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Introduction: The myoelectric control strategy, based on surface

electromyographic signals, has long been used for controlling a prosthetic

system with multiple degrees of freedom. Several methods classify gestures and

force levels but the simultaneous real-time control of hand/wrist gestures and

force levels did not yet reach a satisfactory level of e�ectiveness.

Methods: In this work, the hierarchical classification approach, already validated

on 31 healthy subjects, was adapted for the real-time control of a multi-

DoFs prosthetic system on 15 trans-radial amputees. The e�ectiveness of the

hierarchical classification approach was assessed by evaluating both o	ine and

real-time performance using three algorithms: Logistic Regression (LR), Non-

linear Logistic Regression (NLR), and Linear Discriminant Analysis (LDA).

Results: The results of this study showed the o	ine performance of amputees

was promising and comparable to healthy subjects, with mean F1 scores of over

90% for the “Hand/wrist gestures classifier” and 95% for the force classifiers,

implemented with the three algorithms with features extraction (FE). Another

significant finding of this study was the feasibility of using the hierarchical

classification strategy for real-time applications, due to its ability to provide a

response time of 100 ms while maintaining an average online accuracy of above

90%.

Discussion: A possible solution for real-time control of both hand/wrist gestures

and force levels is the combined use of the LR algorithmwith FE for the "Hand/wrist

gestures classifier", and the NLR with FE for the Spherical and Tip force classifiers.

KEYWORDS

upper limb, prosthetic control, real-time and o	ine performance, multi-DoFs control,

pattern recognition

1. Introduction

Hand loss can affect the level of autonomy and the capability of performing the activities

of daily life (ADL) for amputees. To remedy this loss, the most used solution is represented

by prostheses. Over the years, prosthetic systems have undergone a considerable evolution,

both from an aesthetic and a technological/control point of view. Indeed, to date, there are

different approaches for prosthetic control but the most widely used is myoelectric control

using superficial electrodes for simplicity and versatility. Despite the progress, prostheses are

still not natural to control and not very intuitive due to the use of the agonist-antagonist

muscle pair, e.g., the flexion-extension of the wrist, for the opening-closing of the prosthetic

hand. In Cordella et al. (2016), the real needs of amputees have been analyzed, highlighting
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which are the most important: performing ADL, having sensory

feedback, regulating grip force by lightening the visual attention

and the cognitive load for the user, avoiding the sliding of the

grasped object (Cohen and Rosenbaum, 2004), and manipulating

objects in a fine way. Although current prostheses allow most

ADL to be performed, to actively control the grasp force during

the execution of a grasping and manipulation task needs force

feedback. Some studies have investigated the different solutions,

represented by vibrotactile stimulation (Kaczmarek et al., 1991) and

electrical stimulation (D’anna et al., 2017; Graczyk et al., 2018; Zollo

et al., 2019; Bensmaia et al., 2020). These approaches are in research

scope and far from being implemented in commercial solutions.

Using sEMG, various PR-based controls have been developed

allowing for a higher number of gestures than commercial

prostheses (Geethanjali, 2016; Mereu et al., 2021; Latour, 2022).

The training procedure includes repeating the gestures at a single

intensity but might not be the best solution. Indeed, the use of EMG

signals at different intensities for training PR systems can lead to

improvements in accuracy and robustness (Scheme and Englehart,

2011; Samuel et al., 2019).

In Al-Timemy et al. (2013), the effect of muscle intensity

variations related to the intentional grasp force was investigated on

two transradial amputees. The performance of the LDA classifier

with time-domain features was compared with autoregression

coefficients and a root mean square features set. The performance

of the LDA classifier was better with time-domain features and

when training it with all force levels, while it degraded up to 60%

when the force level varied. In Luppescu et al. (2016), three different

classifiers, LDA, the Naïve Bayes, and the multi-class SVM were

tested to classify the following: spherical grip, index flexion, hook

grip, thumb flexion, fine pinch, and tripod grip. Nine different

transradial amputees were asked to perform each gesture with three

different force levels (low, medium, and high). The testing accuracy

for LDA, Naive Bayes, and the multi-class SVM classifiers, for

the six motion classes, was 96.18, 78.65, and 88.76%, respectively.

When considering the three force levels applied to each motion

gesture (for a total of 18 classes), the accuracy of the above classifiers

decreased to 93.11, 76.86, and 86.53%, respectively. In Jabbari et al.

