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Surface defect detection is an important technique to realize product quality

inspection. In this study, we develop an innovative multi-scale pooling convolutional

neural network to accomplish high-accuracy steel surface defect classification. The

model was built based on SqueezeNet, and experiments were carried out on the

NEU noise-free and noisy testing set. Class activation map visualization proves that

the multi-scale pooling model can accurately capture the defect location at multiple

scales, and the defect feature information at di�erent scales can complement and

reinforce each other to obtain more robust results. Through T-SNE visualization

analysis, it is found that the classification results of this model have large inter-class

distance and small intra-class distance, indicating that this model has high reliability

and strong generalization ability. In addition, the model is small in size (3MB) and runs

at up to 130FPS on an NVIDIA 1080Ti GPU, making it suitable for applications with

high real-time requirements.
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1. Introduction

Surface defect detection is one of the most important processes that affects the quality of
the products (Ravikumar et al., 2011). Some surface defects will not only affect the appearance
of the product surface but also endanger the user’s property and life safety of users. In the
beginning, surface defect detection is realized by manual inspection, hindering the improvement
of productivity. It is vital to develop competent defect detection systems to replace manual work
and satisfy the growing demands for automated inspection in the manufacturing sector (Song
and Yan, 2013; Neogi et al., 2014).

With the development of machine vision technology, defect detection task has attracted
extensive attention from researchers in the industry. A typical visual inspection system
includes hardware and defects identification algorithms. These algorithms use different kinds of
approaches to implement defect detection, template-based (Song and Yan, 2013), morphological
filter (Mak et al., 2009), Fourier transforms (Zorić et al., 2022), Gabor filters (Bissi et al., 2013),
wavelet (Li and Tsai, 2012; Li et al., 2015), Markov random field (Dogandžić et al., 2005), sparse
dictionary reconstruction (Kang and Zhang, 2020), decision tree (Aghdam et al., 2012), random
forest (Zhang et al., 2019), and support vector machines (Chu et al., 2017). These methods
achieve the representation of defect features through manually designed feature extractors,
which are highly subjective, and their defect recognition performance is affected by the designer.
The detection performance will be somewhat compromised as the defect’s morphology changes
and the generalization ability of these detection approaches are limited.
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In recent years, the theory of artificial neural networks
and graphic processing unit (GPU) has been developed rapidly.
Convolutional neural network (CNN) brings a new solution to
vision-based tasks such as object classification and detection. LeNet
is proposed by LeCun et al. (1998), it is the first CNN that can
be applied to handwriting character recognition on letters. AlexNet
is the next influential CNN model, it is the first CNN deployed
on GPU, which can greatly improve the speed of training and
testing, and provides a research basis for the subsequent extensive
application of the CNN model (Krizhevsky et al., 2012). The next
representative model is VGG (Simonyan and Zisserman, 2015), it
incorporates 3×3 kernel to reduce parameters, and it is deeper and
better than the previous model. The VGG16 model achieves 92.7%
top-five test accuracy in ImageNet. He Kaiming et al. proposed
ResNet (He et al., 2016), a very deep neural network with hundreds
of layers, and skip connections are used to jump over some layers
to enhance gradient backpropagation and restrain gradient vanish.
Afore-mentioned models tend to use more stacked layers to obtain
higher classification accuracy, which leads to an increasing number
of network parameters, reducing the computation efficiency. To
solve this problem, some researchers have proposed a CNN model
with fewer parameters and high accuracy. Iandola et al. proposed
SqueezeNet (Iandola et al., 2016), which incorporates 1×1 and
3×3 kernels to build the model, it is about 1/50 parameters of
AlexNet. Howard et al. proposed a lightweight deep neural network-
MobileNet (Howard et al., 2017) which could be applied to mobile
and embedded vision applications.

With the emergence of constantly updated image classification
models, CNN has been applied to various fields, such as medical
image processing (Wang et al., 2018, 2020). Surface defect
classification of industrial products is also an important application
of CNN. Khumaidi et al. proposed a CNN model to obtain welding
defect classification (Khumaidi et al., 2017). Li et al. proposed an end-
to-end surface defects recognition system that incorporates a defect
saliency map and convolutional neural network (Li et al., 2016). Fu
et al. proposed a deep-learning-based model, which emphasizes the
training of low-level features and incorporates multiple receptive
fields (Fu et al., 2019). Ren et al. presented a CNN model to perform
surface defects inspection task, and feature transferring from pre-
trained models is used in the model (Ren et al., 2018). At present,
in most of the research articles on defect detection, the feature
distribution of the testing set and training set is relatively consistent,
which cannot effectively test the generalization ability of themodel. In
the actual model deployment process, there are differences between
the collected images and testing set, and the generalization ability
of the model should also be considered an important aspect of
model performance evaluation. In addition, the contents of current
defect detection research papers mainly focus on the accuracy and
performance comparison, and there are few defects features and
rules studied by researchers, which are insufficient to establish clear
corresponding relationship between the internal features of neural
networks and defect detection tasks.

