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Lightweight semantic segmentation promotes the application of semantic

segmentation in tiny devices. The existing lightweight semantic segmentation

network (LSNet) has the problems of low precision and a large number of parameters.

In response to the above problems, we designed a full 1D convolutional LSNet. The

tremendous success of this network is attributed to the following three modules:

1D multi-layer space module (1D-MS), 1D multi-layer channel module (1D-MC),

and flow alignment module (FA). The 1D-MS and the 1D-MC add global feature

extraction operations based on the multi-layer perceptron (MLP) idea. This module

uses 1D convolutional coding, which is more flexible than MLP. It increases the global

information operation, improving features’ coding ability. The FA module fuses high-

level and low-level semantic information, which solves the problem of precision loss

caused by the misalignment of features. We designed a 1D-mixer encoder based

on the transformer structure. It performed fusion encoding of the feature space

information extracted by the 1D-MS module and the channel information extracted

by the 1D-MC module. 1D-mixer obtains high-quality encoded features with very

few parameters, which is the key to the network’s success. The attention pyramid

with FA (AP-FA) uses an AP to decode features and adds a FA module to solve

the problem of feature misalignment. Our network requires no pre-training and

only needs a 1080Ti GPU for training. It achieved 72.6 mIoU and 95.6 FPS on the

Cityscapes dataset and 70.5 mIoU and 122 FPS on the CamVid dataset. We ported the

network trained on the ADE2K dataset to mobile devices, and the latency of 224 ms

proves the application value of the network on mobile devices. The results on the

three datasets prove that the network generalization ability we designed is powerful.

Compared to state-of-the-art lightweight semantic segmentation algorithms, our

designed network achieves the best balance between segmentation accuracy and

parameters. The parameters of LSNet are only 0.62 M, which is currently the network

with the highest segmentation accuracy within 1 M parameters.

KEYWORDS

semantic segmentation, lightweight network, 1D convolution, encoder-decoder, feature
alignment

1. Introduction

Semantic segmentation is one of the essential tasks in computer vision, which requires the
classification of each pixel of an image. There are many problems in practical applications:
application equipment has a small storage capacity and cannot store large-scale networks;
equipment needs to complete the calculation of semantic segmentation; reasoning speed needs to
be faster to meet actual needs. Based on the above problems, the researchers adjusted the research
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direction accordingly and proposed lightweight semantic
segmentation. The lightweight network has the advantages of
fewer parameters, fast operation speed, and segmentation accuracy
that meets engineering needs. The earliest lightweight semantic
segmentation networks (LSNets) are SegNet (Badrinarayanan
et al., 2017), ENet (Paszke et al., 2016), SQNet (Treml et al.,
2016), ERFNet (Romera et al., 2017), LinkNet (Chaurasia and
Culurciello, 2017), and BiSeNet (Yu et al., 2018). Their segmentation
accuracy is around 65 mIoU, and their inference speed is 50 FPS.
The segmentation accuracy and inference speed of LSNets that
have emerged in recent years have significantly improved. Typical
networks include HyperSeg-S (Nirkin et al., 2021), STDC1 (Fan
et al., 2021), STDC2, SFNet (Li et al., 2020), and PIDNet (Xu
et al., 2022). By reading a lot of semantic segmentation papers,
we summarized several directions for lightweight semantic
segmentation design: (1) downsampling: reduce the resolution
of the input image and reduce the amount of calculation; (2) design
efficient convolution: expand the receptive field of convolution,
reduce model parameters, and calculations; (3) residual connection:
reuse features, improve gradient propagation; (4) design backbone
encoding module: standard backbones include ResNet (He et al.,
2016), SqueezeNet (Iandola et al., 2016), ShuffleNetV2 (Ma et al.,
2018), MobileNet (Howard et al., 2019), and EfficientNet (Tan and
Le, 2019).

