
fnbot-17-1127338 February 24, 2023 Time: 8:45 # 1

TYPE Original Research
PUBLISHED 28 February 2023
DOI 10.3389/fnbot.2023.1127338

OPEN ACCESS

EDITED BY

R. A. R. C. Gopura,
University of Moratuwa, Sri Lanka

REVIEWED BY

Asif Ali Laghari,
Sindh Madressatul Islam University, Pakistan
Yang Sun,
Shenyang Normal University, China

*CORRESPONDENCE

Wenli Zhang
zhangwenli@bjut.edu.cn

RECEIVED 19 December 2022
ACCEPTED 14 February 2023
PUBLISHED 28 February 2023

CITATION

Zhang W, Zhao T, Zhang J and Wang Y (2023)
LST-EMG-Net: Long short-term transformer
feature fusion network for sEMG gesture
recognition.
Front. Neurorobot. 17:1127338.
doi: 10.3389/fnbot.2023.1127338

COPYRIGHT

© 2023 Zhang, Zhao, Zhang and Wang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

LST-EMG-Net: Long short-term
transformer feature fusion
network for sEMG gesture
recognition
Wenli Zhang1*, Tingsong Zhao1, Jianyi Zhang2 and Yufei Wang1

1Faculty of Information Technology, Beijing University of Technology, Beijing, China, 2College of Art
and Design, Beijing University of Technology, Beijing, China

With the development of signal analysis technology and artificial intelligence,

surface electromyography (sEMG) signal gesture recognition is widely used

in rehabilitation therapy, human-computer interaction, and other fields. Deep

learning has gradually become the mainstream technology for gesture

recognition. It is necessary to consider the characteristics of the surface

EMG signal when constructing the deep learning model. The surface

electromyography signal is an information carrier that can reflect neuromuscular

activity. Under the same circumstances, a longer signal segment contains

more information about muscle activity, and a shorter segment contains less

information about muscle activity. Thus, signals with longer segments are suitable

for recognizing gestures that mobilize complex muscle activity, and signals with

shorter segments are suitable for recognizing gestures that mobilize simple

muscle activity. However, current deep learning models usually extract features

from single-length signal segments. This can easily cause a mismatch between

the amount of information in the features and the information needed to

recognize gestures, which is not conducive to improving the accuracy and

stability of recognition. Therefore, in this article, we develop a long short-

term transformer feature fusion network (referred to as LST-EMG-Net) that

considers the differences in the timing lengths of EMG segments required

for the recognition of different gestures. LST-EMG-Net imports multichannel

sEMG datasets into a long short-term encoder. The encoder extracts the sEMG

signals’ long short-term features. Finally, we successfully fuse the features

using a feature cross-attention module and output the gesture category. We

evaluated LST-EMG-Net on multiple datasets based on sparse channels and high

density. It reached 81.47, 88.24, and 98.95% accuracy on Ninapro DB2E2, DB5E3

partial gesture, and CapgMyo DB-c, respectively. Following the experiment, we

demonstrated that LST-EMG-Net could increase the accuracy and stability of

various gesture identification and recognition tasks better than existing networks.

KEYWORDS

sEMG signals, gesture recognition, multi-scale features, multi-head attention, stroke
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1. Introduction

Surface electromyography signals are bioelectric signals
generated during muscle contractions. sEMG signals can be
collected non-invasively, safely, and easily, and sEMG can directly
reflect the state of muscle activity. By analyzing the sEMG,
gestures can be accurately recognized. sEMG-based gesture
recognition methods have the advantages of being faster and
more environmentally independent than vision-based gesture
recognition methods (Oudah et al., 2020; Mujahid et al., 2021).
Therefore, sEMG-based gesture recognition methods have strong
application possibilities in sectors related to human-computer
interfaces, including intelligent prosthetics (Cipriani et al.,
2008), upper limb rehabilitation exoskeletons (Leonardis et al.,
2015), robotic arm control (Wang et al., 2012), and others
(Muri et al., 2013).