To settle the two problems, we propose a lightweight CNNmodel
to achieve precise and efficient steel surface defect classification. Our
CNN model is constructed on the SqueezeNet pre-trained model,
an innovative multi-scale pooling (MSP) module which is proposed
to learn semantic features at different scales. These features pooled
on the three dimensions have been jointly considered to predict
an optimal classification result. To explore the hyperparameter

characteristics and their distribution rules obtained through training
the model, the class activation map is used to visualize the activated
features. Furthermore, to analyze the distribution information of the
high-dimensional features in the CNN model, T-distribution and
stochastic neighbor embedding (T-SNE) are used to reduce the data
dimension to obtain a more comprehensible class-specific feature
distribution rule.

Our proposed model runs about 130 FPS on a single
NVIDIA 1080Ti GPU (12G memory), which can meet the needs of
manufacturing enterprises for defect identification efficiency. Overall,
the main contributions of this study are summarized as follows:

• We propose a lightweight CNN model, which is constructed
based on SqueezeNet. An architecture that integrates class-
specific defect cues after pooling rich features at multiple scales
is proposed.

• The proposed model is initialized using the SqueezeNet pre-
trained model, it is then fine-tuned by transferring learning
across the NEU dataset. The model is tested on the noise dataset
to confirm the generalization ability of the proposed model.

• The distribution characteristic of the defect at multi-scale
learned by the neural network is analyzed using the class
activation map, which sheds insight into the position of the
defect features that are crucial for classifying the defect type. T-
SNE is used to analyze the classification feature vectors in neural
networks to further demonstrate the generalization ability of the
proposed model.

The rest of the article is organized as follows. In Section 2, the
SqueezeNet model and an optimization module are introduced. The
performance and experimental comparisons of our proposed model
are presented in Section 3. Finally, Section 4 concludes the article.

2. Proposed method

In this section, the details of pre-trained model and a multi-
scale pooling module are presented. The complete structure of the
proposed model is shown in Figure 2.

2.1. SqueezeNet-based defect classification

In the past decade, much of the research on convolution
neural networks (CNNs) has focused on image classification task.
Researchers have found that deepening the network depth can
effectively improve the classification accuracy (He et al., 2016), as a
result, increasing the CNN depth has become an important technique
to improve performance. With the improvement of the network
depth, the parameters in the network and the computational burden
are also increasing. However, some industrial product inspection task
requires real-time speed, so it is extremely important to develop
a model that can accurately and quickly identify the image. The
lightweight SqueezeNet (Iandola et al., 2016) can achieve high
accuracy without loss of efficiency. The whole structure schematic
diagram of the SqueezeNet model is shown in Figure 1.

In previous models, such as AlexNet (Krizhevsky et al., 2012) and
VGG (Simonyan and Zisserman, 2015), the convolutional layers are
constructed entirely using 3 × 3 filters. Compared to AlexNet and
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FIGURE 1

The architecture of the pre-trained SqueezeNet model (Iandola et al.,

2016).

VGG, SqueezeNet has two advantages (1) Replace of 3× 3 filters with
1×1 filters, (2) Decrease the number of input channels of 3×3 filters.

We plan to build our model based on the SqueezeNet pre-
trained model. Pre-trained model is helpful for improving model
performance in machine/computer vision-related tasks. Traditional
non-deep-learning-based (machine learning-based or statistical)
methods use hand-crafted features (Mak et al., 2009; Bissi et al., 2013;
Song and Yan, 2013; Zorić et al., 2022). Researchers can observe
the dominant feature regularity in a small amount of data to design
feature extractors. However, for deep-learning-based models, the
model learns the characteristic distribution of the features from a
large amount of data. In general, the higher the complexity of the
model, the more data are required. Inadequate data may lead to
problems such as overfitting and weak generalization ability (Belkin
et al., 2019; Xu et al., 2020). In the industrial defect inspection task, it
is difficult to obtain a large number of images for there are limited
specimens. However, transfer learning provides a feasible scheme

TABLE 1 Detailed parameter configurations of layers in the SqueezeNet

model.

Layer name i Si Ei

Fire 2 i= 2 16 64

Fire 3 i= 3 16 64

Fire 4 i= 4 32 128

Pool 4 – – –

Fire 5 i= 5 32 128

Fire 6 i= 6 48 192

Fire 7 i= 7 48 192

Fire 8 i= 8 64 256

Pool 8 – – –

Fire 9 i= 9 64 256

to alleviate this problem, where a model is trained on ImageNet
at first and then fine-tuned on the target dataset. The effectiveness
of transfer learning methods based on pre-trained models has been
demonstrated on a large number of machine/computer vision-related
tasks (Lu et al., 2020; Bouaafia et al., 2021). The surface defect
inspection task is an important application of machine/computer
vision in the industrial field, so it is reasonable and effective to apply
the pre-trainedmodel to our task. In addition, the pre-trainedmodels
like VGG, ResNet, and SqueezeNet are publicly available (Simonyan
and Zisserman, 2015; He et al., 2016). There is no need for the
researcher to train the model on ImageNet again. Therefore, we build
the proposed convolutional neural network based on the SqueezeNet
pre-training model.