In this paper, we rethink the application of 1D convolution
in lightweight semantic segmentation and design a 1D multi-
layer spatial module (1D-MS) and 1D multi-layer channel module
(1D-MC). 1D-MS and 1D-MC adopt the idea of the multi-layer
perceptron (MLP), simultaneously adds global information. They
obtain the best balance in terms of encoding performance and
parameters. We also propose a feature alignment module (FA),
which solves the problem of feature misalignment on the network,
improving segmentation accuracy. Based on the above modules, we
designed a 1D-mixer module and an attention pyramid with FA
(AP-FA). 1D-mixer adopts the coding structure of the transformer.
The first residual connection contains 1D-MSs, and the channel
separation operation aims to extract spatial information and reduce
the amount of calculation. The second residual connection contains
1D-MCs to facilitate information fusion between channels. The AP-
FA module contains an AP and a FA to decode and upsample
features. The purpose of our design of the AP-FA module is to
fuse multi-scale information, reduce the loss of details, solve the
problem of misalignment, and improve the segmentation accuracy.
Based on the 1D-mixer and AP-FA modules, we propose an
efficient, LSNet consisting entirely of 1D convolutions. The 1D-
LSNet network we designed is trained and predicted on only one
1080Ti GPU, and there are no other pre-training operations. On the
Cityscapes dataset, a segmentation accuracy of 72.6 mIoU has been
achieved, and the number of parameters is 0.62 M. It is currently
the lightweight network with the highest segmentation accuracy
within 1 M parameters. On the CamVid dataset, our accuracy is
70.5 mIoU, and the inference speed reaches 122 FPS, the model
with the highest accuracy among all lightweight networks. On the
ADE2K dataset, our network achieves an accuracy of 36.4 mIoU.
We transplanted the trained network to the Qualcomm Snapdragon
865 mobile processing device, and the delay time was 224 ms,
which met the requirements for mobile devices. Compared with
advanced semantic segmentation algorithms, LSNet outperforms the
latest lightweight networks regarding segmentation accuracy and
parameter balance.

Our contributions can be summarized in the following points:

1. A 1D-MS and a 1D-MC are proposed, which inherit the
design idea of MLP and integrate global feature operations.
Since this module uses 1D convolution, it is not limited
by the input size. This module has the advantages of fewer
parameters and strong coding ability.

2. We designed the 1D-mixer module, which adopts the
structure of the visual transformer, and combines the 1D-
MS module, the 1D-MC module, and the channel separation
technology. This module encodes and fuses the feature
map along the space and channel direction, which has the
advantages of strong encoding ability and few parameters.

3. An AP-FA is proposed. The purpose of the AP is to expand
the network receptive field, reduce the loss of details, and
improve the segmentation accuracy. At the same time, to
solve the loss of accuracy caused by feature misalignment,
a FA is proposed for upsampling.

4. Based on the above modules, we designed a LSNet. The
network performed well on the Cityscapes and CamVid
datasets compared with the advanced LSNet, and it obtained
the best balance between accuracy and parameters. The
network trained in the ADE2K data set is transplanted
to the mobile device, and the delay time is 224 ms,
which meets the requirements of the mobile device. The
number of parameters of the network we designed is
0.62 M, and the accuracy is the highest among the networks
within 1 M parameters.

2. Related work

2.1. Semantic segmentation

Semantic segmentation (Brempong et al., 2022; Mo et al., 2022;
Sheng et al., 2022; Ulku and Akagündüz, 2022) is the vision task
of classifying image pixels. FCN (Noh et al., 2015) replaces the
FC of the classification network with convolution, enabling the
development of end-to-end convolutional networks. Recently, MLP-
based networks have shown great potential in object detection
and surpassed transformer-based semantic segmentation methods.
LEDNet (Wang et al., 2019) is a typical lightweight network. The
encoder uses a combination of residual modules and decomposed
convolutions, and the decoder uses a simple pyramid structure. The
algorithm’s structure conforms to the design principle of lightweight
semantic segmentation structure and has the advantages of high
segmentation accuracy and few parameters. We summarized the
main design ideas of lightweight semantic segmentation through
many research papers, mainly multi-scale receptive field fusion,
multi-scale semantics, expanding receptive field, strengthening edge
features, and obtaining global information.

2.2. Attention mechanism

The purpose of the attention mechanism (Guo et al., 2022a,b)
is to select features and make reasonable use of computing
resources. There are two types of attention mechanisms in semantic
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segmentation networks, channel attention and spatial attention,
which play different roles in the network. Spatial attention focuses
on the central region from the perspective of feature space. Channel
attention focuses on selecting feature channels and using some
channels as the primary encoding object. CBAM (Woo et al.,
2018) uses a mixture of typical channels and spatial attention. The
most significant advantage of this module is that it has a small
number of parameters. It can be seamlessly integrated into any CNN
architecture, ignoring additional overhead.

2.3. Transformer

The transformer (Han et al., 2022; Khan et al., 2022) was
first used in the field of NLP to encode the input sequence.
ViT (Dosovitskiy et al., 2020) demonstrates that transformers can
also be applied to image classification. ViT treats an image as a
sequence and sends it to a transformer layer for classification. ViT-
based variants include CPVT (Chu et al., 2021), TNT (Han et al.,
2021), and LocalViT (Li et al., 2021), improving image classification
accuracy. For semantic segmentation, the core architecture of SETR
(Zheng et al., 2021) is still the encoder-decoder structure. However,
compared to the traditional CNN-led encoder structure, SETR uses
transformer to replace it, but this method could be more efficient.
Recently, SegFormer (Xie et al., 2021) designed a novel hierarchical
transformer encoder that outputs multi-scale features. It does not
require positional encoding, thus avoiding interpolation of positional
encodings. SegFormer also has disadvantages: the output resolution
is fixed, and the resolution is too low, which affects the detail
segmentation.

