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Iterative transfer learning for
automatic collective motion
tuning on multiple robot
platforms

Shadi Abpeikar*, Kathryn Kasmarik and Matt Garratt

School of Engineering and IT, University of New South Wales, Canberra, ACT, Australia

This paper proposes an iterative transfer learning approach to achieve swarming

collective motion in groups of mobile robots. By applying transfer learning, a deep

learner capable of recognizing swarming collective motion can use its knowledge

to tune stable collective motion behaviors across multiple robot platforms. The

transfer learner requires only a small set of initial training data from each robot

platform, and this data can be collected from random movements. The transfer

learner then progressively updates its own knowledge base with an iterative

approach. This transfer learning eliminates the cost of extensive training data

collection and the risk of trial-and-error learning on robot hardware. We test

this approach on two robot platforms: simulated Pioneer 3DX robots and real

Sphero BOLT robots. The transfer learning approach enables both platforms to

automatically tune stable collective behaviors. Using the knowledge-base library

the tuning procedure is fast and accurate. We demonstrate that these tuned

behaviors can be used for typical multi-robot tasks such as coverage, even though

they are not specifically designed for coverage tasks.
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1. Introduction

Applying deep learning algorithms, including deep reinforcement learning, to solve

complex problems requires a significant effort in data collection to inform the design of

components such as the reward signal (Sutton and Barto, 2018). Collective motion behavior

tuning for robots using deep learning is one application that suffers from this challenge

(Schranz et al., 2020). Collecting large training datasets for robots is both time-consuming

and can result in wear and tear or damage to the robots. This paper aims to address this

challenge by proposing a methodology for collective motion behavior tuning that requires

only a very small set of data to be collected up front from robots.

Swarming collective motion is inspired by flocks of birds, herds of land animals, schools

of fish, and swarms of insects. This behavior enables them to do their tasks efficiently, and

collectively. Therefore, it can also be an efficient motion for robots (Savkin, 2004; Qadri et al.,

2021), called swarm robots (Navarro and Matía, 2013; Schranz et al., 2020). Some instances

of swarm robots’ missions include exploration (Huang et al., 2019), path formation (Sperati

et al., 2011), and self-organized aggregation (Khaldi et al., 2018). However, the key difficulty

with the existing works is that swarm parameters must be manually tuned. This will raise the

cost and time required for hand-tuning the behaviors, as well as the inaccuracy.
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To automatically generate collective behavior for robots,

Toshiyuki et al. (2016) developed a self-organized flocking behavior

for leader and follower movement of two-wheeled robots. Tran

et al. (2022) provided a frontier-led swarming behavior for

multi-robot coverage problems. Firat et al. (2020) proposed self-

organized aggregation using informed robots. Although these

works provide automatic collective behaviors generation, none of

them provides a diverse set of collective behaviors, applicable to

different robot platforms.

Recent works proposed automatically tuning more diverse

collective behaviors. Khan et al. (2020) proposed an evolutionary

approach, which requires a large training time to extract data for

the evolved diverse collective behaviors. Abpeikar et al. (2022a)

introduced a reinforcement learning (RL) algorithm for automatic

collective motion tuning (called CoMoT) in simulated point mass

boids. This system is able to automatically provide a diverse set

of behaviors because an extensive human study provided data

labels for “swarming” and “not swarming” behaviors (Abpeikar and

Kasmarik, 2019; Abpeikar, 2022). As the main challenge collecting

this labeled data took 6 months. Moreover, this system could only

address point mass boids and is not applicable to real robots. On

the other hand, designing such a system for real robots is still

challenging, since in real robots, collecting training data is very

costly as humans would need to watch multiple robot behaviors

to label data. Moreover, fine-tuning the reinforcement learning

parameters and the trial-and-error procedure of reinforcement

learning will increase this cost. It also might result in damage to

the robots when the algorithm is not yet well-trained and collisions

still occur.

This paper aims to develop an automatic collective motion

tuner for real robots the same as CoMoT, with no need for huge

data collection from robots. This approach will eliminate the

challenges required for collecting huge training data for robots

since it is transferable between point-mass boids and different robot

platforms. Moreover, there is no need for designing reinforcement

learning from scratch and applying the trial-and-error procedure of

RL on real robots. Eliminating these needs will result in saving time

and cost. Hence, this paper developed a system that can leverage

the available human-labeled swarming collective motion data to

recognize and tune swarming collective motion across multiple

robot platforms. This can be done by generating a library for

transfer between point-mass and robots, using a transfer learning

applicable to the observation space of CoMoT reinforcement

learning. The library is able to use a small set of robot data and

could transfer this data to the available huge human-labeled data.

Regarding this, the contributions of this paper are as follows:

• To reduce the risks and time required for the data collection

from real robots and the trial-and-error procedure of

reinforcement learning, this paper applies transfer learning on

CoMoT to automatically tune collective behavior for robots.

The novelty is to propose an algorithm that applies transfer

learning (Zhong et al., 2018) to the observation (state) space

of a CoMoT reinforcement learning agent. Consequently, the

observation space of robots could be matched with that of

the boids. Using transfer learning, tuning collective behavior

for robots will be off-line. Hence, CoMoT can tune collective

behavior for robots rather than simulated point masses, while

never being trained on real robots.

• An iterative library update algorithm for transfer of learning

between boids and robot platforms. This iterative approach

requires only a small amount of initial data from each robot

platform, which can be collected from random movements.

Using this iterative procedure, the library will be continuously

extended. Consequently, there is no need to hand-tune

collective behaviors to enrich the training set, since the

random set is enough for the iterative library update. The

extracted library could speed up the collective motion tuning

for robots to occur in <10 s.

• Using transfer learning, a CoMoT agent which is trained

with point-mass boid data could automatically tune collective

behavior for different robot platforms. The only requirement

is that the robot platforms have shared parameters with boids,

no matter if their characteristics including size, speed, and

shape are different. An evaluation of our approach on two

different robot platforms: Pioneer 3DX and Sphero BOLT,

shows that transfer learning on these real robots is fast and

accurate.

• Although the CoMoT reinforcement learning agents has never

been trained for a specific mission, a demonstration has been

presented which shows that tuned behaviors can be applied to

real-world problems such as area coverage problems.

The remainder of this paper is organized that Section 2

discusses the related works to develop RL for collective motion

tuning in robots. Section 3 illustrates the iterative transfer learning

on the observation space of RL. Section 4 includes the experimental

analysis of the proposed method. Finally, Section 5 concludes the

paper by indicating some ideas for future works.