(2020), a long short-term memory neural network with the fusion

of time-domain descriptors was employed to discriminate six grip

gestures at three different force levels (low, medium, and high): 1-

thumb flexion, 2-index flexion, 3-fine pinch, 4-tripod grip, 5-hook

grip, and 6-spherical grip (power). The results obtained from nine

transradial amputees showed the long short-term memory neural

network with the fusion of time-domain descriptors set achieved

the best average classification errors values (6.4 ± 3.3, 8.6 ± 3.0,

and 9.2 ± 5.6% for the low, medium, and high force level testing,

respectively).

Other studies (Chen et al., 2013; Irastorza-Landa et al., 2017;

Leone et al., 2019; Gentile et al., 2022; Li et al., 2022), employed

the hierarchical surface electromyography (sEMG) classification

strategy to increase the number of degrees of freedom (DoF) and/or

improve the accuracy.

However, the possibility of simultaneously controlling gestures

and forces in an intuitive and more natural way, allowing amputees

to perform a task with a lower cognitive effort, has not still been

investigated. In this study, a hierarchical pattern recognition (PR)-

based control was developed allowing the recognition of seven

gestures and, for grasping tasks, of three levels of force. This

approach is based on the strategy developed by Leone et al. (2019).

To apply this strategy to amputee patients, the grasping tasks were

performed with both limbs to provide information relating to the

force applied with the healthy limb that could be correlated with

the muscle activity of the amputated limb, which was used for

the classification. In addition, a new method was investigated to

make the amputee’s perception of the force setting more natural,

exploiting the receptors of the musculotendinous junction (Barker,

1967). These receptors receive information directly from the spinal

cord and cerebral cortex and increase the sensitivity of the receptor

by exciting the intrafusal muscle fibers causing constant control,

even during the phases of muscle contraction, and increasing the

perception of movement and the position of the same muscle

(Liddell and Sherrington, 1924).

The paper is structured as follows: in Section 2, the

experimental protocol, the proposed algorithms, and the PR-based

architecture are explained; the following section outlines the results

obtained for both offline and real-time performance; in the Section

4, the results are examined and a comparison of the proposed

method with the literature is presented; and the final section

features the conclusions.

2. Materials and methods

2.1. Experimental setup

Fifteen transradial patients were enrolled (see

Supplementary Table 1 for the patients’ information), 12 male

and 3 female (aged 45 ± 13.44), at the INAIL prosthesis center

in Vigorso di Budrio. All patients gave informed consent1 for

voluntary participation in the study. The experimental setup was

composed of 12 commercial sEMG sensors (Ottobock 13E200 =

50, 27 × 18 × 9.5 mm) and two hand dynamometers (Vernier

HD BTA, 46 × 28 × 170 mm), which were used for EMG and

force signal acquisition, respectively. A custom electronic interface

(Figure 1A) was developed to connect the sensors to the NI-DAQ

6002 (National Instruments). The described experimental setup

was connected via USB to the PC [MSI prestige 15, Intel (R)

Core (TM) i7-1185G7 CPU @ 1.80 GHz 2.40 GHz] to allow

data acquisition with ad-hoc software developed in LabView.

For each arm, six sEMG (Riillo et al., 2014) sensors were located

equidistantly from each other on an elastic bracelet and positioned

4 cm below the patient’s elbow (Figure 1). For each acquisition,

patients were asked to perform gestures with both hands.

Preliminary tests were conducted to correctly define force

thresholds and the prosthesis control modality.

• Force threshold evaluation

To identify the three thresholds for the three force levels, two

preliminary methods were tested.

1. The patient was asked to perform the maximum

contraction of both limbs; then, the three force thresholds

were calculated at 30, 60, and 90% (within a range of

1 Comitato Etico di Area Vasta Emilia Centro; protocol number: CP-

PPRAS1/1-01; date of approval: 04/10/2018.
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FIGURE 1

(A) The experimental setup for steps 1 and 2. Six sEMG sensors for each elastic bracelet, the NI DAQ USB 6002, and two hand dynamometers. (B) The

experimental setup for step 3. The same elements of (A) with the RoboLimb and wrist module. (C) The software interface for step 2. (D) The software

interface for step 3.

±10%) of the maximum force value, corresponding to the

maximum muscle contraction, measured with the hand

dynamometer on the healthy limb.

