosity-motivated methods. Moreover, although MI alone has

performance degradation with respect to MIHM, it still shows

better performance than ICM and RND in Figure 4, especially for

the two-layer goals (a 50% increasement in the final success rate),

which proves that uncontrollability is a critical obstacle for previous

curiosity-motivated methods to dealing with hard manipulation

tasks. Compared with ICM + HM and RND + HM, MI alone

still has advantage in the final success rate, but it learns slower

than RND+HM in the early stage. We think this is because MI

alone considers the controllability of the action, which makes its

exploration more conservative than RND. In addition, none of the

three additional algorithms can achieve the three-layer goals. The

combination of MI and HM is necessary for these very hard goals.

In addition, apart from curiosity-based methods, there exist

other possible methods for sparse-reward GCRL. In our robotic

manipulation task with semantic goals, we compare the numbers

of learned semantic goals of our MIHM with the curriculum

learning method DECSTR (Akakzia et al., 2021) and the improved

HER method Multi-criteria HER (Lanier et al., 2019). As Table 4

shows, DECSTR achieves 3 more three-layer goals than our

MIHM, but its performance is heavily based on task-specific prior

knowledge. Multi-critiria HER achieves better performance than

vanilla SAC+HER in Table 2, but it still cannot be competent

for the semantic-GCRL, though it is designed specifically for the

manipulation task. Comparatively, our MIHM does not rely on

much task-specific prior knowledge and has few hyperparameters

to be determined, which makes it easy to be implemented for more

manipulation tasks.

6. Conclusion and future work

Learning semantic-goal-conditioned robotic manipulation

with sparse rewards poses a great challenge to the RL training

process, because the RL agent will be trapped in the hard

exploration problem without sufficient learning signals. In this

paper, we leverage the curiosity-motivated methods to intrinsically

generate learning signals and facilitate agent exploration. We

propose a conservative curiosity-motivated method named mutual

information motivation with hybrid policy mechanism (MIHM),

which effectively solves the two defects of previous curiosity-

motivated methods: uncontrollability and distraction. Different

from the previous methods that mainly focus on the generation

of intrinsic rewards, we consider improving the entire intrinsically

motivated training process, including the quality of the intrinsic

rewards and the utilization method of curiosity-motivated

exploration. Benefitting from the above improvements, our MIHM

shows much better performance than the state-of-the-art curiosity-
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FIGURE 5

The variations of intrinsic rewards when picking and stacking objects (A) and pushing objects o� the table (B). (A) Shows that ICM, RND and MIHM

can e�ectively reward the novel and controllable behaviors. (B) Shows that ICM and RND wrongly reward the novel but uncontrollable behaviors.

Comparatively, our MIHM can e�ectively discover and prevent the uncontrollable behaviors.

FIGURE 6

Execution details of hybrid policy mechanism. (A, B) Show comparisons between two normalization approaches for constructing the combined

Q-function. Compared with the outputs of Qnr
int (st, at), the outputs of nPopArt(Qint (st, at)) are smoother and closer to zero. (C) Shows the

policy-switching process when training the RL agent by MIHM. The proportion of πd fluctuates around 0.5 and the agent can dynamically switch

between exploration and exploitation as needed.

motivated methods in the semantic-goal-conditioned robotic

manipulation task. We believe our method is novel and valuable

for all the researchers interested in sparse-reward GCRL.

Nevertheless, there still exists future work for the further

improvement of our MIHM. Firstly, in the decoupled-mutual-

information-based intrinsic rewards, the forward dynamics

prediction model is used to estimate the action uncontrollability.

The enhancement of the prediction and generalization capability

of this DNN-based model and the acceleration of its convergence

rate are beneficial to further reducing the estimation errors

from the deficiently trained or incompetent model. Secondly,

when training the combined policy πc, the proportionality
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FIGURE 7

Learning processes of ICM+HM, RND+HM, MI alone and MIHM for di�erent categories of goals. (A) Shows the variations of average success rates of

all 35 goals. (B–D) Show the variations of the average success rates of one-layer goals, two-layer goals and three-layer goals, respectively.

Compared with original ICM and RND, ICM+HM and RND+HM increase the final success rates of one-layer goals and two-layer goals by

approximately 10% and 30%; MI alone increases the final success rates of one-layer goals and two-layer goals by 10% and 50%. These results prove

that overcoming either uncontrollability or distraction can improve the performance of curiosity-motivated methods.

TABLE 3 The number of finally learned goals (whose success rates are >80%) in each goal category for ICM+HM, RND+HM, MI alone and MIHM.

Algorithms One-layer goals Two-layer goals Three-layer goals Total

ICM+HM 7 6 0 13

RND+HM 8 6 0 14

MI alone 8 17 0 25

MIHM 8 21 2 31

TABLE 4 The number of finally learned goals (whose success rates are >80%) in each goal category for MIHM, DECSTR and Multi-criteria HER.

Algorithms One-layer goals Two-layer goals Three-layer goals Total

MIHM 8 21 2 31

DECSTR 8 21 5 34

Multi-criteria HER 3 0 0 3

coefficient τ for the two Q-functions is static and predefined.

We think that if the coefficient can be dynamically adjusted

throughout the training process with the avoidance of the

possible training instability of πc, the external rewards and

intrinsic rewards will be more sufficiently utilized to improve

the global learning efficiency. In general, MIHM in this

paper improves some of the components (the generation and

exploitation of intrinsic rewards) in the whole RL process, we are
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interested in combining MIHM with other learning techniques

to improve more RL components and better overcome the sparse

reward problem.
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