3. Method

3.1. 1D-MS and 1D-MC

Lightweight semantic segmentation research aims to design
a neural network with small parameters and high segmentation
accuracy. The current lightweight segmentation network can be
divided into two categories: (1) the number of parameters is more
than 5 M, and the segmentation accuracy is between 72 and 80 mIoU.
The utilization rate of such network parameters is low, and it may
be necessary to increase the parameters by about 10 M for every
1 mIoU increase in accuracy. Although the accuracy can meet the
application requirements, it deviates from the original intention
of lightweight. (2) The number of parameters is below 5 M, and
the segmentation accuracy is less than 72 mIoU. The parameter
utilization rate of this type of network is high, but the segmentation
accuracy could be better. The parameters and segmentation accuracy
are challenging to balance. MLP has recently become a new research
direction, and its advantages are high segmentation accuracy and a
small number of parameters, as shown in Figure 1A. MLP has a fatal
shortcoming. It has strict requirements on the input feature size and
requires additional feature cropping to be applied to the semantic
segmentation network.

Based on the above analysis, we designed a 1D-MS and a 1D-
MC. The purpose of our design of these two modules is to inherit
the excellent performance of MLP and solve the shortcomings of
MLP. The design process is as follows: 1D-MS is divided into a local

feature extraction branch and a global information extraction branch,
as shown in Figure 1C. The local feature extraction branch adopts
the structure of MLP and replaces the fully connected layer with
1D depth separation convolution (convolution kernel size is 3 × 1
and 1 × 3). This not only fits the coding performance of MLP but
also solves the problem of input size. Since 1D convolution is used
for spatial encoding, there will be decoupling problems in extracting
features. To solve this problem, we design the global information
extraction branch. This branch uses max-pooling and avg-pooling
to obtain global feature information and generates global features
through 1 × 1 convolution. The addition of the output features
of the two branches not only solves the decoupling problem but
also integrates the local and global features to improve the coding
performance. The design concept of 1D-MC is similar to that of 1D-
MS. As shown in Figure 1B, its channel fusion branch replaces the
MLP fully connected layer with 1 × 1 convolution, and the channel
selection branch uses the global max-pooling operation. It is worth
noting that the number of intermediate feature output channels of
our designed channel fusion branch is half the number of input
channels. The output of the two branches is multiplied, and 1D-
MC not only performs information fusion between channels but also
selects feature channels.

The 1D-MS and 1D-MC we designed to have the following
advantages: they inherit MLP’s advantages of solid coding ability
and fewer parameters; there is no requirement for the input feature
size, which is more flexible than MLP; it adds a global feature
branch and channel selection branch to improve the overall coding
performance of the module.

3.2. 1D-mixer module

The design of the encoder is key to the success of the network.
Visual transformer is the coding structure that has recently received
the most attention and is widely used in object detection and
semantic segmentation. The 1D-mixer module we designed uses
the transformer architecture. The 1D-mixer module comprises 1D
convolution, which extracts and fuses the feature’s spatial and channel
information. The 1D-mixer spatial feature encoding part includes the
1D-MS module, channel separation, and residual connection. The
role of channel separation is to reduce the number of feature channels
and the parameters required for later encoding. 1D-MS is used for
encoding in the direction of feature space. This encoding module
integrates local and global information and has strong encoding
ability. Using residual connections increases the utilization of features
and speeds up network training. The 1D-mixer channel information
fusion part is composed of 1D-MC and residual connection. This part
helps feature information flow between different channels and feature
selection along the direction of the channel. The overall structure
of the 1D-mixer is shown in Figure 1D, and the specific calculation
process is as follows:

SF = Concat
(
MS

(
Split (X)

))
+ X (1)

OUT = MC (SA)+ SF (2)

Where X represents the feature input.SF and OUT denote spatially
encoded features and 1D-mixer encoded output. Split means distinct
channel separation, MS means 1D-MS module, and MC is the
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FIGURE 1

(A) Multi-layer perceptron (MLP); (B) 1D multi-layer channel module (1D-MC); (C) 1D multi-layer space module (1D-MS), and (D) 1D-mixer. ⊗ Means pixel
multiplication; ⊕means pixel addition; split means channel separation; concat means channel splicing.

FIGURE 2

(A) Attention pyramid with flow alignment module (AP-FA); (B) FA; (C) AP. ⊗ Means pixel multiplication; ⊕means pixel addition; © means channel
splicing; T means deconvolution.