2. Using the amputee’s perception of the force (Barker,

1967), the patient was asked to contract both limbs with

three levels of perceived force (low, medium, and high),

measured with the dynamometer on the healthy limb.

Once the three thresholds were defined, in method 1,

the patient was provided with visual feedback via colored

bars (red for high, yellow for medium, and green for low)

as to which threshold to perform next. In method 2, no

feedback was provided. Amputees had difficulty reaching and

maintaining the three thresholds used in method 1, while

method 2 proved to be more natural and more repeatable.

For this reason, method 2 was used for the determination of

the threshold.

• Prosthesis control

The RoboLimb hand is controllable in terms of velocity by

setting pulse with modulation (PWM) values (RoboLimb

manual). For the movements related to the platform, point,

pronation, and supination classes, the PWM values were set

at 50%. The validation of the force classifiers needs to measure

the grasping force of the prosthesis. As the grasping forces with

the RoboLimb cannot be set, tests were performed in which

the PWM was varied and the grasping force was measured

with the dynamometer. From the tests, the determination

of three PWM values (25, 50, and 75%) corresponding to

three strength values (approximately 7.5N, 15N, and 30N

respectively) was possible.

Then, the experimental protocol provided the following steps:

• Step 1 - Force-thresholds settings

The force signal was acquired through the interface

composed of NI-DAQ and a custom board. During the tests,

the patient was asked to grasp the hand dynamometer and

perform the spherical and tip grips at the three force levels.

Three repetitions lasting 3 s were performed for each force

level. The mean values obtained from three acquisitions were

considered to define the low, medium, and high force levels,

for spherical and tip grasps. The low level was fixed between

the ± 10% of the low threshold, the medium level was fixed

as ±10% of the mean value for the medium threshold, while

the high level started from−10% of the highest threshold and

continued until the maximum value.

• Step 2 - Training step

The EMG and force signals were acquired through the

above-mentioned setup. The patient was asked to perform

bi-manually six times and hold each of the following seven

hand/wrist gestures for 3 s: rest (hand relaxed), spherical

(hand with all fingers closed), tip (hand with thumb and

finger touching as if picking a small object), platform (hand

completely open and stretched), point (hand with all fingers

closed except for the index finger), wrist supination, and wrist

pronation (with relaxed hand). For the grasping tasks, the

amputees were asked to also modulate the force according to

three force levels, as established in Step 1. For each gesture,

six repetitions were acquired. The recorded sEMG data were

organized in a DataSet matrix (33,600 rows 6 columns). Each
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column of the matrix was coupled with an EMG sensor, while

the rows represented the recorded samples.

• Step 3 - Online validation

A prosthetic system, composed of a hand device

(RoboLimb, Touch Bionics) and a wrist module (Wrist

Rotator, Ottobock) was employed to evaluate the real-time

robustness of the proposed strategy. A custom electronic

board and relative firmware were developed to control the

prosthesis via Bluetooth. The EMG signals were acquired

through the interface composed of NI-DAQ and a custom

board; the classification of gestures was obtained, as was the

classification of force levels for the spherical and tip classes.

Moreover, during the performing of each motion class, the

outputs of the classifiers were recorded three times for 5 s

(Kuiken et al., 2009) (for a total of 33 recordings) to evaluate

the real-time robustness of the PR-based system.

Three algorithms were used for the classification: logistic

regression (LR), non-linear logistic regression (NLR), and linear

discriminant analysis (LDA). In particular, LR was also considered,

in addition to the NLR algorithm, to simplify the training step of

the model (without the polynomial expansion) and speed up the

real-time prediction (within 80 ms). For each proposed algorithm,

three classifiers were created: the first was employed for gesture

recognition, namely “hand/wrist gestures classifier”; while the other

two, “spherical force classifier” and “tip force classifier”, could

identify three force levels (Leone et al., 2019). If the output of the

“hand/wrist gestures classifier” is spherical or tip (Figure 2), the

relative force classifier will work simultaneously to classify the force

level (low, medium, or high). In particular, the enveloped EMG

signal was acquired at 1 kHz, as the specified frequency bandwidth

for the sensors is 90–450 Hz (Ottobock, 2008). When the training

was performed without FE, the “raw” enveloped EMG signals were

used as input to the classifier. For each motion class, 4,800 samples,

recorded from each of the six sensors, were used as input for the

classification system. Advanced signal processing was not necessary

due to the high quality of the EMG signal provided by the Ottobock

13E200 active sensors, which have a common mode rejection ratio

of more than 100 dB. The internal circuitry of the sEMG sensors

includes an amplification stage and two filters: a high-pass filter to

remove motion artifacts and temperature fluctuations, and a low-

pass filter to eliminate high-frequency interference from sources

such as radio broadcasts, phones, and computers (Ottobock, 2008).