An sEMG-based gesture recognition framework generally
consists of four parts: Signal preprocessing, signal segmentation,
feature extraction, and gesture classification mechanisms (Parajuli
et al., 2019). For traditional machine learning algorithms, the
features used for classification are usually handcrafted by human
experts. Therefore, the quality of the feature set selected by
the experts directly determines the success or failure of the
recognition task. Numerous gesture recognition studies have
used traditional classifiers for manual features. For example,
support vector machines (SVMs) (Alseed and Tasoglu, 2022;
Briouza et al., 2022), k-nearest neighbors (KNN) (Baygin et al.,
2022), linear discriminant analysis (LDA) (Narayan, 2021), hidden
Markov models (HMMs) (Hu and Wang, 2020), and random
forests (RF) (Xue et al., 2019; Jia et al., 2021) have made some
progress. However, the accuracy and stability of traditional learning
algorithms do not yet satisfy practical application requirements
when applied to large-scale datasets consisting of larger numbers
of hand gestures or wrist movements. Therefore, improving the
accuracy and stability of hand gesture recognition is still a hot
research topic.

In recent years, with the rapid development of artificial
intelligence technology, deep learning has shown great potential in
medical rehabilitation fields such as physiological signal processing
(Rim et al., 2020; Al-Saegh et al., 2021) and medical image imaging
(Karim et al., 2022; Laghari et al., 2022). In gesture recognition
tasks based on surface EMG signals, deep learning methods can
automatically learn the dependencies or intrinsic connections of
the amplitude changes at each sampling point in surface EMG
signals due to their deep network architectures. The dependencies
and intrinsic connections can be considered the muscle activity
features that indirectly express forearm muscle activity conditions,
and gesture information can be obtained under this condition. The
following research summarizes the feature extraction methods that
have been developed under different model architectures for deep
learning algorithms.

1.1. Related work

Deep learning models outperform traditional machine
learning models, so many researchers use deep learning for
gesture recognition. Convolutional neural networks (CNNs)

(Atzori et al., 2016; Wei et al., 2019; Chen et al., 2020), recurrent
neural networks (RNNs) (Vaswani et al., 2017; Hu et al., 2018;
Xia et al., 2018), and transformer-based gesture identification
approaches (Rahimian et al., 2021; Siddhad et al., 2022) are the
current prevalent deep learning gesture recognition algorithms.

Researchers have conducted studies on CNN-based gesture
recognition methods (Atzori et al., 2016; Wei et al., 2019; Chen
et al., 2020). Atzori et al. (2016) first applied a CNN to an sEMG
gesture recognition task using only a shallow network constructed
from four convolutional layers. The accuracy was comparable to
that of traditional machine learning gesture recognition methods.
Wei et al. (2019) proposed a multistream convolutional neural
network (MSCNN) with decomposition and fusion stages. The
network learned the correlations between gesture muscles, and
it was evaluated on three benchmark databases. The results
showed that multistream CNNs outperformed simple CNNs and
random forest classifiers, but the computational effort of the
method increased multiplicatively with the number of myoelectric
channels.

Some researchers have combined recurrent neural networks
(RNNs) with CNNs, using CNNs for feature extraction and RNNs
for modeling time dependencies (Vaswani et al., 2017; Hu et al.,
2018; Xia et al., 2018). An RNN has all nodes connected in a
chain-like manner, so it can handle short-term memorization tasks
well. For example, Xia et al. (2018) proposed the RCNN, a single-
branch deep structure with a CNN and RNN connected serially.
The CNN extracts the myoelectric local spatial features, and the
RNN saves the local spatial features and efficiently passes them
to the next moment to update the model weights. This network
has an advantage in learning complex motion features. However,
the RCNN can have a sharp decrease in recognition accuracy over
time compared to the CNN. Xia et al. (2018) tried to use large
neural networks with more layers and parameters to improve the
robustness of the model to time variations. Nevertheless, problems
such as a heavy training time burden and system recognition
delays are caused by the inability of RNNs to train in parallel.
Hu et al. (2018) proposed an attention-based hybrid CNN-RNN
model. The model uses a CNN to extract spatial feature maps of
successive frames of sEMG signals and an RNN to further extract
temporal features from the feature maps. The model was able to
effectively extract the temporal correlation of each channel of sparse
multichannel sEMG signals.