2. Background and related work

This section includes related work relevant to automatic tuning

of collective motion. Section 2.1 provides a brief definition of

collective motion behavior. Section 2.2 discusses recent work

developing collective behavior using RL. Section 2.3 indicates

existing transfer learning methods applied on RL. Section 2.4

illustrates the characteristics of Sphero BOLT and Pioneer 3DX

robots used in this paper.

2.1. Collective motion behavior

Collective motion behavior is inspired by flocks of birds and

schools of fish, and the way they move collectively. The first

computer-based collective behavior was introduced by Reynolds

(Reynolds, 1987). This model is known as Reynolds’ boid model.

The Boid Guidance Algorithms (BGAs) use three simple rules of

cohesion (stay close together), separation (do not run into each

other), and alignment (move in the same direction) of Reynolds’

boid model to provide collective behavior in boids and robots

(Khan et al., 2020). The Boid Guidance Algorithms apply swarming

collective motion parameters of cohesion (Ci
t = (Ci

xt
,Ci

yt
)),
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separation (Sit = (Sixt , S
i
yt
)), alignment (Ai

t = (Ai
xt
,Ai

yt
)), and

the corresponding weights (Wc,Ws,Wa) to control these three

rules. The probability forces of Ps, Pc, and Pa are used in the Boid

Guidance Algorithm by Khan et al. (2020) to control the three

corresponding rules of Reynolds’ boid model. Hence they could

control the formation of the collective motion behaviors. Each one

refers to a probability value in range of [0, 1]. These probabilities

indicate the likelihood that each corresponding rule will be applied

on each boid at each timestep of the motion (Khan et al., 2020).

They control the frequencies of the separation, cohesion, and

alignment updates and consequently the frequencies of velocity and

position updates of the boids in each timestep. Assigning different

values to these parameters will result in differentmotion formations

for boids (Khan et al., 2020). Using these parameters on a group

of boids within predefined values for cohesion, separation, and

alignment radii (Rc,Rs,Ra) are used to update the velocity of boids

V i
t = (V i

xt
,V i

yt
), using Equation (1) (Khan et al., 2020). In this

equation, t refers to the simulation timestep, and i refers to boid

index in the predefined corresponding radii. Also, the velocity

vector V i
t = (V i

xt
,V i

yt
) is computed based on the distance moved

in pixels by boid i at each tick of the simulation timestep (
pixel
tick

).

V i
t+1 = V i

t +WcC
i
t +WsS

i
t +WaA

i
t (1)

The updated velocity vector V i
t = (V i

xt
,V i

yt
) then will change

the boids’ position (P = (x, y)), using Equation (2).

Pit+1 = Pit + V i
t+1 (2)

These parameters are correlated with each other based on the

Boid Guidance Algorithm proposed by Khan et al. (2020) and

the velocity and position updates by Equations (1), (2). These

three rules, and the velocity and positioning update, will provide

a collective behavior motion for boids. The most effective values to

generate a collective behavior is recognized by Khan et al. (2020)

and investigated in a human study by Abpeikar et al. (2022a). The

boids model has been extended to provide a rules base for guiding

swarms of robots and is a simple yet effective way to efficiently

guide the paths of multiple robots working together (Trianni,

2008). This is behavior is called swarm robotics in the literature

(Savkin, 2004). An effective swarm robotics algorithm needs to

make robots stay close and connected, move in the same direction,

and without running into each other. In many existing methods,

humans hand-tune the swarming collective motion parameters to

generate collective behavior for robots, which increases the risk

of human involvement. This paper aims to automatically tune

these swarming collective motion parameters to generate collective

behavior for robot platforms, using the transfer learning approach.

For more information on collective behavior see e.g., Reynolds

(1987).

2.2. Collective behavior by reinforcement
learning

Developing collective behavior automatically for a group of

robots is challenging (Francesca and Birattari, 2016). Although

there are some existing works which simulate swarming collective

behavior in robots, including collective navigation for robots (Na

et al., 2022), collaborative robots (Aydin and Fellows, 2018), and

collective formation of robots (Buffet et al., 2007), none of these

can automatically generate a diverse set of collective behaviors. One

limitation in doing this is that automatic recognition of swarming

collective motion behavior is hard (Harvey et al., 2018). It is hard

for a machine, however, humans can recognize this behavior easily.

Hence, recent works used human perception to train machines for

automatic collective behavior recognition in simulation (Kasmarik

et al., 2020; Abpeikar et al., 2022b). Following this approach,

some success has been achieved for automatic collective motion

generation with RL. RL is a trial-and-error method, which can solve

complex problems. It takes an observed state of the environment as

input in each iteration, then selects an action from the action space,

which maximizes the corresponding reward (Sutton and Barto,

2018). Using human-labeled data as a knowledge base for reward

signal generation enables RL to do automatic collective motion

tuning (CoMoT) in simulated robots (Abpeikar et al., 2022a),

and collective motion tuning for environmental sensing (Abpeikar

et al., 2022c). However, these methods are only applicable on

simulated robots. This paper extends CoMoT (Abpeikar et al.,

2022a) to automatically recognize and tune collective motion on

robot platforms rather than point-masses.

2.3. Transfer learning on reinforcement
learning

The idea of transfer learning is to train the learner on a

source problem in which a large training set is accessible and

transfer the trained knowledge to a target problem (Torrey and

Shavlik, 2010). The target problem must have some common

characteristics with the source problem, but the amount of training

data may be smaller (Torrey and Shavlik, 2010). Since RL is able

to solve complex problems, applying transfer learning to RL has

many advantages including reducing the costs of training from

scratch (Feuz and Cook, 2015). Transfer learning on RL includes

three types (Zhong et al., 2018): instance-based, feature-based, and

parameter-based. Since collective behavior data of simulated boids,

simulated robots and real robots, have the same set of features, but

with different observation space ranges and distributions (Abpeikar

et al., 2022b), the proposedmethod in this paper focuses on feature-

based (observation space) transfer learning. Some feature-based

transfer learning methods applied to RL are based on distribution

similarity (Zhong et al., 2018), model-based regularization (Sun

et al., 2022), and feature-space re-mapping (Feuz and Cook, 2015).

The transfer learning on observation space used in this paper is

based on using the Kullback-Leibler Divergence (KLD) method

described by Zhong et al. (2018). KLD is a well-known approach

to finding distribution differences between two feature sets (Zhong

et al., 2018). This paper uses KLD to find distribution differences

between the observation space of boids and the observation space

of a chosen robot platform, and map these spaces into each other.

The KLD approach will result in a library for transferring learning

between boids and the chosen robot platform. A detailed discussion

on how KLD will be used in the observation space of CoMoT will

be given in Section 3.1.
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FIGURE 1

Sphero BOLT and Pioneer 3DX (A, B)—the two robot platforms used

in the experiments of this paper.