2.2. Features extraction

In the literature, a comparative analysis between LDA with

time-domain features extraction (FE) and NLR without FE

showed no statistically significant difference for the classification

performance of five hand gestures (Bellingegni et al., 2017). In this

study, the complexity of the classification system was increased

by extending the classification from five to seven classes and also

considering three different force levels by using the same number of

sensors. As the use of EMG PR-based strategies with time-domain

features has often been used to improve the robustness of advanced

prosthetic systems (Geethanjali and Ray, 2014), the performance

FIGURE 2

Hierarchical classification strategy description. The “hand/wrist

gestures classifier” outputs are represented by these seven di�erent

gestures: 1, Rest; 2, Spherical; 3, Platform; 4, Point; 5, Tip; 6,

Supination; 7, Pronation. If its output class is “spherical”, the

“spherical force classifier” will work simultaneously to classify the

three force levels (H = High, in red; M = Medium, in yellow; L = Low,

in green). Likewise for tip.

of the proposed PR-based control strategy with and without the

FE step was verified. A statistical analysis based on the U-test with

Bonferroni correction (p < 0.016) was used for this purpose.

In detail, the following features (Too et al., 2019) were extracted

from the “raw” EMG data by using each analysis window of 150

ms with an overlap of 50 ms (Smith et al., 2011): the enhanced

mean absolute value, enhanced wavelength, slope sign change, root

mean square, and variance. Additional details can be found in

Supplementary Section 1 of the Supplementary material.

2.3. Logistic regression (LR) and non-linear
logistic regression (NLR) classifiers

The LR, or perceptron, is a linear and binary supervised

classification algorithm used to come up with a hyperplane in

feature space to separate observations belonging or not belonging

to a class.

The class membership probability is evaluated using the logistic

function (Equation 1) for both LR and NLR classifiers:

P(1 | x, θ) = g(θT · x) =
1

1+ e−θT ·x+θ0
(1)

where g(·) is the logistic function and θ and θ0 are the classification

parameters vector and bias term, respectively.

In the linear case (LR), x represents the polynomial features

of first grade. For the NLR classifiers, additional polynomial

features of x (e.g., x1, x2, x1 ∗ x2, x
2
1, x

2
2) were introduced to non-

linearize this logistic regressionmodel. Once the optimalmodel was

found, different decision thresholds were tested and the one that

maximized the F1 score values was chosen.

The training and test were subdivided by considering the

two ways data split approach (Ripley, 2007): 70% of the data

was reserved for the “training set”, while the remaining 30%

of the data was reserved for the “test set”. The overfitting was
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mitigated by using a random shuffle to fill these subsets with a

proper proportion of all classes’ sample distributions. Each single

classifier was iteratively trained with all possible configurations of

its internal parameters that had an appropriate range of values

(Bellingegni et al., 2017). In this way, the bias effects were reduced,

and, considering an estimate of the generalizing ability of each

classifier, it was possible to explore the best model. For the LR and

NLR algorithms, the first-order iterative optimization algorithm

“gradient descent” was used to set the optimal internal parameters.

A one vs. all approach was introduced to adapt the LR and the NLR

classification algorithms to the multi-class classification problem.

Additional details can be found in Supplementary Section 2 of the

Supplementary material.

2.4. Linear discriminant analysis

The LDA is a binary supervised machine learning algorithm

and guarantees the maximum class separability (Welling, 2005)

by transforming the features into a lower dimensional space,

maximizing the ratio of the between-class variance to the within-

class variance.

The class label (c) was predicted as follows Equation (2):

hβ (x) = maxc
(

cβ
T · x+ cβ0

)

(2)

where cβ and cβ0 are the classification parameters vector and the

bias term of c class, respectively.

Additionally, a random shuffle was implemented to fill these

subsets with a proper proportion of all classes’ sample distributions.

A one vs. all approach was implemented to solve the multi-class

classification problem with a binary algorithm as the LDA. The

Matlab Classification Learning tool was used to develop ad-hoc

software for the construction of each of the three LDA classifiers.