In recent years, after the transformer model (Vaswani
et al., 2017) was proposed, it attracted attention in natural
language processing and computer vision tasks. The transformer
model entirely relies on self-attention, which can capture global
dependencies in the input data to achieve parallel computation
and improve computational efficiency. At the same time, self-
attention can produce more interpretable models. For example,
Siddhad et al. (2022) explored the effectiveness of transformer
networks for the classification of raw EEG data. They used
raw resting-state EEG data to classify people by age and
gender, and the classification results showed that the transformer
network was comparable in accuracy to state-of-the-art CNN and
LSTM recognition with feature extraction. This proved that the
transformer network has excellent feature extraction capability
for time-series signals. Some researchers have already used
transformers for hand gesture recognition (Rahimian et al., 2021;
Montazerin et al., 2022). For example, Rahimian et al. (2021) used
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a vision-based transformer model architecture for the classification
and recognition of upper limb gestures, and the recognition
accuracy on Ninapro DB2 Exercise B for 17 gestures reached
state-of-the-art performance at that time. Montazerin et al. (2022)
also proposed a transformer framework based on ViT for high-
density sEMG gesture recognition with 128 arrayed electrodes,
which can solve the time burden problem of RNN structures that
are not trained in parallel. However, current transformer-based
gesture recognition networks only apply the image classification
scheme to EMG recognition. The network structure is not
designed according to the characteristics of gesture activity and
sEMG signals.

In summary, gesture recognition is mainly implemented by
deep learning methods at this stage. Among them, the transformer
model has become a hot research topic because of its self-attention
structure, which can extract sEMG signal temporal muscle activity
features well and performs well in gesture recognition. However,
current recognition methods still suffer from a mismatch between
the amount of information contained in the extracted features
and the amount of information required to recognize gestures
when implementing multicategory gesture recognition. The reason
for the mismatch problem is that there are differences in the
stability exhibited in the sEMG signal due to the different
muscle activity, muscle contraction changes, and muscle strength
changes mobilized (Farago et al., 2022; Li et al., 2022). The
sEMG signals of more complex gestures are less stable, and
simpler gesture movements have better EMG signal stability. To
recognize complex gestures from less stable EMG signals, the
lengths of the feature extraction segments need to increase to
yield a sufficient amount of information for recognition (Nazmi
et al., 2017). However, most of the existing related works do
not consider the characteristic that the lengths of EMG signals
are different for different gestures. They all intercept fixed-length
EMG signals for spatial and temporal feature extraction, which
leads to a mismatch between the amount of feature information
extracted by the designed models and the corresponding gestures
and affects the accuracy and robustness of the gesture recognition
framework.

1.2. Contributions

To address the above problems, it is necessary to propose
a gesture recognition method to extract moderate feature
information from EMG sample segments. Therefore, we propose a
gesture recognition method based on LST-EMG-Net. It can extract
long- and short-sequence features in sEMG windows and fuse them
effectively to achieve high-accuracy recognition of complex and
simple gestures. The method proposed in this article makes the
following three contributions:

(1) To address the mismatch between the feature information and
required information in a multicategory gesture recognition
task, we propose a long short-term encoder and use the
linear projection in the encoder to construct a long-
term branch and a short-term branch. Then, each branch
feature is extracted by a long- or short-term subencoder
to achieve multiscale time feature extraction and solve the

problem of redundant or insufficient feature extraction. To
further improve the feature quality, we use sEMG channel
attention to dynamically set the weights of each channel of
the sEMG windows.

(2) We propose a cross-attention module for long- and short-
term features from the encoder to fuse the long- and
short-term features efficiently. This module uses an
attention-based approach to cross-learn one branch’s
classification token and another branch’s patch tokens
in the feature. This module can effectively fuse the
muscle activity information and enhance the efficiency
of feature fusion due to its low computational effort. It
finally achieves the goal of improving the accuracy of hand
gesture recognition.