There are two individual convolutional layers ( Conv1 and
Conv10), three pooling layers, and nine fire modules. Each
fire module is comprised of a squeeze layer (namely Fire
i/ Squeeze) and two expand layers (namely Fire i/ Expand
1 × 1 and Fire i/ Expand 3 × 3), among which i is the
sequence number of fire module. The detailed configurations
of nine fire modules and pooling layers are presented
in Table 1.

The stride of pooling layers Pool 1, Pool 4, and Pool 8 is set to
2. It can be observed that the third pooling layer, Pool 8, appeared
in the deep location of SqueezeNet, ensuring the feature maps (Fire
5 ∼ Fire 8) have high resolution. In each fire module, the channel
number of the squeeze layer is Si, expand layer Ei, Si is set to a
quarter of Ei in all fire modules to reduce the number of input
channels to 3 × 3 expand layer. The pre-trained model is trained
in ImageNet; n is the channel number of “Conv 10” as shown
in Figure 1, which is set to 1,000 originally. To apply SqueezeNet
to our task, n of “Conv 10” is modified to 6 because there are
six types of defects in the NEU datasets (Song and Yan, 2013).
A global average pooling (GAP) layer “Pool 10” is then connected
to Conv10. GAP computes the average value of the input feature
map. GAP could partially retain the spatial structure information
of the input feature. Furthermore, compared to the traditional fully
connected layer, the GAP does not generate additional parameters
thus reducing the computational burden. The final layer is the
Softmax loss layer, which is used to compute the cross-entropy
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between network output and label. Specifically, the loss function is
defined as

Loss = −
n

∑

k=i

t̂i log f (zi), (1)

where n = 6, t̂i = 1 when the label of input image is i, otherwise
t̂i = 0. f (zi) is the confidence score, which is calculate by softmax,
defined as

f (zi) =
ezi

∑n
j=1 e

zj
, (2)

where zi is the number i output value of “Pool 10.”

2.2. Model Optimization

Based on the constructed Squeezenet model, this study proposes a
multi-scale pooling (MSP) and multi-scale feature fusion structure to
improve the accuracy of defect classification. The whole architecture
of the proposed model is shown in Figure 2. All the activation
functions used in our model are Rectified Linear Unit (Relu).
All the activation functions are omitted for brevity, as shown
in Figure 2.

The layers from Conv1 to fire 9 in the SqueezeNet model are used
as a feature extractor to extract defect features of an input image.
The input image size is 256 × 256. After feature extraction based
on SqueezeNet, the output feature dimension is n× 16× 16, where n
is as defined earlier. In themulti-scale poolingmodule, three different
convolutional layers are connected to the feature extractor separately.
The detailed parameters of three convolutional layers: (1) Conv11-
1 uses k1 × 1 × 1 filter, stride = 1; (2) Conv11-2 uses k2 × 1 × 1
filter, stride = 2; (3) Conv11-3 uses k3 × 1 × 1 filter, stride = 4.
After convoluted by Conv11, the dimension of output feature maps
at three scales are k1 × 16 × 16, k2 × 8 × 8, and k3 × 4 × 4. We
set k1 = 6, k2 = 6, and k3 = 6 for six classes of defect, which
is helpful to promote the convolutional layer Conv11 to learn better
class-specific features. Considering there are different types of defects,
the defects differ in pattern size and morphology. The proposed
multi-scale module in our model could effectively capture semantic
defect features at different scales. The detailed visual comparison of
the defect recognition effect of the model at different scales will be
shown in Section 3.5. The afore-mentioned process is described as

h
mi(j)
j (x) = f (w

mi(j)
j x+ b

mi(j)
j ) (3)

where x is the output of SqueezeNet feature extractor,w
mi(j)
j and b

mi(j)
j

the weight and bias of themi(j)th channel filter in Conv11− j layer (j

is the scale number, and j = 1, 2, 3), h
mi(j)
j is the m(j)th channel filter

output after processed by Conv11− i,mi(j) = 1 ∼ kj.
Global average pooling layer calculate the average value of input

tensors (hmi(j)) across kj channels, each channel generates a class-
related value (Lin et al., 2013). The operation is described as

y
mi(j)
j =

1

R

∑

(p,q)∈R
h
mi(j)
jpq (4)

where y
mi(j)
j is themi(j)th feature map output value in scale j, R is the

element total number ofmi(j)th feature map, and h
mi(j)
jpq is the element

value at (p, q) in region R.
In the multi-scale feature fusion stage, the output of three global