Additional details can be found in Supplementary Section 3 of the

Supplementary material.

To summarize, each of the three algorithms were tested as a

classification system. Each classification system was composed of

three different classifiers, one for hand/wrist gesture recognition

and two for the force levels. Finally, for the real-time analysis, the

results of the classification system, for each algorithm, with the

FE step to evaluate which one guaranteed better performance, was

reported.

3. Results

3.1. O	ine performance

The results of a comparison among the performance of the

three algorithms (LR, LDA, and NLR) with or without the

feature extraction step were presented. The offline classification

performance on 15 transradial amputees was evaluated. For all the

classifiers, performance was evaluated in terms of accuracy and

F1 score.

The statistical analysis, based on the U-test, was applied to

the F1 score values to highlight significant differences in terms

FIGURE 3

(A–C) F1 score mean values calculated for 15 transradial amputees using the LR (in blue), LDA (in red), and NLR (in green) algorithms for the

“hand/wrist gestures classifier” (A), the “spherical force classifier” (B), and (C) the “tip force classifier” algorithm (C), tested on the “test set” with and

without the five time-domain FE. Statistical significance is indicated by “*”.
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of performance with or without the FE, for the three algorithms.

The average F1 score values are presented in Figure 3: for the

“hand/wrist gesture classifier”, only the LDA algorithm pointed out

the statistically significant differences between the aforementioned

cases. Instead, for the “spherical force classifier”, both the LR and

LDA algorithms showed a statistically significant improvement of

the F1 score with the FE. This trend was also confirmed for the

“tip force classifier” for the three algorithms. The following results

consider the FE.

For the “hand/wrist gesture classifier”, the mean classification

accuracy reached the following values: 91.68 ± 2.84, 92.11 ±

2.89, and 90.70 ± 2.77 for the LR, LDA, and NLR algorithms,

respectively, (see details in Supplementary Table 2). For the force

classifiers, the mean accuracy was above 95% for all three

algorithms (see details in Supplementary Table 3).

The box plots in Figure 4 provide an overview of the F1 score

values with FE among the motion classes for the three classifiers.

For the “hand/wrist gestures classifier”, the motion classes with the

lowest F1 score mean values (approximately 90%) were as follows:

the tip class and point class with the LR algorithm; the spherical

class and tip class with the LDA algorithm; and the tip class, point

class, and wrist supination class with the NLR algorithm. For both

the “spherical force classifier” and the “tip force classifier”, themean

F1 score values were above 95 % for the three algorithms. The

comparative analysis applied to F1 score values, based on theU-test

with Bonferroni correction (p < 0.016), reported no statistically

significant difference among the LR, LDA, and NLR classifiers.

For the three algorithms, the “hand/wrist gestures classifier”

showed the highest values of misclassification errors for the

spherical and tip grasping tasks. The confusion matrices

(in Supplementary Figure 1) confirmed the results of the

classification accuracy.

For the “hand/wrist gestures classifier”, the spherical and

tip motion classes presented some misclassified data out of the

main diagonal. For the “spherical force classifier” and “tip force

classifier”, the majority of the misclassified data out of the main

diagonal were related to the low and medium force levels.

3.2. Real-time performance

A real-time performance evaluation was carried out for

each proposed algorithm applied to the hierarchical classification

approach. The accuracy of the online classification of the proposed

strategy was estimated by asking the subjects to perform the overall

movement classes, modulating the three different strength levels for

the spherical and tip classes as well. All the tasks were replicated

by the prosthetic system, modulating the three levels of force with

three different closing speeds of the prosthetic hand.

The motion completion rate (MCR) (Kuiken et al., 2009) was

used as a performance indicator: MCR indicated the percentage of

successfully completed motions out of the total attempted motions.

All three classifiers with FE (“hand/wrist gestures classifier”,

FIGURE 4

(A–C) Average F1 score values calculated for 15 transradial amputees using the LR (in blue), LDA (in red), and NLR (in green) algorithms, tested on the

“test set” with the five time-domain features extraction (FE) step for the “hand/wrist gestures classifier” (the F1 Score of the seven hand/wrist gestures

classes have been reported) (A), the “spherical force classifier” (B), and the “tip force classifier” algorithm (C). The F1Score values of the three force

levels have been shown. No statistically significant di�erences based on a U-test with Bonferroni correction among classes were found for the LR,

LDA, and NLR classifiers.
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“spherical force classifier”, and “tip force classifier”) were tested in

real-time with the LR, LDA, and NLR algorithms and produced

a new prediction every 90 ms. In particular, the online accuracy

and the MCR are reported in Figures 5, 6 and calculated over three

repetitions of all the 11 motion classes (in this case, the three force

levels for the spherical and tip classes were considered as a motion

class).