2.4. Robot platforms

This paper considers two robots platforms: Real Sphero BOLT,

and Simulated Pioneer 3DX Robots.

The Sphero BOLT is a commercially available robot, that can be

programmed using Python. Sphero BOLT is a small, lightweight,

2-wheeled differential drive robot. It is fast, with a top speed of

2.25ms−1. Multiple robots can be controlled from a single laptop

so it’s possible to transport all the necessary equipment for a swarm

in a small suitcase. As shown in Figure 1A, the shell of the Sphero

BOLT is a clear plastic, which is waterproof and durable and it

has a long-lasting battery. Communication with the Sphero BOLT

robot is via Bluetooth enabling it to be controlled and monitored

from compatible devices such as smartphones and laptops. The

sensors of the Sphero BOLT include a light sensor, gyroscopes,

accelerometers. Also, it has a separate drive motor for each wheel.1

This paper runs an experiment with three Sphero BOLT robots

in a 2 × 2m environment. The environment is a virtual walled

environment, and the Sphero BOLT robots are programmed to

reflect these virtual walls. The motor encoder is used for the

positioning.Moreover, themagnetometer andmotor encoders used

together for the velocity computation. The initial hand-crafted

movements will be discussed in detail in Section 4.1.

The Pioneer 3DX robot (Figure 1B) is a larger 2-wheeled

differential drive robot, equipped with 16 ultrasonic sensors. The

wheels and the 16 ultrasonic sensors are presented in Figure 1B.

The top speed of the Pioneer 3DX robot is 2 ms−1. Robots can

again be controlled from a laptop (over a WiFi network), but

as these robots are heavier a small van is needed to transport a

swarm of multiple robots. For the work described in this paper,

we run simulations with eight Pioneer 3DX robots in a 20 ×

20m environment implemented in the CoppeliaSim simulator. The

CoppeliaSim is used to collect the position and velocity data.

Moreover, a weight has been defined in the simulator to implement

the wall reflection.More details on the different simulated scenarios

are provided in Section 4.1. For more information on Pioneer 3DX

robots, see e.g., Kasmarik et al. (2020).

1 https://support.sphero.com/article/c11rxl3nsf-what-are-sphero-bolt-

s-live-sensors

3. Methodology: Collective motion
tuning in robots using transfer learning

In this section, the methodology for designing an automatic

system for collective motion tuning in robots using reinforcement

learning trained on boids is articulated. To transfer the knowledge

from boids to robots and automatically tune this behavior, four

procedures are required: (1) Recognition of collective motion; (2)

Tuning collective motion for boids by RL; (3) Iterative transfer

learning on the observation space of the RL; and (4) automatic

collective motion tuning for robots. These procedures will be

described in detail in the following sections. Procedures (1) and

(2) are from existing work, while procedures (3) and (4) form the

contribution of this paper. The contribution of this paper–iterative

transfer learning to extend CoMoT to real robots–is discussed in

Sections 3.3, 3.4.

3.1. Collective motion recognition

To exploit the human ability to recognize collective behavior

recognition, one recent approach collected data from humans

regarding their opinion of different behaviors. Then this labeled

data was used to train a machine to mimic human recognition

of swarming collective motion (Kasmarik et al., 2020). Human

labels were collected via an online survey.2 The collected dataset

includes 4,803,200 samples with 12 features. The survey was used

to construct a binary dataset of labeled structured and unstructured

collective motions (Abpeikar, 2022). “Structured” referred to a

motion with an embedded pattern. Various machine learning

algorithms were tried to see which could best mimic human

recognition using this dataset as a training set. Following these

experiments, the decision tree resulted in the maximum accuracy

(Kasmarik et al., 2020). A knowledge base of 73 if-then rules was

extracted from a pruned version of this decision tree (Abpeikar

et al., 2022a). The if-then rules of this knowledge demonstrated

fast and accurate swarming collective motion recognition of boids

and some simulated robots (Abpeikar et al., 2022b). This knowledge

base was then used as a reward signal generator inside CoMoT. The

RL component of CoMoT will be discussed in Section 3.2.

3.2. Reinforcement learning for collective
motion tuning of boids

RL can be used to tune collective motion by allowing an agent

(such as CoMoTAbpeikar et al., 2022a) to observe a group of agents

moving and perturb their movement by changing the parameters

of their behavior. CoMoT uses the knowledge base described in

Section 3.1 as the reward signal generator. Each episode of CoMoT

follows the procedure presented in Figure 2.

The observation space of CoMoT comprises features for

boids’ collective motion parameters, including, maximum

2 A PDF version of the screenshots captured from this online survey is

downloadable from the following link, by simply clicking the message shown

on the page: https://unsw-swarm-survey.netlify.app/.
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FIGURE 2

Flowchart of the CoMoT learning procedure.

and minimum speed (Vmax,Vmin), separation, alignment,

and cohesion weights (Ws,Wa,Wc) and their corresponding

radius (Rs,Rc,Ra) and probability forces (Ps, Pc, Pa) as

S = (Ws,Wa,Wc,Vmax,Vmin,Rs,Rc,Ra, Ps, Pc, Pa). The

action space includes perturbations in the range of these

parameters, which makes small changes to the collective motion

parameters.Based on the discussion provided in Abpeikar

et al. (2022a), ω = [0.5, 0.5, 0.5, 0.1, 0.1, 10, 50, 50, 0.1, 0.1, 0.1]

is the small perturbation value which used as an

action to change each parameter of the current state

[Ws,Wa,Wc,Vmax,Vmin,Rs,Rc,Ra, Ps, Pc, Pa], respectively.

Therefore, the selected action should be in the range A ∈ [−ω,ω].

Then the temporal state values of boids is collected for 10 timesteps

while they are moving in a rectangular area. The temporal state

values include x and y coordinates of velocity (V = (Vx,Vy)),

separation (S = (Sx, Sy)), alignment (A = (Ax,Ay)) and cohesion

(C = (Cx,Cy)) in each timestep for each boid. Then the temporal

state values are fed to the knowledge-base of the reward signal. The

knowledge-base rewards temporal state values that are recognized

as collective behavior and returns a negative value for behaviors

recognized as random. The reward signal generates an average

over the 10 temporal state rewards as the final decision. Then an

actor-critic network learns the policy for maximizing the future

rewards.

CoMoT requires 2,000 episodes, each with a maximum of 100

steps before it can accurately tune a swarming collective behavior.