average pooling layers are stacked together by a concat layer, which
defined as

Fy = f cat(Y1,Y2,Y3) (5)

where Y j is the full set of y
mi(j)
j , defined as Y j = {ymi(j)

j },
f cat represents the concatenation operation stacking pooled values
Y1,Y2, and Y3 together. Fy is the fused tensor, due tomi(j) = 1 ∼ kj,
total length of Fy is k1 + k2 + k3. Fy is finally convoluted by a
convolution layer, using six channel number and 1 × 1 kernel size.
The parameters in feature extractor and new-added layer are updated
by cross-entropy loss, which is already introduced in Section 2.1.

Liu et al. proposed a lightweight model with multi-scale features
for steel surface defect classification (Liu et al., 2020). Their model is
named ConCNN, which is a concurrent CNN including input of two
different image scales. Specifically, the 200× 200 and 400× 400 pixel
images are input into two independent sub-networks with the same
structure, and the output feature vectors of both sub-networks are
fused to obtain the final classification output. Our proposed model is
quite different from the ConCNN, and the difference includes two
significant aspects. First, the multi-scale features in our model are
achieved by constructing different pooling layers at the high level
of the network; ConCNN inputs two scales of images so that two
individual sub-networks learn features at two scales. Second, our
model uses a pre-trained model to initialize the parameters in the
network, while the parameters of ConCNN are randomly initialized.
Yu et al. (2021) applied the high-order pooling for Alzheimer’s disease
assessment. The high-order pooling module is incorporated into the
classifier to make full use of the correlation within feature maps
along the channel axis to capture more discriminative CNN features.
Different from high-order pooling, the proposed multi-scale pooling
is constructed using first-order pooling at different scales. The focus
of the two types of pooling is different.

In our proposed model, the output of the SqueezeNet feature
extractor passes through the convolution layer with large step size;
the most significant defect features will be retained, while small-
size defect features will be suppressed in this process. More detailed
features will be preserved when processed by the convolution layer
with a small step size. The suggested model has a good detection
performance because it can collect defect characteristics of both
large and small sizes at a high level by combining the defect
feature information from both sources. The effectiveness of the
proposed multi-scale pooling structure is systematically evaluated in
Section 3.3.

3. Experiments

3.1. Training and testing database

The NEU steel surface defect dataset (Song and Yan, 2013),
which is freely accessible online, is the basis for our experiment.
There are six classes of defects in the dataset, Crazing (Cr), Inclusion
(In), Patches (Pa), Pitted surface (Ps), Rolled-in scale (Rs), and
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FIGURE 2

The architecture of the proposed multi-scale pooling convolutional neural network.

FIGURE 3

Samples images of six classes of surface defects in the NEU surface defect dataset and a corresponding noise testing dataset.

Scratches (Sc). Some sample images of different defect classes are
shown in the top three rows of Figure 3. It can be seen that the
morphology of different defect types can show great differences,
including color, texture features, and defect size, bringing challenges
for defect classification. For each defect class, there are 300 images.
The dataset is divided into the training set and the testing set. A total
of 80% of samples is selected as the training set and 20% as the testing
set. We do not make use of any data augmentation techniques in the
training and testing sets.

Image noise, which is typically brought on by electronic noise
or environmental variables, is a random variation of color values
in acquired photographs. A typical type of picture noise, Gaussian
noise, is applied to the testing set to examine the effectiveness and

generalization ability of the suggested strategy in the case of potential
noise. Comparative samples of NEU testing set and corresponding
Gaussian noise images are shown in the bottom two rows of Figure 3.

Gaussian noise is statistical noise in which probability density
function is Gaussian distribution. The Gaussian distribution is
defined as

p(t) =
1

√
2πσ

e
−
(t − µ)2

2σ 2 (6)

where µ is average value and σ is standard deviation. To control the
intensity of noise, µ and σ are determined by a signal-to-noise ratio
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TABLE 2 The classification accuracy (%) of various steel surface defect

classification approaches in both the NEU datasets without/with noise.

Method NEU NEU with noise

GLCM+SVM (Haralick et al., 1973) 88.1 67.8

GLCM+NNC (Haralick et al., 1973) 89.7 71.0

GLCM+MLR (Haralick et al., 1973) 94.7 52.3

AELTP+SVM (Mohamed and Yampolskiy,
2013)

76.1 44.6

AELTP+NNC (Mohamed and Yampolskiy,
2013)

96.4 64.4

AELTP+MLR (Mohamed and Yampolskiy,
2013)