For the “hand/wrist gestures classifier”, the real-time mean

accuracy among motion classes was equal to 93.12 ± 1.18, 91.24

± 1.25, and 92.06 ± 1.19 for the LR, LDA, and NLR classifiers,

respectively. In detail, for the “hand/wrist gestures classifier”, the

spherical class with low force and the tip class with high force

showed the lowest accuracy values (below 90%) for the three

algorithms. Regarding the force level classification, the medium

force, related to the “spherical force classifier”, and the low force,

related to the “tip force classifier”, obtained below-average (90%)

accuracy values. The mean MCR values are reported in Figure 6.

In detail, for the “hand/wrist gestures classifier”, the lowest MCR

values (below 90%) for the spherical with low force, the tip with

high force, and the platform motion classes were obtained. For the

force classifiers, the spherical with medium force and the tip with

low and medium force reached the minimumMCR values. The U-

test with Bonferroni correction (P < 0.016) applied to the online

accuracy and theMCR values pointed out no statistically significant

difference among the three algorithms.

Finally, Figure 7 shows the signals obtained from the

dynamometer when the amputee performed grasping tasks

(spherical or tip grasp) with the prosthesis. Two outputs, related

to the desired motion class and the corresponding force level in the

case of a grasping task, were sent simultaneously to the prosthesis.

In detail, the “hand/wrist gestures classifier” discriminated the

desired motion class to perform with the prosthesis: if the

predicted output was the “spherical” or “tip” class, the force

levels information was also added and the classification approach

FIGURE 5

(A, B) Online accuracy calculated for 15 transradial amputees using the LR (in orange), LDA (in gray), and NLR (in yellow) “hand/wrist gestures

classifier” (A) and the LR (in orange), LDA (in gray), and NLR (in yellow) force classifiers (B): the “spherical force classifier” and the “tip force classifier”

for the spherical and tip grasp, respectively.
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FIGURE 6

(A, B) Average MCR percentages calculated for 15 transradial amputees using (A) the LR (in orange), LDA (in gray), and NLR (in yellow) “hand/wrist

gestures classifier” (A) and the LR (in orange), LDA (in gray), and NLR (in yellow) force classifiers (B): the “spherical force classifier” and the “tip force

classifier” for the spherical and tip grasp, respectively. The mean MCR percentage was calculated over three repetitions of the reported motion

classes.

become hierarchical. The effect of force level classification was

translated into the control of the hand device at three different

speeds, representing each force level. Thus, Figures 7A, B show the

force signals obtained when the prosthesis applied the three force

levels (low, medium, and high) on the dynamometer during the

“spherical” and “tip” class, respectively.

4. Discussion

In this study, a hierarchical PR-based control that allows the

recognition of seven gestures and, for grasping tasks, three levels

of force, was presented. This approach, based on the strategy

presented previously by Leone et al. (2019), was successfully

used to control a prosthetic system. Both the offline and real-

time performance were evaluated for 15 transradial amputees. A

statistical analysis, based on the U-test with Bonferroni correction,

was conducted to assess the effect of the FE on the F1 score

values for three algorithms: LR, NLR, and LDA. The F1 score

and classification accuracy for the offline evaluation were reported

along with the real-time accuracy and MCR values for the

online evaluation.

4.1. O	ine performance

The main results of the preliminary analysis showed a

statistically significant difference related to F1 score improvements

when considering the FE. This effect can be summarized as a

10.42% increase of the mean F1 score values of the seven output

classes and a 4.84% reduction of the misclassification error values.