1D-MC module. + Means residual connection, and Concat means
channel splicing.

Our 1D-mixer has the following advantages: (1) it adopts
transformer structure to fuse spatial feature information and channel
information to improve segmentation accuracy; (2) 1D-MS fuses
local and global information of feature space direction with very
few parameters; (3) 1D-MC module promotes the flow of feature
information in the channel direction and selects effective feature
channels; (4) it adopts channel separation operation to reduce model
parameters and calculation further.

3.3. AP-FA module

In order to further extract high-level semantic information and
adapt to different tasks, the network usually connects a decoder
after the encoder, for which we designed a novel AP-FA, as shown

in Figure 2A. The decoder consists of two main parts, one is the
attention feature pyramid, and the other is the FA.

3.3.1. Attention pyramid
The AP consists of three branches: 1D pyramid structure, which

can further encode features to obtain global information and detailed
information; 1 × 1 convolution, which fuses channel information
on the output of the encoder; the spatial attention branch acquires
features. The spatial position relationship reduces the loss of details.
The specific operation process is shown in Equation (3).

OUT = [C1 × 1 (X)+ P (X)] × SA (X) (3)

Where X and OUT represent the output feature of the Stage 3
and output of AP, P is the pyramid structure, C1 × 1is 1 × 1
convolution, SA is spatial attention, + represents the addition
of corresponding elements, and represents the multiplication of
corresponding elements. In the pyramid structure, the convolution
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FIGURE 3

The overall network architecture of lightweight semantic segmentation network (LSNet).

and deconvolution of the depth-wise convolution kernel sizes we use
are (3 × 1, 5 × 1, and 7 × 1). There are two main reasons for
using decomposed convolution here. One is that banded convolution
meets the needs of lightweight networks, and the second is that most
detected targets are banded. Therefore, using banded convolution
is helpful for feature decoding. In the spatial attention branch, two
kinds of pooling are used to obtain global information from multiple
aspects and are encoded by 1 × 7 and 7 × 1 convolutions. 1 × 7
and 7 × 1 large convolutions can extract spatial features very well.
AP related details are shown in Figure 2C.

3.3.2. Flow alignment
Ordinary upsampling will cause the problem of feature

misalignment, resulting in decreased segmentation accuracy. We
design a FA to restore the resolution and solve the misalignment
problem by predicting the flow field inside the network. The specific
process is shown in Figure 2B. The input of FA is the output feature
(F1) of Stage 1 and the output feature map (D) of AP. The feature
map is obtained through a 1 × 1 convolutional layer to obtain a
feature map with a channel number of 1. The resulting feature map is
upsampled to ensure that the resolution of the two features is equal
to the resolution of the input image. We concatenate them together
and feed the concatenated feature maps into 7 × 1 and 1 × 7

TABLE 1 The detailed architecture of lightweight semantic segmentation
network (LSNet).

Stage Type Channel Output size

Encoder Downsampling 64 512×256

1D-mixer×3 64 512×256

Downsampling 96 256×128

1D-mixer×3 96 256×128

Downsampling 128 128×64

1D-mixer×21 128 128×64

Decoder AP-FA C 1,024×512

“Channel” denotes the number of output feature maps and “C” is the number of classes. “Output
size” denotes the output size with an input size of 1,024× 512.

concatenated convolutional networks. The above steps can be written
as follows:

offset = Conv (U (C1 × 1 (F1, D))) (4)

Among them, U represents the connection and upsampling
operation, C1 × 1is a 1 × 1 convolutional layer, Conv is a series
network of 7 × 1 and 1 × 7. offset is the offset required for
bilinear interpolation. We normalize offset and sum it with the grid
to generate an upsampling index. The features output by the AP is
upsampled through the grid sample operation. The FA we designed
combines high-level semantic features and low-level structural
features to solve the problem of feature misalignment perfectly.

The AP-FA structure we designed has the following advantages:
first, the pyramid structure is used to extract features, and the
purpose is to expand the network receptive field and obtain more
decoding features; second, the spatial attention structure suppresses
unnecessary information, highlights important information, and

TABLE 2 Ablation study results of 1D-mixer module.