98.6 48.8

AECLBP+SVM (Song and Yan, 2013) 98.9 39.9

AECLBP+NNC (Song and Yan, 2013) 98.3 42.7

AECLBP+MLR (Song and Yan, 2013) 98.3 43.7

ETE (Li et al., 2016) 95.8 47.6

DECAF+MLR (Ren et al., 2018) 99.7 89.7

AlexNet (Krizhevsky et al., 2012) 91.4 83.4

ConCNN (Liu et al., 2020) 99.6 84.5

SqueezeNet (Iandola et al., 2016; Fu et al.,
2019)

99.7 82.9

SqueezeNet+MSP(Proposed) 100 94.6

(SNR) value, which is defined as

SNR = 10 log10

[
∑H

i=1

∑W
j=1 s(i, j)

2

∑H
i=1

∑W
j=1 n(i, j)

2)

]

, (7)

where H and W indicate the height and width of the input image;
s(i, j) and n(i, j) are the pixel values of signal and noise at pixel location
(i, j). The SNR value is set to 20 dB. Each noise image are generated
five times, and add up to 1,800 images (60×6×5). With the addition
of noise, defect morphologies of six types have changed, which brings
difficulties to the defect identification task.

3.2. Implementation Details

Caffe is one of the widely used deep-learning frameworks
that are publicly available (Jia et al., 2014). All the experiments
are implemented in Caffe. Stochastic gradient descent policy
is used to train the CNN models with a weight decay of
10−4 and a momentum of 0.9. The batch size is set to 32,
which means 32 sample images are computed per iteration. The
basic learning rate is 0.01 and after every 800 iterations, the
learning rate becomes one-tenth of the original. NVIDIA 1080Ti
GPU(12GB) is used in experiments to realize parallel computing
and achieve good performance. We use Xavier’s initialization
(Glorot and Bengio, 2010) for convolutional layers in our
proposed model.

3.3. Comparisons with other models

In order to verify the effectiveness of the proposed MSP module
and model, we compare our model with other defect classification
models, including machine learning (ML)-based and CNN-based
approaches. Among these approaches, the ML-based classifiers
include support vector machine (SVM), nearest neighbor clustering
(NNC), and multiple linear regression (MLR). Three feature
extractors–Gray level co-occurrence matrix (GLCM) (Haralick et al.,
1973), adaptive extended local ternary pattern (AELTP) (Mohamed
and Yampolskiy, 2013), and adjacent evaluation completed local
binary patterns (AECLBP) (Song and Yan, 2013)—are used. Nine
classificationmethods can be obtained by combining different feature
extractors and classifiers. Moreover, several CNN-based approaches
are also compared, including ETE (Li et al., 2016), DECAF+MLR
(Ren et al., 2018), AlexNet (Krizhevsky et al., 2012), ConCNN (Liu
et al., 2020), and SqueezeNet (Iandola et al., 2016; Fu et al., 2019). For
a fair comparison, all the approaches are trained and tested on the
same training and testing set, respectively. The training set includes
1,440 sample images (240×6), and the testing set includes 360 sample
images without noise (60× 6) and 1,800 with noise (60× 6× 5).

The comparative results are shown in Table 2.
It is noted that the classification accuracy of most machine-

learning approaches is higher than 85% on the NEU dataset
without noise. The defect feature characteristic of the testing set
and the training set is relatively consistent. After the feature
extractor obtains the defect features on the training set, the model
trained by the machine learning classifier is also applicable to
the testing set. The proposed model achieves 100% accuracy,
better than the rest of CNN approaches (100% vs. 95.8%, 99.7%,
91.4%, 99.6% and 99.7%). For the testing set NEU with noise, the
accuracy of most approaches has dropped dramatically, especially
ML-based approaches—GLCM/AELTP/AECLBP+SVM/NNC/MLR.
With the addition of noise, defect feature characteristics of the
sample images change accordingly. As a result, those models
with poor generalization ability could not identify the defect class
accurately. Among the CNN-based models, our proposed model still
achieved the highest accuracy (94.6%), which is much higher than
DECAF+MLR (Ren et al., 2018) (89.7%), AlexNet (Krizhevsky et al.,
2012) (83.4%), and ConCNN (Liu et al., 2020) (84.5%). Among
these methods, ConCNN (Liu et al., 2020) could achieve a close
performance to ours in the NEU dataset, but the accuracy drops to
84.5% in the noisy dataset. The reason behind this is that ConCNN
constructed by inputting two scale images encountered difficulties
in recognizing defect features with noise. According to the previous
discussions, it can be concluded that by adding the MSP module
to SqueezeNet, the accuracy improves from 82.9% to 94.6%, which
proves that our proposed MSP is effective and robust.

In order to obtain more detailed defect classification information,
the confusion matrixes of SqueezeNet and the proposed model on
two testing sets are shown in Table 3. Due to six classes of defect type,
each confusion matrix has six columns and six rows. Each column
of the confusion matrix represents the prediction class, and the total
number of each column represents the number of data predicted for
this class. Each row represents the real class of defect image and the
total number of data in each row represents the number of image
samples of that class. For example, the number in the third row (Pa)
and the second column (In) represents the total number of samples
whose real class is Pa, which is predicted to be In. Table 3A shows
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TABLE 3 The confusion matrix of SqueezeNet (Iandola et al., 2016; Fu et al., 2019) and the proposed model on NEU steel surface defect dataset without/with

noise.