These results seem to be very promising thanks to the simultaneous

classification of hand/wrist gestures and force levels by transradial

amputees with an F1 score of more than 90% for the “hand/wrist

gestures classifier” and 95% for the force classifiers, implemented

with the three algorithms. The performance obtained with 31

healthy subjects (Leone et al., 2019) were compared with the results

of this study. For the NLR and LDA algorithms, the mean F1

score values were approximately 95% for the “hand/wrist gestures

classifier” and more than 97% for the force classifiers, except for
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FIGURE 7

The dynamometer data showed the force signals obtained when the prosthesis applied the three force levels (low, medium, and high) during the

spherical (A) and tip class (B).

the NLR “tip force classifier”, which had a mean F1 score value

of 94%. In this study, amputees had mean F1 score values that

were 4 and 2% lower than those of the healthy subjects for the

NLR and LDA “hand/wrist gestures classifier” and “spherical force

classifier”, respectively, while they obtained 1% higher mean F1

score values than those of healthy subjects for the NLR “tip force

classifier”. Additionally, the offline misclassification error rates,

defined as the percentage of incorrect classifications, were used

to evaluate the classifier performance: they remained within 10%

and this can be considered a positive result for a usable system

(Scheme and Englehart, 2011). The confusion matrices, available in

the Supplementary material, confirmed the good results in terms of

accuracy. For the force classifiers, the low and medium force levels

produced most of the misclassified data out of the main diagonal.

Some amputees (as the subjects P1, P2, P3, P5, P7, and P12,

described in Supplementary Table 1) found modulating between

low and medium force levels more difficult than others, especially

during a tip grasp. This finding may be due to the shorter length of

the stump. In addition, the dynamometer data (Figure 7) confirmed

that the prosthesis applied the three levels of force.

4.2. Real-time performance

The real-time results of the hierarchical PR-based strategy were

reported. For each algorithm (i.e., LR, LDA, and NLR), the online

accuracy and the MCR were reported to identify the robustness of

the proposed system.

Compared with the literature, the proposed PR-based

hierarchical classification strategy of hand/wrist gestures and

force levels was tested on 15 transradial amputees instead of three

(Fang et al., 2022). In addition, the online accuracy for 11 motion

classes was evaluated. Comparing the online accuracy for the wrap

motion (comparable with the presented spherical gesture) and

two-finger pinch gestures (comparable with the tip motion class),

these values did not exceed 90% for the three force levels in Fang

et al. (2022). In this study, the medium and high force levels of the

spherical motion class and the high level of the tip motion achieved

the highest online accuracy values (above 90%). For the force

classifiers, the obtained MCR values may depend on the difficulty

of amputees to keep the muscle contraction stable for both the

grasping task and force levels. In particular, the tip grasping task

with the medium level was the most difficult to reproduce and keep

stable in real-time for the majority of amputees.

Moreover, in Farrell and Weir (2007), the classification outputs

for the final decision were made within 300 ms from the end of the

desired motion. In this study, both the LR and NLR guaranteed a

response time of 100 ms, in real-time, which is lower than the delay

of 160 ms reported by Fang et al. (2022).

This study made it possible to evaluate the performance of the

proposed strategy based on the approach presented by Leone et al.

(2019), both offline and for real-time applications, and investigated

a new methodology for the perception of the force applied by the

patient. The solution with the best performance could be obtained

using the LR algorithm with FE for the “hand/wrist gestures

classifier” and the NLR with FE for the spherical and tip force

classifiers. However, a more in-depth analysis should provide more

evidence for this supposition.

5. Conclusion

This study presented a hierarchical classification approach that

is able to discriminate hand/wrist gestures and force levels on a

prosthetic device. In a previous study by Leone et al. (2019), only

the offline performance of this classification strategy was evaluated

on 31 healthy subjects. In this paper, the offline performance of

amputees was promising and similar to that of healthy subjects:

the 15 transradial amputees had an F1 score of more than 90% for

the “hand/wrist gestures classifier” and 95% for the force classifiers,

implemented with the three algorithms with FE. Additionally, the

offline misclassification error rates remained within 10% and this

can be considered a positive result for a usable system (Scheme

and Englehart, 2011), and compared with the literature (Fang et al.,

2022). These results demonstrate the feasibility of the hierarchical

PR-based approach to simultaneously control hand/wrist gestures

and force levels, particularly when considering amputee subjects.

Moreover, a response time of 100 ms, with a mean online accuracy

above 90%, makes it suitable for real-time applications. Future

studies will be focused on the validation of the presented method

on an embedding solution of this classification system: the final

electronic device, composed of a microcontroller unit, will allow
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amputees to wear the prosthetic device to simultaneously control

hand/wrist gestures and force levels.
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