(3) To address the problem that individual sEMG signals
are difficult to collect in large quantities, we propose a
signal augmentation method based on sEMG windows.
This method adopts random windows and sEMG time
delays to augment the original sEMG windows and
constructs a training dataset together with the original
EMG timing windows. This method reduces the burden of
data collection.

The remainder of the article is organized as follows. The dataset
and the sEMG signal enhancement method utilized in this article
are described in detail in Section “2. Materials and methods.”
The framework of LST-EMG-Net, including the motivation of the
study and the submodule structure, is presented in Section “3.
The long short-term sEMG transformer feature fusion network
framework.” The experimental environment of LST-EMG-Net and
experimental results are presented in Section “4. Experiments and
results.” Finally, the conclusions of this article are drawn in Section
“5. Conclusion.”

2. Materials and methods

2.1. The datasets

We use two types of datasets, a sparse sEMG dataset and a
high-density sEMG dataset, to evaluate our LST-EMG-Net. The
sparse dataset includes Ninapro DB2 and DB5 (Atzori et al., 2012,
2014a,b; Gijsberts et al., 2014; Du et al., 2017; Pizzolato et al.,
2017). The high-density dataset is the public CapgMyo dataset
(Du et al., 2017).

Sparse sEMG dataset: We use 17 basic wrist movements and
isotonic hand configurations from the DB2 Exercise B subdataset
(as shown in Figure 1A). In the DB2 dataset, the muscular
activities were measured using 12 active double-differential wireless
electrodes from a Delsys Trigno Wireless EMG system at a
sampling frequency of 2 kHz. The DB5 dataset uses 18 gestures
from the Exercise C subdataset that fully mobilize muscle activity
and facilitate muscle recovery training (as shown in Figure 1B).
The DB5 dataset was taken from 10 healthy subjects. Its collection
device was a pair of Thalmic Labs Myo (Myo) armbands. Each Myo
had eight single-channel electrodes, each with a sampling rate of
200 Hz. The DB2 dataset and DB5 dataset collection rules were the
same. Each gesture was repeated six times, each acquisition had a
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FIGURE 1

Types of gestures in the datasets used in this manuscript. (A) Ninapro DB2 exercise B dataset 17 gestures. (B) Ninapro DB5 exercise C dataset 18
gestures. (C) CapgMyo DB-c dataset 12 gestures.

5 s activity signal, and each acquisition interval was 3 s. The 1st,
3rd, 4th, and 6th repetitions of the gesture were used to construct
the training set, and the 2nd and 5th repetitions were used to build
the test set.

High-density sEMG dataset: We used 12 basic finger
movements from the DB-C subdataset of CapgMyo (as shown
in Figure 1C). The dataset was acquired at a sampling rate of
1,000 Hz with an array of 8 2 × 8 differential electrodes to capture
the activity of the right peripheral forearm muscle groups. The
CapgMyo dataset was obtained from 10 users who repeated several
movements 10 times, each lasting 3 s, followed by 7 s of rest.
Odd-numbered repetitions were used to construct the training set,
and even-numbered repetitions were used to build the test set.

2.2. Preprocessing

Before performing the classification task, the sEMG signals
were preprocessed. The sEMG signals were filtered from power
line interference before signal acquisition due to the built-in
50 Hz trap filter in the sEMG sensor. We only used a blind
source separation process called fast independent component
analysis (Fast ICA) (Comon, 1992) on the raw signals to eliminate
interchannel crosstalk. Then, Z Score standard normalization was
used to process the sEMG signals after filtering the noise. Z Score
normalization of a channel is shown in Equation 1.

F(xt) =
xt − µ

σ
(1)

Where xt is the sEMG signal, µ is the mean value of the sEMG
signal and σ is the standard deviation of the sEMG signal.

This article uses the sliding-window method with overlap to
segment the normalized EMG signal to obtain the original EMG
timing window. The length of the sliding window is set according
to the related work of Scheme and Englehart (2011). It is noted
that 300–800 ms is an acceptable latency. Considering the delay and
computation volume, we set the window length of the Ninapro DB2
dataset as 300 ms, its window distance as 10 ms, the window length
of the Ninapro DB5 dataset as 500 ms, its window length as 100 ms,

the window length of the CapgMyo dataset as 60 ms and its window
distance as 10 ms.