(A) (B)

Cr In Pa PS RS Sc Cr In Pa PS RS Sc

Cr 60 0 0 0 0 0 Cr 300 0 0 0 0 0

In 0 59 0 1 0 0 In 2 133 0 41 72 52

Pa 0 0 60 0 0 0 Pa 1 0 299 0 0 0

PS 0 0 0 60 0 0 PS 106 5 14 169 5 0

RS 0 0 0 0 60 0 RS 4 0 0 0 296 0

Sc 0 0 0 0 0 60 Sc 0 0 0 0 4 296

(C) (D)

Cr In Pa PS RS Sc Cr In Pa PS RS Sc

Cr 60 0 0 0 0 0 Cr 300 0 0 0 0 0

In 0 60 0 0 0 0 In 0 267 0 20 0 13

Pa 0 0 60 0 0 0 Pa 0 0 300 0 0 0

PS 0 0 0 60 0 0 PS 46 3 4 239 8 0

RS 0 0 0 0 60 0 RS 0 0 0 0 300 0

Sc 0 0 0 0 0 60 Sc 0 0 2 0 0 298

(A) SqueezeNet in NEU testing set; (B) SqueezeNet in NEU testing set with noise; (C) proposed model in NEU testing set; and (D) proposed model in NEU testing set with noise.

TABLE 4 The running time and model size of several CNN-based methods.

Method Running time(s) Model size (MB) Accuracy in noisy testing set (%)

ETE (Li et al., 2016) 0.005 1.9 47.6

DECAF+MLR (Ren et al., 2018) 0.015 244 89.7

AlexNet (Krizhevsky et al., 2012) 0.085 15 83.4

SqueezeNet (Iandola et al., 2016) 0.007 3.0 82.9

Proposed 0.007 3.0 94.6

the classification results of SqueezeNet in the NEU testing set, it can
be seen that the only one In defect sample is wrongly identified as
PS. Table 3B shows the results in the noisy set; it can be seen that
the accuracy of identifying In and PS is low, indicating that they
are easy to be confused with other defect types. From Table 3C, it
can be seen from the experimental results that all defect classes are
correctly identified on the NEU testing set without noise. Table 3D
shows the results of the NEU testing set with noise, the defect samples
Cr, Pa, and RS are 100% accurately identified, In is easily confused
with PS and Sc and Ps is easily confused with Cr. The experimental
results prove that the proposedMSPmodule is helpful to improve the
accuracy of defect classification.

In order to comprehensively analyze and propose the model,
the running speed and model size of different CNN-based defect
classification methods are also compared. The comparison results are
shown in Table 4.

The running speed is the time for the model to process an image
sample, and three repeated experiments are used to calculate the
average speed. It is observed that the file size of the proposed model
is 3 MB, which is easy to deploy on mobile devices. Although ETE’s
model runs faster, it is less accurate than the proposed model. The
running speed of the proposed model reaches 130FPS on 1080TI
GPU, which is able to fully satisfy the demand for fast detection in
industrial scenarios.

TABLE 5 The classification accuracy (%) of MSP using di�erent scales in the

NEU dataset without/with noise.

The strides in MSP NEU NEU with noise

1 1 0.871

1, 2 1 0.898

1, 2, 4 1 0.946

1, 2, 4, 8 1 0.932

1, 2, 4, 8, 16 1 0.930

3.4. Ablation study

In the proposed model, the scale parameter settings of MSP
will impact the classification performance. To determine the
optimal scale parameters, the following comparison experiments
are conducted. In a pooling layer, the value of the stride is
usually set to 2n, that is, 1, 2, 4, 8, etc. Considering the output
feature width of the SqueezeNet feature extractor is 16. As a
result, all the optional strides are 1, 2, 4, 8, and 16. The MSP
module contains five different implementation ways, as shown
in Table 5.
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FIGURE 4

The detailed calculation process of class activation map at scale 1. (A) Test sample Crazing; (B) Test sample Patches.

The experimental results show that the combination of the
three scales achieves the best classification accuracy. When the
scale increases from one to three, the accuracy increases, and the
classification accuracy declines when the number of scales increases
further. This phenomenon of decreased accuracy is due to the fact
that the pooling layer with large strides will lose too much location
information, which is detrimental to defect feature recognition.
Therefore, the proposed MSP in our study is composed of three
pooling layers using 1, 2, and 4 strides, respectively.