In addition to this cost, there is a substantial overhead of generating

the training dataset from an online survey (described in Section

3.1), not to mention the costs of designing the reward signal, rate of

perturbation of the action space, and the architecture of the actor-

critic network (Abpeikar et al., 2022a). The idea of incorporating

transfer learning in CoMoT aims to make it possible to use the

system on real robots without incurring these costs again.

3.3. Transfer learning for collective motion
tuning in robots

Although the observation space parameters of point mass boids

and robots’ are the same when they are engaged in collective

behavior, the ranges and distributions of the parameter values

are different. This is because robots have a volume, wheelbase,

wheel diameter, top speed and so on that makes their movement

properties different to point masses. These differences raise the

challenges of: (1) training from scratch for collective motion tuning

on each robot platform, and (2) the need for collecting a large

amount of training data. Designing from scratch would require

the effort of fine-tuning the parameters mentioned in Section

3.2. On the other hand, transfer learning can deal with these

issues by gathering a small training dataset from the robots–

just enough to determine the difference in the distribution of

parameter value ranges. Then the transferred observation space can

be used for automatic swarming collective motion generation in

robots. Section 3.3.1 investigates the methodology for determining

the differences in the distribution of parameters. Section 3.3.2

illustrates the transfer learning approach on the observation space

of CoMoT.
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3.3.1. Extended kullback-leibler divergence for
transfer learning on observation space

As mentioned in Section 2.2, there are different types of

transfer learning. Since the major difference between collective

motion tuning for boids and robots are the ranges of parameters

in observation space, the best type of transfer learning to use is

the feature-based approach. As a feature-based approach in this

paper, we will investigate to make the distribution of target data

the same as the source data. One popular method to identify the

distribution of the feature space is Kullback-Leibler Divergence

(KLD) (Zhong et al., 2018). KLD looks for similar features in each

missing dataset and finds the distribution related to that feature.

We propose Algorithm 1 based on KLD, as the method to transfer

learning in the observation space of RL. This algorithm can be used

for two purposes: (1) to transfer from boid data to robot data and

(2) to transfer back from robot data to boid data. This facilitates

the full feedback loop required for behavior tuning. In the transfer

from boid data to robot data, the “source data” refers to the boid

data, while the “target data” refers to the robot data. This definition

is the opposite, when transferring from robot data to boid data. The

proposed transfer learning algorithm has the following difference

compared to Zhong et al. (2018):

• It works on all features of target data, and not only the missing

data. The idea is to make the distribution for all features of

the target data similar to those of the source data. This is a

requirement since any change in the observation space makes

the RL inappropriate.

• The update procedure (Equation 4 and Line 3 of Algorithm 1)

in the proposed transfer learning not only provides the same

distribution, but also imparts the same space ranges.

• The data feature in Algorithm 1 refers to both configuration

parameters (Dataconf ) and the temporal state parameters

(Datatemp). However, the work of Zhong et al. (2018) could

only work with a set of temporal data.

• The transfer learning could work from boid data to robot

data and conversely. However, the work of Zhong et al. (2018)

could only work with the richer data as the source data.

In Algorithm 1, the first step finds common features between

source and target data, with respect to each feature of the target

data. Then, each sample of target data is updated using the

corresponding similar feature in the source data, using Equation

(3). In this equation, T refers to the target, S refers to the source,

(i, j) refers to sample i and feature j. Also, SS′ is the mean of all

samples of the selected similar feature of the source data and Tj is

the mean of all samples of feature j in the target data. S′ is a similar

feature of source data, corresponding to feature j in the target data.

Dividing SS′ (the mean of source samples) by Tj (the mean of target

samples), will map the target samples more closely to the mean of

source samples, and reduces the centrality of the mean of the target

samples. This will shift the distribution probability of target samples

to the source samples. Therefore, the updated target samples will

have a distribution probability with the mean value closer to the

source mean value.

transfer(ST(i, j)) = ST(i, j)× (SS′ ÷ Tj) (3)

1 Compute PDSj for all j features in source data,

and PDTk for all k features in the target data.

2 For each feature k in the target data

2.1 For each feature j in source data

Compute the KLDj

2.2 Find the feature S′ ∈ j in source data which

has maximum KLDj.

2.3 Return S′ as the similar feature to k in

source data.

3 For each sample i and feature k in target

data

3.1 Use the similar feature S′ of source data.

3.2 Update target sample, using Equation (3)

4 Return:

4.1 S′ for each feature k of the target data.

4.2 The Updated Target Samples (UPS).

4.3 Mean values of each feature of source and

target data.

Algorithm 1. Transfer from Source to Target data

Similar features could be found using the KLD metric. The

KLD metric is computed using Equation 4, Zhong et al. (2018).

In this equation, PDSj is the probability distribution of all samples

of feature j of the source data. Also, PDTk is the probability

distribution of all samples of all features k = 1, ..., k′ of the target

data. k′ is the total number of features in the target data.

While Algorithm 1 can provide transfer from boid data to robot

data and inversely, the procedure of Algorithm 1 requires 10 min

to find the transfer learning parameters for real-time problems.

Therefore, to eliminate the need for running Algorithm 1 for each

tuning step by CoMoT, Section 3.3.2 will propose the transfer

learning, and Section 3.4 proposes a framework to create a library

for transferring the data without requiring any further training.

KLDj =

∑

k

(PDSj × log(PDSj/PDTk )) (4)

3.3.2. Transfer learning on observation space of
CoMoT

As has been discussed in the previous section, Algorithm 1 by

using KLD is able to transfer the data distribution of boids to robots

and conversely, depending on the data selected as source data. To

deal with the slow speed of Algorithm 1, we will propose a library

extraction in this section. Two approaches for library extraction

are proposed in this paper, which will be discussed in detail in the

following sections.
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FIGURE 3

One shot transfer learning to extract a library for CoMoT.

3.3.2.1. One shot transfer

This approach uses a traditional transfer learning approach. It

uses a small set of hand-crafted behaviors in robots and generates

two libraries to transfer from boids to robots and conversely.

This method is presented in Figure 3. As shown in this figure,

this library uses some simple training samples from robots and

a huge training dataset from boids. The collective and random

behaviors of robots introduced to the library are a set of hand-

crafted behaviors. To generate a library for transfer from boids to

robots and conversely, Algorithm 1 is applied twice by swapping

the source and target data. Then the parameters of Algorithm 1

for transfer from the source to the target data will be extracted.

These parameters are SS′ , Tj, and the similar feature of source data,

corresponding to each feature j of the target data, described in

Section 3.3.1. Using the library of these parameters and Equation

3 on each target data record, CoMoT can transfer the observation

space of the robots to the boid data. This transfer enables CoMoT

to tune a collective behavior for robots by pretending they

are boids.