2.3. Signal augmentation based on sEMG
windows (SA)

Due to the lack of a priori experience of the self-attention of
the transformer network, such as inductive bias and translational
invariance, the transformer model requires a larger dataset to reach
convergence. However, most current recognition methods require
the acquisition of individual sEMG signals to build recognition
models, whereas the collection of sEMG data from a large number
of individuals is difficult to achieve because of the high time cost
and muscle fatigue. Therefore, we propose a signal augmentation
method based on sEMG windows to solve the above problem.
This method is used to obtain random windows and time-delay
enhancement windows to increase the number of training samples.

First, the original sEMG signals are input into the random
window selection module. This module randomly selects the start
point of the window within each class of gesture action sequences
and determines the end point based on the window length to
obtain a random window for that type of gesture. This operation
is repeated to obtain the random windows for all gesture actions.

Second, the transceiver delay and transmission interference of
the acquisition device (Liu et al., 2016) make it inevitable that sEMG
will miss some sample points, which impacts the sEMG recognition
model’s robustness. Therefore, this step randomly selects a certain
percentage of the original sEMG window to input to the time-
delay enhancement module. This model selects sequence An in
the original window randomly and selects sequence B at the next
sampling moment (where the numbers of sampling points of
sequence A and sequence B are the same); finally, sequence A is
deleted, and the sampling points of sequence B are copied to the
original sequence A sampling moment to obtain the time-delay
enhancement windows, as shown in Figure 2.

The proposed signal augmentation method expands the
training samples by doubling the number of sEMG windows. Take
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FIGURE 2

Schematic diagram of time-delay enhancement module.

DB5 dataset subject ten as an example: we have 5,886 original EMG
windows initially; then, we obtain 2,943 random windows by the
random window selection module and 2,943 time-delay enhanced
windows by the time-delay enhancement module. Finally, we
obtain 11,772 windows.

3. The long short-term sEMG
transformer feature fusion network
framework

In the field of gesture recognition, we often use the fractal
dimension to calculate the complexity and stability of the EMG
signal (Naik and Nguyen, 2014). Gestures with low fractal
dimensions are simple gestures whose signal stability is higher, and
the electrode position, muscle contraction, and muscle force change
more slowly in these types of gestures; they include single-finger
flexion, multifinger flexion, and wrist translation (Namazi, 2019a).
Gestures with high fractal dimensions are complex gestures with
low signal smoothness. The electrode position, muscle contraction,
and muscle force change more rapidly in these gestures, such
as wrist-hand linkage and dynamic operations (e.g., grasping,
pressing, and tapping). In addition, when the subject increases
the force of the gesture, it also leads to an increase in the fractal
dimension of the EMG signal (Menon et al., 2017; Namazi, 2019b),
which in turn affects the stability of the EMG signal. Therefore,
we need longer EMG sequence segments to extract high-quality
features from signals with low stability when recognizing complex
gestures; we need shorter EMG sequence segments to recognize
simple gestures.

On the other hand, the transformer can capture longer
dependent information in the temporal signal classification task

due to its self-attention structure. However, current transformer
networks are designed based on multihead attention; in this
method, there is a lack of constraints between every pair of heads,
which makes the output similar between network layers, eventually
leading to the problem of attention collapse (Zhou et al., 2021) and
affecting accuracy. Therefore, we propose LST-EMG-Net to extract
the sEMG features of both long-term and short-term segments in
the sEMG window to perform multitemporal feature extraction and
feature fusion for various-complexity gesture recognition tasks. To
further improve the gesture recognition effect, the network adds a
transposition matrix between the heads of multihead attention to
solve the attention collapse problem.

The overall structure of LST-EMG-Net is shown in Figure 3; it
consists of three parts: the long short-term encoder, feature cross-
attention module, and gesture classification module, of which the
long short-term encoder module and the feature cross-attention
module correspond to contributions 1 and 2 of this article,
respectively.