3.5. Class activation map analysis

In order to analyze the defect features learned in neural networks
and which defect features are the key to judge the defect type, the class
activation map (CAM) is used for feature analysis in neural networks
(Zhou et al., 2016). In the proposed multi-scale pooling module,
conv11 − i are the last convolutional layers, and defect features are
learned at three scales. By multiplying the feature map in conv11− i

and the output value of the corresponding global average pooling
layer, summing up all products, the CAM is obtained. The process
is calculated as

Mj =
kj

∑

mi(j)=1

h
mi(j)
j (x) ∗ ymi(j)

j (8)

where h
mi(j)
j (x) and y

mi(j)
j (x) are the feature map and corresponding

activated score at jth scale, detailed description is given in Section 2.2.
Mj is the class activation map at scale j. To explain the calculation
process more intuitively, two types of defect sample images are
selected as examples. The detailed calculation process of CAM at
scale 1 is shown in Figure 4, where two types of defects were selected
for analysis.

Figure 4A shows the calculation process of using Crazing as a
testing image. In the Conv11 − 1 convolution layer, there are six
feature channels, namely h11 ∼ h61. The six feature maps are feed into
the GAP to get six activation scores, namely y11 ∼ y61. Specifically, the
six scores are 10.588, 0.005, 49.979, 5.6444, 1.007, and 0.049, which
are calculated by the intensity of pixels in the feature image. The CAM
at this scale is obtained by multiplying y11h

1
1, · · · , y61h61.

It is worth noting that some channels have richer feature
composition(h11 and h31), while others have fewer(h21 and h61).
When another defect type Pa is selected as the input image, the
corresponding feature maps are shown in Figure 4B. Different from
Figure 4A, h11, h

3
1, h

5
1, and h61 have richer feature composition, while

h21 has fewer. The explanation is that different types of defect features
will be activated on different channels.

For a comprehensive analysis, the class activation map
visualization results of six defect types at three scales in the multi-
scale pooling module are shown in Figure 5. For better visual
effects, the pixels of all CAM results are adjusted to 200 × 200,
and the grayscale images are converted to heat map mode. Two
samples of each defect type in NEU with noise testing set were
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FIGURE 5

The class activation map visualization results of convolutional features in MSP module and SqueezeNet.

selected for analysis, namely test sample A and B. To study the CAM
characteristic at three different scales and their differences, the CAM
of three scales in the proposed MSP module are given. To verify the
effectiveness of the proposed MSP module, the MSP of SqueezeNet
model is also shown for comparison.

It can be observed that the CAM at three scales can highlight
the defect regions, but the focus is different. In general, the results of
scale 1 have a higher resolution and can retain more detailed defect
cues; scale 3 highlights the main defect regions and ignores some
small-scale defect cues, while scale 2 is characterized by a synthesis of
scales 1 and 3. The focused regions at three scales complement each
other, such as the test sample A of Crazing, Inclusion, Patches, Pitted
surface, Rolled-in scale, and Scratches. Taking sample A of Crazing
as an example, it can be seen that the highlighted areas of scale 1 are
relatively scattered; the highlighted areas of scale 2 are compact and
concentrated in the lower right and upper right corners; highlighted
areas are concentrated in the upper right corner at scale 3.

In addition to being complementary, the highlighted areas at
multiple scales may show very high consistency, such as test sample
B of six defect classes. Consistency of highlight areas at multiple
scales could strengthen the identification of defects. Take sample B
of Inclusion as an example; the CAM at all three scales focus on
long-striped defect features. In addition, comparing the CAM of
the proposed model with SqueezeNet, SqueezeNet does not properly
focus on the defect area, such as sample A/B of Crazing, Pitted
surface, and Rolled-in scale. Missing the correct defect region will
result in false detection of the defect class. The afore-mentioned

comparison results could confirm the validity of the newly added
MSP module. In conclusion, the CAM of the proposed model
could accurately locate defect locations at multiple scales, and the
highlighted areas at multiple scales can complement and reinforce
each other. In the subsequent feature fusion layer, the neural network
can adaptively learn the relationship between features of different
scales according to the characteristics of defects to obtain more
reliable defect classification cues.

3.6. T-SNE dimension reduction visualization
Analysis

To study the class-related information learned in the hidden
layer of the neural network, the t-distributed stochastic neighbor
embedding (T-SNE) (Van der Maaten and Hinton, 2008) dimension
reduction method is used to visualize the neural network parameters.
Specifically, the six numerical parameters in Conv-12 (shown in
Figure 2) are used as raw data. T-SNE shows the representation of
six-dimensional data in two-dimensional, intuitively, the degree of
aggregation between different defect image samples. The distance of
two samples in raw data (six dimensions) is calculated as

pj|i =
exp(−‖xi − xj‖2/2σ 2

i )
∑

k6=i exp(−‖xi − xj‖2/2σ 2
i )

(9)
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FIGURE 6

The T-SNE feature dimension reduction visualization results comparison of di�erent CNN model classifiers in NEU dataset without/with noise. (A) AlexNet

in NEU testing set; (B) AlexNet in NEU testing set with noise; (C) SqueezeNet in NEU testing set; (D) SqueezeNet in NEU testing set with noise; (E)

proposed model in NEU testing set; (F) proposed model in NEU testing set with noise.

where xi, xj is the CNN features of two samples, and σ 2
i is variance.