Although using this approach will facilitate the automatic

swarming collective motion generation of robots, the downside

is that we had to first hand-craft collective behaviors in the

initial stage of Figure 3. Hand-crafting collective behaviors for

robots needs time and effort and somewhat undermines the

purpose of our mission to generate them automatically. To

overcome this issue, the following section will introduce an

iterative approach, starting from a weaker, smaller random

behavior dataset.

3.3.2.2. Iterative transfer

To overcome the need for hand-crafting collective behaviors in

robots to create training data, an iterative approach is proposed

in Figure 4. As shown in this figure, the robot data now includes

only random behaviors. Similar to the one shot approach, the

source and target data will be selected to generate libraries for

transfer from boids to robots and inversely. Then the parameters

for transfer from source to target data will be extracted. These

parameters include the SS′ , Tj, and the features of source data

similar to the target data, corresponding to each feature j of the

target data. The novel iterative approach is embedded with CoMoT

to progressively enrich the library with collective behaviors. In each

iteration the library of parameters for the transfer learning will be

updated. The final library will be used in the observation space of

CoMoT. Then, CoMoT uses this extracted library of parameters

and Equation 3, to transfer the observation space of boids to

robots. After transferring the observation space, CoMoT tunes a

collective behavior for the updated data. Then by using the library

of parameters to transfer from boids to robots, this tuned behavior

will be transferred to robots. While the robot data is imbalanced

(the number of random and collective behaviors are not the same),

the automatically tuned behavior by CoMoT will be added to the

robot data. Again by running Algorithm 1 in this updated data and

the boid data, a new library of parameters will be generated. This

will continue, iteratively, until the robot dataset becomes balanced

with respect to the number of instances representing random and

collective behaviors. This will enrich the library with both random

and collective behaviors, with no need to hand-craft any collective
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FIGURE 4

Iterative transfer learning to extract a library for CoMoT.

behavior. The final library includes the parameter for transfer from

boids to robots and conversely.

3.4. Automatic collective motion tuning for
robots

Using the library of parameters extracted according to either

Figure 3 or Figure 4, CoMoT is able to tune collective behavior

for robots is <10 s comparing to Algorithm 1 which takes 10

min to provide the transfer learning parameters. The procedure

works as shown in Figure 5. As mentioned earlier, the procedure

of Algorithm 1 can be used in two ways: namely, it can be run

considering the robot as the source and boids as the target data;

AND it can be run considering boids as source and robot data as

the target. In the first case, the extracted library from Algorithm 1

uses robots as the source and boids as the target and transfers the

robot data to boids. Based on this transfer, the robot observation

space will have a distribution and range similar to boids (both

for configuration and temporal state parameters). Therefore, the

observation space of this transferred data could be processed by

CoMoT. However, CoMoT could only address boids data, and

using this transfer, enables CoMoT to work with robot data.

This is called an R2B library in Figure 5. Then CoMoT generates

and performs the trial and error approach on the updated data

and automatically tunes a collective behavior for the updated

(transferred) data. Once, collective behavior is generated, in the

second case, it can translate a tuned configuration output by

CoMoT back to a distribution that will be feasible on the real robot

platform. This is called the B2R library in Figure 5. As a result, a

collective behavior will be generated for robots without designing

RL from scratch or requiring extensive data collection.

4. Experiments and discussions

This section includes some experiments to evaluate the one

shot and iterative approaches. The first subsection discusses

the experimental setup and the scenarios used in the other

subsections. The experiments in these subsections investigate the

following aspects:

• The impact of transfer learning on the distribution and ranges

of robots’ observation space. In this experiment, boids data is

the source problem, and robot data is the target problem.

• The quality of reward and formation of collective behaviors for

robots tuned by CoMoT using both the one shot and iterative

approaches.
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FIGURE 5

Transfer learning for collective motion tuning in robots.

• The ability of tuned behaviors to be used in coverage tasks,

noting that CoMoT has not been trained for coverage.

The scenarios and experiments will be discussed in detail in the

following sections.

4.1. Experimental setups

In the following experiments, two robot platforms are used:

(1) the Simulated Pioneer 3DX robots in CoppeliaSim and (2)

real Sphero BOLT robots. We created six random movement

scenarios for each of these robot platforms, shown in Table 1.

These six scenarios cover a diverse range of values for swarm

TABLE 1 Parameters for random behaviors of Pioneer 3DX robots

(Abpeikar et al., 2022a) and Sphero BOLT robots.

Parameters Wa Wc Ws Ra Rc Rs

Pioneer 3DX random (PR)

PR1 1.00 0.00 1.20 2.00 2.00 1.00

PR2 1.20 0.10 1.20 2.00 2.00 1.00

PR3 1.00 0.50 1.20 2.00 2.00 1.00

PR4 0.05 0.05 0.90 2.00 2.00 1.00

PR5 0.01 0.20 1.00 2.00 2.00 1.00

PR6 0.05 0.25 0.90 2.00 2.00 1.00

Sphero BOLT random (SR)

SR1 0.01 0.01 0.01 100.00 100.00 25.00

SR2 0.00 0.01 0.00 100.00 100.00 25.00

SR3 0.01 1.00 1.00 50.00 100.00 25.00

SR4 0.02 0.02 0.01 50.00 100.00 25.00

SR5 0.01 0.01 1.00 50.00 100.00 25.00

SR6 0.01 1.00 0.01 50.00 100.00 25.00

parameters of cohesion, alignment and separation weights and their

corresponding radii. These parameters are described in Section 2.1.

The six scenarios for Pioneer 3DX robots are from Abpeikar et al.

(2022a) while the Sphero BOLT scenarios were designed for this

current paper.

Asmentioned in Section 3.3 for the one shot approach to library

extraction there are also some hand-crafted, structured collective

motion behaviors. These hand-crafted behaviors are defined in

Table 2. The parameters were chosen following the guidelines of

Khan et al. (2020). The hand-crafted behaviors for Pioneer 3DX

robots are derived from Abpeikar et al. (2022a).

The simulation on Pioneer 3DXwas selected since the scenarios

were available from Kasmarik et al. (2020). As an example of real

robots the Sphero BOLT robots are selected, as they permit us

to run the short duration swarming experiments in this paper

without need for an external positioning system. The Pioneer 3DX

scenarios are run in a 20 × 20m simulated, walled environment in

CoppeliaSim. The Sphero BOLT scenarios are run in a 2× 2m real

environment with virtual walls. These scenarios will be used in the

following experiments.