Type Model mIoU (%) Params (M)

Baseline LSNet 72.6 0.62

Ablation for typical
module

SS-nbt 69.8 2.52

DAB 71.2 2.15

CG 64.4 0.48

Ablation for depth 3, 9 65.6 0.40

3, 12 67.2 0.46

6, 12 67.4 0.49

3, 15 68.8 0.51

6, 15 67.5 0.54

3, 18 70.2 0.57

3, 24 72.3 0.67

Ablation for 1D-MS 3 × 3 70.9 2.31

3 × 3 depth-wise 69.8 0.64

Ablation for 1D-MC 1 × 1 71.4 0.62
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FIGURE 4

The lightweight semantic segmentation network (LSNet) feature visualization. The picture from left to right is: the original image, the encoder feature
map using DAB, the encoder feature map using 1D-mixer, the network output feature map using DAB, and the network output feature map using
1D-mixer.

improves segmentation precision. Third, the FA method solves
the misalignment problem when bilinear interpolation is used for
upsampling and improving segmentation accuracy.

3.4. Network architecture

Figure 3 is a structural diagram of LSNet, which uses an
asymmetric encoder-decoder structure. The details of the specific
design are shown in Table 1. The encoding part uses three stages to
encode different resolution features, and the number of 1D-mixer
in each stage is 3, 3, 21. The input resolutions of each stage are
(H 1

4
× W 1

4
, H 1

8
× W 1

8
, and H1/16 × W1/16), where H and

W are the height and width of the input image, respectively. The
downsampling is 3 × 1 and 1 × 3 convolution concatenation, the
step size is 2, and the max-pooling output is spliced simultaneously.

The input of the AP-FA decoder comes from the feature
maps of Stage 1 and Stage 3, and the final scene parsing is
performed through the attention feature pyramid and the FA. Much
lightweight semantic segmentation ignores the decoder in order
to reduce network parameters. A dense decoder can help improve
segmentation accuracy without generating too many parameters.
Many lightweight networks use three-stage encoders to cause the
network’s receptive field to be too small, and bilinear interpolation

TABLE 3 Ablation study results of attention pyramid with flow alignment
module (AP-FA) module.

Type Model mIoU (%) Params (M)

Baseline LSNet 72.6 0.62

Ablation for AP 1×1 70.5 0.59

Ablation for
attention

– 72.2 0.62

Ablation for
feature pyramid

– 70.9 0.59

333 71.9 0.61

235 72.0 0.61

135 71.5 0.61

3,579 72.5 0.62

Ablation for FA Bilinear
interpolation

70.8 0.62

has problems with upsampling misalignment. Aiming at the problem
of the decrease in segmentation accuracy caused by the above, we
designed the AP module to expand the network receptive field and
increase the global information. We design a FA to restore feature
resolution and improve segmentation accuracy.

4. Experiments

4.1. Datasets and implementation details

4.1.1. Cityscapes
Cityscapes (Cordts et al., 2016) is an urban scene parsing dataset

commonly used for semantic segmentation training. It contains street
scenes in multiple cities and 5,000 car-driving images collected from
the driver’s perspective. This network splits the dataset into 2,975,
500, and 1,525 for training, validation, and testing. We select 19 of
these semantic categories for training. We convert the resolution of
the original image from 2, 048 × 1, 024 to 1, 024 × 512 to improve
the running speed. We do not introduce additional pre-training
during training.

4.1.2. CamVid
CamVid (Brostow et al., 2008) contains 701 street view images,

of which 367 are used for training, 101 for validation, and 233 for
testing. The data set semantically annotates 32 objects in the picture,
and we only train 11 semantic objects. We reduce the resolution of
the original image from 960 × 720 to 480 × 360 to improve the
inference speed.

4.1.3. ADE2K
ADE2K contains 25,000 pictures, and the resolution of each

picture is not uniform. We unified the size of the pictures to
512 × 512 to facilitate model training. The training set contains
20,000 images, the validation set contains 2,000 images, and the test
set contains 3,000 images.

4.1.4. Implementation details
All our experiments are run on a 1080Ti GPU. PyTorch 1.7,

CUDA 9.0, cuDNN 8.0, and Anaconda environment are specific
configurations. For fairness, we adopted the training configuration
widely used by everyone. The details are as follows: the stochastic
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TABLE 4 Evaluation results of our lightweight semantic segmentation network (LSNet) and other state-of-the-art real-time semantic segmentation models
on the Cityscapes test set.