Then, the joint distribution Pij is calculated as

Pij =
Pj|i + Pi|j

2N
(10)

where N is the total number of samples in testing set.
The distance of projection points in two-dimension is
calculated as

Qij =

(

1+
∥

∥yi − yj
∥

∥

2
)−1

∑

k6=l

(

1+
∥

∥yk − yl
∥

∥

2
)−1 (11)

where yi, yj is the projection points of two samples in
two-dimension. Kullback–Leibler (KL) divergence is used to measure
the similarity between points at high and low dimensions to ensure
that points with high similarity at high dimension also have high
similarity at low dimension. KL-divergence is calculated as

KL(P‖Q) =
∑

i6=j

pij log
pij

qij
(12)

The T-SNE dimension reduction visualization results of AlexNet,
SqueezeNet, and the proposed model are shown in Figure 6.

Figure 6A shows the result of AlexNet in the NEU testing set, it
can be seen that the samples Cr, Pa, RS, and Sc aggregate together and
have a clear separation, while In and PS mix together. Figures 6C, E
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FIGURE 7

Sample images of parasitic and uninfected cell image samples in the

Malaria dataset.

TABLE 6 The number of parasitic and uninfected cell image samples in the

Malaria training and testing dataset (Narayanan et al., 2019).

Malaria class Parasite Uninfected

Training set 220 196

Testing set 91 43

shows the results of SquuezeNet and the proposed model in the
NEU testing set, respectively; six classes of the defect image samples
are completely separated in both. It is worth noting that the PS
cluster in the proposed model is no longer in the middle of multiple
classes, thus increasing the inter-class distance, which is helpful in
obtaining more reliable classification results. Figures 6B, D shows
the results of AlexNet and SqueezeNet in the NEU testing set with
noise, respectively. It can be seen that many defect class clusters
show dispersion and mix with each other, such as Pa, PS, PS, and Sc.
Figure 6F shows the results of the proposed model in the NEU testing
set with noise, and these clusters have a clear separation; only a few
samples aremixed into other classes. To sum up, the clustering results
of the proposed model have a small intra-class distance and a large
inter-class distance, proving that our model has better performance
and strong generalization ability.

3.7. Generalization ability verification

To verify the generalization ability of the MSP module, we
conduct comparative experiments in the field of medical image
processing. We chose the cell Malaria image classification task
(Narayanan et al., 2019), which is provided by Kaggle. The Malaria
dataset includes two classes, parasitic and uninfected, and the typical
image samples are shown in Figure 7. It is observed that both cell
color and shape are highly variable. The training set and the testing
set have been partitioned in the original dataset and the partition of
the dataset is shown in Table 6. The training set contains 220 parasitic
and 196 uninfected samples, and the testing set contains 91 parasitic
and 43 uninfected samples.

The Malaria training set is trained on SqueezeNet and
SqueezeNet+MSP model with the same training parameters, and the
prediction accuracy is shown in Table 7. It can be seen that the
accuracy of the SqueezeNet reaches 97.7%, and the accuracy is further
improved by adding the MSP module, reaching 98.5%. This proves
that the proposed MSP is effective in improving the classification
accuracy of Malaria images. It can be concluded that MSP is not

TABLE 7 The classification accuracy (%) of SqueezeNet and proposed

model in the Malaria dataset.

Method SqueezeNet SqueezeNet+MSP (Proposed)

Accuracy (%) 97.7 98.5

only applicable in the field of industrial defect detection but also
in medical image processing.

4. Conclusion

For the classification of steel surface defects, we propose a multi-
scale pooling convolutional neural network in this research. Our
model is based on SqueezeNet, and to capture defect features at
various scales, we propose an innovative multi-scale pooling module.
In the module, the multi-scale features are combined to produce
more reliable defect cues. It is demonstrated that our model has
higher accuracy by contrasting it with other defect classification
models in a noisy NEU testing set. The MSP module is able to
locate the defect location accurately, according to class activation
map analysis, and the highlighted areas at different scales could
complement and reinforce one another to produce more reliable
results. According to the visualization results of T-SNE, the suggested
model has a small intra-class spacing and a big inter-class spacing,
which suggests a strong generalization capacity in handling noise.
Furthermore, our model’s 3MB size and 130 FPS performance on
a single NVIDIA 1080Ti GPU, which could be applied to scenarios
where device computation power is constrained and detection speed
is required. In future, we intend to develop a model that can perform
well on various surface defect dataset classification tasks, saving time
on model fine-tuning.
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