Long short-term encoder: This module takes as input a set of
multichannel sEMG window collections D = {(Xi, yi)}

m
i=1 . Then,

the input is given importance weights for each channel, and long-
term features ZL

N and short-term features ZS
M are extracted from the

sEMG window. The temporal window set D consists of m windows;
the i window is denoted by Xi ∈ RHxW(1 ≤ i ≤ M), and the gesture
label is denoted by yi. H is the number of EMG signal channels, and
W is the number of sampling points per window.

Feature cross-attention module: This module receives the long-
term features ZL

N and short-term features ZS
M extracted by the

long short-term encoder. The long-term features and short-term
features are cross-learned using scaled dot-product attention, and
the cross-learned long-term features ZL′

N and short-term features
ZS′

M are output.
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FIGURE 3

The proposed LST-EMG-Net structure. Among them, the sEmg channel attention, multi-head re-attention and the feature cross-attention module
(yellow module) are the contribution points of this manuscript.

Gesture classification module: This module receives the long-
term features ZL′

N and short-term features ZS′
M after cross-learning,

calculates the gesture category probabilities corresponding to
the long short-term features, fuses the gesture probabilities for
decision-level fusion and finally outputs the gesture categories.

3.1. Long short-term encoder

This module mainly consists of three parts: sEMG channel
attention, linear projection, and the long/short-term sub encoder.

3.1.1. Surface electromyography channel
attention (ECA)

It is commonly accepted in medical statistics that sEMG
signals from one muscle are statistically independent of those
from neighboring muscles (Naik et al., 2007) and that specific
muscles play more critical roles in certain hand movements (Huang
et al., 2009). However, most of the previous methods extracted

correlations between channels and gestures by constructing
multistream inputs with channel decomposition signals. As an
MSCNN (Wei et al., 2019) assigns network input streams to
each channel and fuses them, the computational effort increases
exponentially when the number of channels is high. Therefore,
to reduce the computational effort, we propose modularized
myoelectric channel attention based on scaled dot-product
attention to perform correlation extraction of channels and gestures
and dynamically adjust the channel weights according to the
gestures, increasing the channel weights with strong correlations
and decreasing the channel weights with weak correlations.

First, the sEMG window Xi converts each channel into K and
Q. Then, we calculate the correlations between channels using
scaled point multiplier attention and output the sEMG window
with channel weights Pi, as shown in Equation 2.

Pi = Xi + Softmax

(
Avgpooling(Q)× Avgpooling(K)√

dk

)
Xi (2)
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where dk is the vector dimension, Avgpooling is the mean pooling
layer, Xi is the raw EMG window, and sotfmax is a normalized
exponential function.

3.1.2. Linear projection
To construct long-term and short-term branches for multiscale

feature extraction, this module slices Pi into long-term and
short-term segments, respectively, and performs linear projection
into long-term tokens pL

i and short-term tokens pS
i . The final

construction forms the set of long-term branching tokens zL
0 . As in

Equation 3, the set of short-term branching tokens zS
0 is described

in Equation 4.

ZS
0 = [p

S
cls; p

S
1ES
; pS

2ES
; . . . ; pNS

S ES
] + ES

pos (3)

ZL
0 = [p

L
cls; p

L
1EL
; pL

2EL
; . . . ; pL

NL
EL
] + EL

pos (4)

where ES and EL are linear projection matrices, ps
1ps

2....p
s
NS

are
short-term tokens whose sizes are set to H × SShort , pL

1pL
2 ...pL

NL
are

long-term tokens whose sizes are set to H × SLong , PS
cls and PL

cls
are the classification tokens of the short-term branch and long-
term branch, and ES

pos and EL
pos are the position embeddings of the

short-term branch and long-term branch, respectively.

3.1.3. Multihead reattention (MHRA)
The long-/short-term subencoder mainly consists of multihead

reattention (MHRA) and a multilayer perceptron (MLP). MHRA
is the contribution of this module. MHRA collects complementary
information about the interactions between multiple attentions by
adding a transformation matrix θ ∈ Rhead×head. MHRA enables
individual heads to observe the characteristics of the signal from
different angles, effectively solving the attentional collapse problem
(Zhou et al., 2021), where head is the number of MHRA output
heads.