Model Input size Pre-train GPU mIoU (%) FPS Params (M)

SegNet (Badrinarayanan et al., 2017) 640 x 360 ImageNet TitanX 57 16.7 29.5

ENet (Paszke et al., 2016) 640 x 360 No TitanX 58.3 135.4 0.4

ICNet (Zhao et al., 2018) 1,024 x 2,048 ImageNet TitanX 69.5 30.3 26.5

ERFNet (Romera et al., 2017) 512 x 1,024 No TitanX 68 41.7 2.1

ESPNet (Mehta et al., 2018) 512 x 1,024 No TitanX 60.3 112 2.1

BiSeNet (Yu et al., 2018) 768 x 1,536 ImageNet TitanX 68.4 72.3 5.8

Fast-SCNN (Poudel et al., 2019) 1,024 x 2,408 ImageNet TitanX 68 123.5 1.11

ESPNetV2 (Mehta et al., 2019) 512 x 1,024 No TitanX 66.2 67 1.25

DFANet (Li H. et al., 2019) 512 x 1,024 ImageNet TitanX 70.3 160 7.8

LEDNet (Wang et al., 2019) 512 x 1,024 No 1080Ti 69.2 71 0.94

ESNet (Lyu et al., 2019) 512 x 1,024 No 1080Ti 69.1 63 1.66

DABNet (Li G. et al., 2019) 512 x 1,024 No 1080Ti 70.1 104 0.76

FDDWNet (Liu et al., 2020) 512 x 1,024 No 2080Ti 71.5 60 0.8

DDPNet (Yang et al., 2020) 768 x 1,536 No 1080Ti 74.0 85.4 2.52

LEANet (Zhang et al., 2022) 512 x 1,024 No 1080Ti 71.9 77.3 0.74

SFNet (Li et al., 2020) 1,024 x 2,048 No 1080Ti 78.9 26 12.87

PIDNet-S (Xu et al., 2022) 1,024 x 2,048 No 3,090 78.8 93.2 7.6

LSNet (Our) 512 x 1,024 No 1080Ti 72.6 95.6 0.62

FIGURE 5

Some visual comparisons on the Cityscapes validation set. From left to right are input images, ground truth, predicted results from LEDNet, DABNet, and
our lightweight semantic segmentation network (LSNet).

TABLE 5 Evaluation results of our lightweight semantic segmentation network (LSNet) and other state-of-the-art real-time semantic segmentation models
on the CamVid test set.

Model Input size Pre-train GPU mIoU (%) FPS Params (M)

SegNet (Badrinarayanan et al., 2017) 360 x 480 ImageNet TitanX 55.6 – 29.5

ENet (Paszke et al., 2016) 360 x 480 No TitanX 51.3 – 0.4

ICNet (Zhao et al., 2018) 720 x 960 ImageNet TitanX 67.1 27.8 26.5

CGNet (Wu et al., 2020) 360 x 480 No 2 x V100 65.6 – 0.5

BiSeNet (Yu et al., 2018) 720 x 960 ImageNet TitanX 65.6 175 5.8

BiSeNetV2 (Yu et al., 2021) 720 x 960 ImageNet TitanX 68.7 124.5 49.0

DFANet (Li H. et al., 2019) 720 x 960 ImageNet TitanX 64.7 120 7.8

DABNet (Li G. et al., 2019) 360 x 480 No 1080Ti 66.2 124.4 0.76

LRNNet (Jiang et al., 2020) 360 x 480 No 1080Ti 67.6 83 0.67

DDPNet (Yang et al., 2020) 360 x 480 No 1080Ti 67.3 – 1.1

LEANet (Zhang et al., 2022) 360 x 480 No 1080Ti 67.5 98.6 0.74

LSNet (Our) 360 x 480 No 1080Ti 70.5 122 0.62
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gradient descent method (SGD) is used, the loss function is the cross-
entropy, and the learning rate update strategy uses “poly.” The input
image is randomly cropped, inverted, and scaled, and the scaling
range is 0.75− 2. The initial learning rate of training Cityscapes is
1e− 2, the weight decay is 5e− 4, the cropping size is 512 × 512,
and the number of input images is eight. The initial learning rate of
training. Initial learning rate of CamVid is 1e− 3, the weight decay
is 5e− 4, the cropping size is 480 × 360, and the number of input
images is 16. Initial learning rate of ADE20K is 1.2e− 4, the weight
decay is 1e− 2, the cropping size is 512 × 512, and the number of
input images is eight.

4.2. Ablation study

4.2.1. Ablation study for 1D-mixer module
4.2.1.1. Ablation for typical module

We compare LEDNet’s (Wang et al., 2019) encoding structure
SS-nbt, DABNet’s (Li G. et al., 2019) encoding structure DAB,
and CGNet’s (Wu et al., 2020) CG encoder with our designed
1D-mixer. We trained on the Cityscapes dataset, replacing the
classic module 1D-mixer in the LSNet network. As shown in
Table 2, the LSNet network with the CG module has minor
parameters, but the accuracy is 8.2 mIoU lower than the network
with 1D-mixer. The parameters of the remaining two modules are
more than three times that of the 1D-mixer, and the accuracy
is also lower than the modules we designed. Figure 4 is a
feature visualization diagram of the LSNet network using the
1D-mixer module and the DAB module. Through the above
comparative analysis, the 1D-mixer we designed outperforms the
classic lightweight encoding modules in feature extraction and
parameters.