4.2. Experiment 1: Impact of transfer
learning on temporal state values of
observation space

The aim of this experiment is to examine the impact of transfer

learning on the distribution and ranges of target data observation

space. This experiment uses boids data as the source data and

Sphero BOLT data as the target data. It will investigate the changes

in the distribution of Sphero BOLT data and how it could be

mapped to the observation space of Boids. As discussed in Section

3.1, and in the work done by Abpeikar et al. (2022c), the observation

space of CoMoT uses configuration parameters of S for a specific
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TABLE 2 Parameters for hand-crafted collective behaviors of Pioneer 3DX

robots (Abpeikar et al., 2022a) and Sphero BOLT robots.

Parameters Wa Wc Ws Ra Rc Rs

Pioneer 3DX collective behavior (PC)

PC1 1.00 0.10 1.20 2.00 2.00 1.00

PC2 1.00 0.10 1.50 2.00 2.00 1.00

PC3 1.00 0.05 1.50 2.00 2.00 1.00

PC4 1.20 0.05 1.50 2.00 2.00 1.50

PC5 1.20 0.05 1.50 2.00 2.00 1.00

PC6 1.20 0.05 1.50 2.00 2.00 1.00

Sphero BOLT collective behavior (SC)

SC1 1.00 1.00 0.00 50.00 100.00 25.00

SC2 1.00 1.00 0.01 50.00 100.00 25.00

SC3 1.50 1.55 0.01 50.00 100.00 25.00

SC4 0.50 0.50 0.01 50.00 100.00 25.00

SC5 0.50 0.50 0.00 50.00 100.00 25.00

SC6 1.00 1.00 0.01 100.00 100.00 25.00

number of timesteps and extracts the temporal state values of all the

agents during these timesteps. Then the knowledge base of CoMoT

on these temporal state values could result in a reward or a penalty

for the current state and action. Moreover, Algorithm 1 is designed

to work with both the configuration parameters (Dataconf ) and

temporal state parameters (Datatemp). This experiment investigates

the results of temporal state parameters since it has more features

and more complex space.

As has been discussed in Section 3.3.1, this paper proposed

a transfer learning method, which is an extension of the transfer

learning method of Zhong et al. (2018). Due to this extension, the

new transfer learning method could prepare the observation space

of robots to make them applicable and useful by CoMoT. The effect

of the transfer learning proposed by Zhong et al. (2018) on the

temporal state parameters of Sphero is presented in Figure 6. This

figure shows the distribution and ranges of temporal parameters

of source data (boids) in the first column and those of the target

data (Sphero) in the second column. The effect of transfer learning

of Zhong et al. (2018) on the target data is presented in the third

column. As it is shown in this figure, there are many parameters,

in which neither their distribution nor their ranges become similar

to the distribution and ranges of the source data of boids. This

indicates the need for designing a transfer learning applicable to

the observation space of CoMoT. The results of this extension of

transfer learning will be discussed in the next experiment.

This experiment investigates the effect of transfer learning on

target data using both the one shot and iterative approaches. For

the one shot approach, the Sphero BOLT data includes random

behaviors (SR1-SR6) of Table 1 and collective behaviors (SC1-SC6)

of Table 2. However, for the iterative approach, the data only

includes random behaviors (SR1-SR6) of Table 1. Automatically

generated collective behaviors will be added iteratively using

CoMoT, as described in Section 3.3.2.

The target data includes 713 records of temporal state values

in Datatemp. These 713 records are the outcomes of either the

iterative approach or the one shot approach. This number of data

records corresponds to approximately 30 s of total run-time for

each scenario using the configuration parameters. This number

of data records is very small compared to the 4,000,000 temporal

state samples in the labeled boid data, which corresponds to

approximately 1,500 timesteps (20 min) of total run-time for each

scenario. It also took 6 months to collect this data from human

participants. The number of features in both source and target

data are the same, but with different ranges and distributions.

The training processing time of Algorithm 1 takes about 10 min.

Figure 7 shows the distribution of updated temporal state using the

one shot and iterative approaches of transfer learning in columns

3 and 4, respectively. It also shows the distribution of the source

data in column 1 and the target data in column 2 in the absence of

transfer learning. Figure 7 includes the temporal state values of x, y

coordinates of velocity V , alignment A, separation S, and cohesion

C. As mentioned earlier the aim is to map the distribution of the

target data of column 2 to the source data of column 1 using the

one shot and iterative approach of transfer learning. As shown in

this figure, not only the distribution of all the similar features of the

target data without any transfer learning in column 2 is different

to the source data of boids in column 1, but also the ranges are

different. Applying the one shot transfer learning approach, we

see in column 3 of Figure 7 that the distributions and the ranges

in the target data are matched with the source data. Applying the

iterative transfer learning approach, the distributions of updated

target data in column 4 of Figure 7 and the source data are the same.

In comparison to the one shot approach in column 3, the iterative

approach in column 4, covers the larger part of the data ranges of

the boid data. In conclusion, both one shot and iterative transfer

learning methods could successfully map the temporal state of

target data into the distribution and ranges of the temporal state

of source data.

4.3. Experiment 2: Collective motion
recognition

This experiment examines if the transferred target data in the

frameworks of Figures 3, 4 can be correctly recognized as collective

behavior or random (not-collective) behavior. As discussed in

Section 3.3.2, applying the procedures of Figures 3, 4 using

Algorithm 1 on a small dataset of robot behavior will generate a

library for transferring between boids data and the robot data. In

this experiment, the class labels of collective behaviors of Table 2

are set to 1 (class = 1). Also, the class labels of random (not-

collective) behaviors of Table 1 are set to zero (class = 0). We

then feed the data through the knowledge base of Section 3.1. For

the one shot approach, the library of each robot is generated over

all the corresponding behaviors of Tables 1, 2. For the iterative

approach, the library includes the random behaviors of Table 1

and the automatically tuned collective behaviors that are iteratively

added to the library.

Table 3, shows the accuracy, precision, and recall metric

values of the knowledge base in collective behavior recognition

of robots. As shown in this table, the updated Pioneer 3DX and

Sphero BOLT data using extracted libraries could generate accurate
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FIGURE 6

Distribution of Boid temporal state data (column 1) and original Sphero BOLT temporal state data (column 2) and the e�ect of transfer learning

method proposed by Zhong et al. (2018) (column 3).

machine-recognizable behaviors using both one shot and iterative

approaches. However, using the iterative approach provides higher

performance in comparison to the one shot approach. As a result,

these libraries can accurately transfer any new observation of

Sphero BOLT robots or Pioneer 3DX robots to boids to be used

in CoMoT. Recently a transfer learning approach was proposed

to enable the collective behavior recognition in simulated robots

(Abpeikar et al., 2022b). However, despite the current paper,

this transfer learning could only address the collective behavior

recognition, and is not applicable in collective behavior tuning

for robots.