4.2.1.2. Ablation for depth

The LSNet network contains three encoding stages, and the
number of layers set in the first stage is three, which is consistent with
the design of most classic lightweight networks. We experimented
with the number of modules in the second and third stages of the
network, hoping to find a suitable number of layers to achieve a

TABLE 6 Results of typical networks on the ADE20K validation set.

Model Params
(M)

FLOPs
(G)

mIoU
(%)

Latency
(ms)

FCN-8s (Noh et al., 2015) 9.8 39.6 19.7 1,015

PSPNet (Zhao et al., 2017) 13.7 52.2 29.6 1,065

R-ASPP (Sandler et al., 2018) 2.2 2.8 32.0 177

Lite-ASPP (Chen et al.,
2018)

2.9 4.4 36.6 235

LR-ASPP (Howard et al.,
2019)

3.2 2.0 33.1 126

SegFormer (Xie et al., 2021) 3.8 8.4 37.4 770

Semantic FPN (Kirillov
et al., 2019)

12.8 33.8 35.8 777

LSNet (Our) 0.65 3.8 36.4 224

All networks are trained on the server and ported to mobile devices through TNN. Latency and
GFLOPs calculations take 512 × 512 resolution images as input. Latency measured based on a
single Qualcomm Snapdragon 865 processor. All results are evaluated using a single thread.

certain balance between the segmentation accuracy and parameters
of the network. As shown in Table 2, the segmentation accuracy
and model parameters increase as the number of network layers
increases. When the network exceeds a certain number of layers, the
segmentation accuracy does not increase. We denote the number
of encoders in the second stage by N, and M is the number of
encoders in the third stage. When M = 12, the network accuracy
of N = 3 is 0.2 mIoU higher than that of N = 6. The network
accuracy is the highest when N = 3 and M = 21. After the
above analysis, we set to N = 3 and M = 21 in Stage 2 and
3.

4.2.1.3. Ablation for 1D-MS

According to the idea of MLP and global information fusion
technology, we designed the 1D-MS module. The 1D-MS module
plays the role of spatial feature extraction in the encoder. To
explore the superiority of our designed 1D-MS block encoding,
we replace 1D-MS with 3 × 3 convolution and 3 × 3 depth-wise
convolution. As shown in Table 2, 3 × 3 depth-wise convolution
has the same parameters as our designed 1D-MS module, but
the accuracy drops by 2.8 mIoU. The 3 × 3 convolution is
not as powerful as the 1D-MS module in terms of accuracy
and parameters. The above experimental results prove that the
encoding effect of our designed 1D-MS exceeds that of ordinary
convolution.

4.2.1.4. Ablation for 1D-MC

Information fusion between channels can improve network
accuracy. We design the 1D-MC module, adopting the ideas of MLP
and channel selection. Ordinary channel information fusion uses
1× 1 convolution, and here we compare 1D-MC with it. As shown in
Table 2, 1D-mixer with 1 × 1 convolution has the same parameters
as 1D-MC, but the accuracy is reduced by 1.2 mIoU. It can be seen
from the experiments that efficient channel information fusion can
improve segmentation accuracy, and our designed 1D-MC is more
suitable for channel information fusion than 1× 1 convolution.

4.2.2 Ablation study for AP-FA module
4.2.2.1 Ablation study for AP

Attention pyramid can fuse multi-scale information and perform
feature screening simultaneously to improve network accuracy. We
conduct ablation experiments on the AP structure, replacing the AP
module with 1 × 1 convolution. As can be seen from Table 3, the
accuracy of the network without the AP module drops by 2.1 mIoU.
From the experiments, it can be seen that adequately designing the
decoder can improve network accuracy.

4.2.2.2 Ablation study for attention

We introduced spatial attention in AP-FA; the purpose is to
extract the overall structural features of the feature map and filter
the features to improve the segmentation accuracy. To demonstrate
the role of spatial attention in the decoder, we compare LSNet with
LSNet without attention. Table 3 shows that the accuracy of the
network without spatial attention drops by 0.4 mIoU. This test shows
that our spatial attention branch can improve network segmentation
accuracy.

4.2.2.3 Ablation study for feature pyramid

We use 3 × 1, 5 × 1, and 7 × 1 convolution and deconvolution
to form a feature pyramid, the purpose of which is to increase the
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depth of the network and integrate contextual scale information. We
designed five sets of 1D convolution, and the convolution kernel
sizes are ((3, 3, 3) , (1, 3, 5) , (2, 3, 5) , (3, 5, 7) , (3, 5, 7, 9)).
In order to further prove the value of the pyramid, we designed
LSNet to remove the pyramid structure. It can be seen from Table 3
that introducing the pyramid structure can increase 1.7 mIoU.
Comparing the experimental results of the LSNet network using these
five sets of convolution kernels, the segmentation accuracy of the
convolution kernel (3, 5, 7) is the highest, and it is proved that
further increasing the depth of the pyramid has little effect on the
segmentation accuracy.

4.2.2.4 Ablation study for FA

Since the output resolution of the encoder is smaller than the
resolution of the original image, bilinear interpolation is usually used
to restore the feature resolution at the end of the network. There is
a problem of feature misalignment in bilinear upsampling, which
affects the segmentation accuracy. We design a FA in the decoder
to solve this problem. We compared bilinear interpolation with FA,
and the specific results are shown in Table 3. The FA we designed
is 1.8 mIoU higher than the bilinear interpolation algorithm, which
shows that the design of the alignment module is effective.

4.3 Evaluation results on Cityscapes

We designed an LSNet with a parameter of 0.62 M, an inference
speed of 95.6 FPS, and a segmentation accuracy of 72.6 mIoU
on a 1080Ti. It can be seen from Table 4 that the network we
designed has the highest accuracy among the networks with less
than 1 M parameters. Under the same experimental conditions
of 1080Ti, the network we designed is 69.6 FPS faster than
SFNet, and the parameters are also reduced by 12.25 M. From
the balance of network parameters and segmentation accuracy, the
parameter expression ability of the LSNet we designed is better
than that of SFNet. For PIDNet, the segmentation accuracy is
6.2 mIoU higher than LSNet, but 6.98 M increases the number
of parameters. From the perspective of accuracy and parameter
balance, the parameters of PIDNet are 11 times that of LSNet, but
the accuracy increases very little. The network we designed has a
better balance. It is worth noting that the resolution of our network
input is 1, 024 × 512, and the resolution of PIDNet and SFNet
input is 2, 048 × 1, 024, which is an important reason why their
accuracy is higher than our network. We compare the visualization
results of DABNet, LEDNet, and our designed LSNet, as shown in
Figure 5.

4.4 Evaluation results on CamVid

Table 5 compares the performance of LSNet on the CamVid
dataset with other models. The network we designed has the
highest accuracy in the current LSNet, which is 3 mIoU higher
than LEANet (Zhang et al., 2022). Without any pre-training, the
LSNet network has an accuracy of 70.5 mIoU and a speed of
122 FPS. Our training is only done on a 1080Ti GPU, and the
input resolution uses low-resolution images. Unlike most real-time
semantic segmentation models, LSNet has apparent advantages:
fewer parameters and high segmentation accuracy. Whether it is the

Cityscapes or CamVid dataset, our LSNet has excellent performance
and strong robustness.

4.5 Evaluation results on ADE20K

We train all networks on the server and use TNN to port
the trained networks to mobile devices. The LSNet we designed
and the advanced algorithm are compared on the validation
dataset on ADE20K, and the latency (ms) is tested on a mobile
device with a single Qualcomm Snapdragon 865 processor. The
experimental results are shown in Table 6. FCN-8s, PSPNet
(Zhao et al., 2017), R-ASPP (Sandler et al., 2018), and Lite-
ASPP (Chen et al., 2018), use MobileV2 as the encoder. LR-
ASPP (Howard et al., 2019) uses MoblieV3 as the encoder.
We also compare with the advanced lightweight transformer
algorithm, where SegFormer uses MiT-B0 as the encoder, and
Semantic FPN (Kirillov et al., 2019) uses ConvMLP-S as the
encoder. As can be seen from Table 6, LSNet and Lite-ASPP
are comparable in latency and segmentation accuracy. However,
LSNet has more advantages in calculation amount (GFLOPs) and
parameter amount. This experiment proves that the network we
designed can be used on mobile devices, and the calculation amount,
parameter amount, and segmentation accuracy achieve the best
balance.

5. Conclusion

In this paper, we designed a LSNet. The network’s success
is attributed to the combination design of 1D convolution.
Our network transforms the MLP idea into a 1D convolution
multi-layer combination, which solves problems where MLP is
challenging to apply in semantic segmentation. At the same
time, the design of the decoder increases the network’s depth,
solves the misalignment of upsampling, and further improves
the accuracy of network segmentation. Experimental results show
that our designed network achieves the best balance of accuracy
and parameters, surpassing the current state-of-the-art lightweight
language segmentation network. This paper shows that the
proper use of multi-layer 1D convolution is more suitable for
semantic segmentation than MLP. Clever decoder design is also
an essential part of improving segmentation accuracy. We hope
this paper encourages researchers to investigate the potential of 1D
convolutions further.
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