In addition, the transfer procedure for each new sample of the

Pioneer 3DX robot, and Sphero BOLT robot is also investigated.

Regarding this investigation the maximum transfer time for both
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FIGURE 7

Distribution of Boid temporal state data (column 1) and original Sphero BOLT temporal state data (column 2) and the e�ect of one shot (column 3)

and iterative (column 4) transfer learning approaches on distribution of original Sphero BOLT temporal state data.

TABLE 3 Performance of collective motion recognition on transferred Sphero and Pioneer 3DX data using Knowledge-base of Section 3.1.

Data One shot TL Iterative TL

Accuracy (%) Precision Recall Accuracy (%) Precision Recall

Sphero BOLT 93.25±2.28 0.90±0.25 0.92±0.41 100.00±0.00 1.00±0.00 1.00±0.00

Pioneer 3DX 98.12±0.68 0.96±0.17 0.99±0.01 99.65±0.22 0.98±0.12 0.99±0.01
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the Pioneer 3DX robot, and Sphero BOLT robot is 10 s, using the

extracted libraries.

As shown in Figure 2, the knowledge base

of Section 3.1 is the reward signal generator for

CoMoT. Therefore, being able to correctly recognize

the behaviors using the extracted library, has the

following advantages:

• There is no need to run Algorithm 1 multiple times during the

tuning procedure. It can simply be run once offline and the

generated library used henceforth. This will reduce the tuning

time to <10 s.

• It indicates that the transferred data have the same

characteristics as the original data, whichmakes themmachine

recognizable as collective or not-collective behavior. This

will eliminate the need for expensive collection of human

labeled data.

• It indicates that the reward signal of CoMoT is likely

to generate the correct reward, and consequently tune

accurate collective behaviors. This will be confirmed in the

following section.

4.4. Experiment 3: Automatic collective
motion tuning for robots

The aim of this experiment is to investigate the quality of

tuned behaviors for robots using transfer learning on observation

space of CoMoT. This experiment uses the library achieved

from Figures 3, 4, and CoMoT with the transfer learning

on the observation space (Figure 5), to automatically tune

collective behaviors from the random behaviors of Table 1 for

Pioneer 3DX and Sphero BOLT robots. To evaluate the tuned

FIGURE 8

Reward values of tuned collective behaviors for Pioneer 3DX robots using CoMoT with transfer learning as in Figure 5.

FIGURE 9

Reward values of tuned collective behaviors for Sphero BOLT robots using CoMoT with transfer learning as in Figure 5.
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FIGURE 10

Formation of automatic tuned behaviors in robots using CoMoT with iterative transfer learning approach (The robots keep the same formation during

the movement and the blue arrow shows the direction of movement). (A) Tuned behavior for PR1. (B) Tuned behavior for PR2. (C) Tuned behavior for

PR3. (D) Tuned behavior for PR4. (E) Tuned behavior for PR5. (F) Tuned behavior for PR6. (G) Tuned behavior for SR1. (H) Tuned behavior for SR2. (I)

Tuned behavior for SR3. (J) Tuned behavior for SR4. (K) Tuned behavior for SR5. (L) Tuned behavior for SR6.
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FIGURE 11

Formation of automatic tuned behaviors in robots using CoMoT with iterative transfer learning approach (The robots keep the same formation during

the movement and the blue arrow shows the direction of movement). (A) Tuned behavior for PR1. (B) Tuned behavior for PR2. (C) Tuned behavior for

PR3. (D) Tuned behavior for PR4. (E) Tuned behavior for PR5. (F) Tuned behavior for PR6. (G) Tuned behavior for SR1. (H) Tuned behavior for SR2. (I)

Tuned behavior for SR3. (J) Tuned behavior for SR4. (K) Tuned behavior for SR5. (L) Tuned behavior for SR6.

behaviors, the reward value of CoMoT with one shot and

iterative transfer learning has been investigated. As mentioned

in Abpeikar et al. (2022a,c), a cumulative reward signal in

the range of [250, 500] indicates a likely collective behavior,

while a higher reward indicates more accurate and reliable

collective behavior.

For the Pioneer 3DX robots, we use the results from Abpeikar

et al. (2022a,c) for the baseline “without transfer learning” case.

Figure 8, compares the reward signal of CoMoT with the two

approaches of transfer learning with that of Abpeikar et al. (2022a,c)

without any transfer learning. This figure shows the reward signal

for collective motion tuning of Pioneer 3DX robots increased when
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applying the transfer learning. The average reward values for the 6

scenarios without transfer learning, with one shot transfer learning,

and with iterative transfer learning is 353.61 ± 31.30, 465.12 ±

4.64, and 478.16 ± 4.62, respectively. Moreover, it indicates that

the reward values while applying the iterative transfer learning

approach are higher than the one shot transfer learning approach.

In contrast, on Sphero BOLT robots the observation space

range and the distribution are very different to point-mass

boid data. Hence, they are not compatible with the range and

distribution of the observation space that CoMoT has been

trained on. Therefore, it is not possible to apply CoMoT to tune

Sphero BOLT behavior without transfer learning. This indicates the

significance of using transfer learning on CoMoT for real robots.

Figure 9 shows that when transfer learning is applied, suitable

reward values are returned. In this figure, all the cumulative reward

signals are>250, which indicates that the tuned behaviors are likely

to be collective behaviors. The average reward values of these six

scenarios with one shot transfer learning is 389±6.88. This average

value for the iterative transfer learning is 419.75± 5.91. In addition

to this, the iterative transfer learning approach provides higher

reward values than the one shot transfer learning, consistent with

earlier experiments.

Figure 10, shows some snapshots of the formations and

movement directions of tuned behaviors for Pioneer 3DX robots

(Figures 10E, F) and Sphero BOLT robots (Figures 10G, L). For

Pioneer 3DX we examined tuned behaviors with eight robots.

For the Sphero BOLTS we examined tuned behaviors with three

robots, the maximum we can reliably control with a single

Bluetooth connection. As shown in Figure 10, the Pioneer 3DX

and Sphero BOLT robots move close to each other, and in the

same direction.3 The trajectories of robots generating the collective

motion behaviors of Figure 10 is presented in Figure 11. In this

figure, the trajectory of eight Pioneer3DX robots is presented

for 1,000 timesteps (since they moving slowly). The trajectory

of three Sphero robots is presented for 10 timesteps (since they

move faster). Due to the fast movement of Sphero BOLT robots

in some cases, they collide with each other, but there is no

distraction in their movement, and they keep the same formation.

Colliding between Sphero BOLT robots is not an issue, due to

their design with a plastic shell, which makes them resistant to

damage while colliding with any object. Moreover, the positioning

and magnetometer sensors of Sphero are prone to inaccuracies.

The positioning is done using odometry from the wheel encoders

and is subject to drift. Therefore, the simulations are run for 2

min before drifting happens. The accuracy of the magnetometer

heading sensor is set to 360◦, which is from 0◦ to 180◦ to left

and from 0◦ to −180◦ to right. The inaccuracies will also affect

the computations of cohesion, separation, and alignment. On the

other hand, as mentioned in Section 3.1 the knowledge base of

CoMoT uses if-then rules to make decisions based on the behavior

of all of the robots moving in a specific period of time, not

an individual robot in one timestep. Therefore, this aggregation

of the robots’ motion helps in managing these inaccuracies in

3 The videos of the collective behavior motions captured in UNSW Robotic

Lab are available online on YouTube: https://www.youtube.com/playlist?list=

PL3FDKnREgAf-bmVhm1W6YTRnhHgm-iEis.

TABLE 4 Coverage performance of tuned collective behaviors from

Figure 10.

Behavior Coverage (%) Time (min)

Pioneer 3DX

PR1 92.00 3.91

PR2 100.00 3.21

PR3 92.00 4.30

PR4 86.00 3.21

PR5 90.00 4.50

PR6 96.00 4.54

Sphero BOLT

SR1 92.00 0.25

SR2 100.00 0.26

SR3 100.00 0.22

SR4 88.00 0.26

SR5 97.00 0.24

SR6 97.00 0.26

the collective behavior-tuning procedure of CoMoT. However,

running the simulation for longer than 2 min, and using more

Sphero robots in a bigger environment might result in higher

inaccuracies, because of the more drifting which might happen in

the movement of the groups of robots. This could be an avenue for

future work.

In addition to the improvements discussed above, CoMoT

requires 2,000 episodes, each with a maximum of 100 steps. Using

transfer learning eliminates this training procedure and collective

motion tuning for robots is done in one episode and in <10 steps.

The training data for CoMoT was collected over a period of 6

months. Using transfer learning, a small set of training data for

robots could be collected in just 1 day.

4.5. Experiment 4: Coverage ability of tuned
behaviors

The aim of this experiment is to demonstrate an application

of tuned behaviors. We examine a coverage problem in this

section. Multi-robot coverage is an interesting problem

with different possible approaches. One class of approach

assumes each robot will cover an independent region of

the environment. More recently, there has been interest

in swarming approaches where robots stay together so

that there is redundancy if some robots fail (Tran et al.,

2022).

This section investigates the coverage performance of the

tuned collective behaviors of Figure 10 compared to the untuned

behaviors (behaviors of Table 1). Each behavior of the Sphero

BOLT robots was run in a 2 × 2m rectangular area sorrounded

with virtual walls. The behaviors of the Pioneer 3DX robots

were run in the simulated 20 × 20m rectangular walled area.
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FIGURE 12

The coverage rate over time for the tuned behaviors of Figure 10 and random behaviors of Table 1. (A) Average coverage rate of untuned behavior of

PR1–PR6 of Table 1 and tuned behaviors of motions (A–F) of Figure 10 for Pioneer3DX Robots. (B) Average coverage rate of untuned behavior of

SR1–SR6 of Table 1 and tuned behaviors of motions (G–L) of Figure 10 for Sphero Robots.

These areas were both considered using a 10 × 10 grid cell

environment for coverage purposes. A grid cell is covered if at

least one robot visits that grid cell. Table 4 shows the coverage

percentage of each of the tuned behaviors of Figure 10, and the

maximum time required to achieve this coverage. As mentioned

in this table, the maximum coverage of the tuned behaviors

in Sphero robots is more than 88% of the area, in <0.26

min (16 s). Also, the maximum coverage of tuned behaviors

in Pioneer 3DX robots is more than 86% of the area in

<5 min.

The changes in the coverage rate over time for each of

the behaviors including the initial untuned behaviors of

Table 1 and the tuned behaviors of Figure 10, are presented

in Figure 12. We can see that the tuned behaviors achieve

coverage no more slowly than the untuned behaviors

with the added benefit that the tuning keeps the robots

swarming together.

5. Conclusion and future work

Automatically tuning a collective behavior for robots is

important, since it is time-consuming for a human to manually

tune behaviors for every new robot platform they wish to use

for swarming systems. The problem becomes harder if the swarm

includes different types of robots. Recent works developed an

RL approach called CoMoT for automatically tuning collective

behavior for boids and simulated robots. However, designing such

a method on real robots is costly in terms of data collection,

and the risk of a trial-and-error tuning procedure. This paper has

shown that it is possible to transfer knowledge of CoMoT from

point mass data to real robots, requiring only a small amount of

additional data.

One shot and iterative transfer learning approaches were used

to extract a library which transfers data from boids to robots

and inversely. The one shot approach uses some small set of
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hand-crafted random and tuned behaviors to generate the transfer

library. The iterative approach only uses a set of random data,

and iteratively adds collective behavior to the library by recursively

calling CoMoT. The extracted library then is used in CoMoT to

transfer the observation space of robots to boids.

After applying CoMoT reinforcement learning on this

transferred data and automatically tuning a collective behavior, the

data then will transfer back to the robots. This will result in a fast

(<10 s) automatic collective behavior tuning for robots without any

further training required.

The robot platforms used in this paper are the Pioneer 3DX

and Sphero BOLT robots. The tuned behaviors could provide

some known formations of flocking and line behavior in robots.

Moreover, although the CoMoT has not been trained to provide

coverage, the tuned behaviors using transfer learning could produce

a good coverage performance. Despite these achievements, there

are some challenges which open an avenue for future works,

as follows:

• First, we would like to investigate whether it is possible to re-

use a transferred dataset to permit CoMoT to tune behaviors

on a different robot platform with similar feature distribution,

without collecting further data. This wouldmean, for example,

that a swarm of robots could themselves teach a new member

how to behave within their swarming system.

• Second, this paper investigates the use of transfer learning

on observation space of reinforcement learning. However,

another approach for collective motion tuning is to use

evolutionary approach rather than reinforcement learning.

Investigating the performance of transfer learning on

evolutionary approach to switch between the robot platforms,

could be an avenue for future studies.

• Another area of future work lies in generating greater diversity

in tuned behaviors. Our current system has shown promise

for generating grouped and aligned movement of robots.

However, other collective motions such as dispersion or

movement in a line are also possible. Recognizing and tuning

such behaviors remains an area for future work.
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