This module extracts the long- and short-term features from
the set of long-term branch tokens zL

0 and short-term branch tokens
zS

0 by MHRA and the MLP, respectively. The specific steps of the
module are as follows.

First, we compute the interpatch attention information by
transforming each patch in the output zS

0 or zL
0 of the linear

projection module into QKV, which is fed into the respective
branch’s encoder.

Re−Attention(Q, K, V) = Norm(θT(Soft max(QKT/
√

dk)))V
(5)

where Norm is the layer norm normalization function, Q, K, and V
are the query, key and value for the short-term branch, respectively,
and dk is the vector dimension.

Next, the reattention information from the MHRA module is
input to the MLP module, and the MHRA and MLP modules are
connected by means of residuals.

Finally, the short-term sequence characteristic of the short-
term branch output is ZS

M , as in Equation 6, and similarly, the long-
term sequence characteristic ZL

N can be obtained with Equation 7.

ZS
M= [z

S
cls; z

S
1;. . . ; z

S
NS
] (6)

ZL
N= [z

L
cls; z

L
1;. . . ; z

L
NL
] (7)

where zS
cls and zL

cls are the classification tokens on the short- and
long-term features, respectively, zS

1. . . zS
NS

are the patch tokens of
the short-term features; NS is the number of short-term patch
tokens; zL

1 . . . zL
NL

are the patch tokens of the long-term features; and
NL is the number of long-term patch tokens.

We stack the long- and short-term sub-encoders, M and
N, respectively, to construct the deep network and extract deep
features.

3.2. Feature cross-attention (FCA)

In the fields of image classification and object detection, a
large number of researchers have proposed improved ideas for
feature fusion methods (Yu et al., 2020; Zheng et al., 2020), such
as feature pyramid networks (FPNs) (Lin et al., 2017), ResNet
(He et al., 2016) and adaptive spatial feature fusion (ASFF)
(Liu et al., 2019). The above research proved that setting up
an appropriate feature fusion strategy is beneficial for improving
accuracy. However, the current fusion methods are designed
based on the feature maps extracted by convolutional neural
networks and are not applicable to the vector features extracted
by the transformer model. Therefore, we propose the feature
cross-attention module (FCA) to cross-learn the classification
token and patch tokens of two branches, which achieves the
efficient fusion of long- and short-term features with less
computational effort.

Taking the short-term branch as an example, the feature cross-
attention module is specified in Figure 4.

First, the short-term feature classification token (CLS token)
and the long-term feature patch tokens are aligned and stitched
together as in Equations 8, 9:

zS′
cls = fS(zS

cls) (8)

zS′
= Concat(zS′

cls, zL
1, . . . , zL

NL
) (9)

where fS( · ) is the feature alignment function and Concat is the
splicing operation.

Second, the FCA input zS′
cls is cross-learned with zS′ as in

Equations 10–13.

FCA(zS′
cls, zS′) = soft max

(
qkT
√

d

)
v (10)

where q and k are the query and key of the short-term features,
d is the long-term patch token dimension, and Softmax is the
normalized exponential function.

Finally, the feature cross-attention is extended to multiple
heads, which is denoted as multihead feature cross-attention
(MFCA); the multihead features are aligned backward, and their
output dimensions are kept consistent with the short-term feature
classification token to obtain the short-term feature classification
token ZS′′

cls after cross-learning, as in Equation 11.

zS′′
cls = gS(zS′

cls + FCA(zS′
cls, zS′)) (11)

where gS( · ) is the reverse alignment function and zS′
clsis the

classification token before reverse alignment.
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FIGURE 4

Feature cross-attention module.

At this point, the short-term feature after cross-learning isZS′
M

,
as in Equation 12, and similarly, the long-term feature after cross-
learning is ZL′

N , as in Equation 13.

ZS′
M= [z

S′′
cls; z

S
1;. . . ; z

S
NS
] (12)

ZL′
N= [z

L′′
cls; z

L
1;. . . ; z

L
NL
] (13)

Since the short-term feature classification token learns the
abstract information of the branches, interacting with the patch
tokens at the other branches helps to include information at a
different scale. The fused long-term and short-term features ZS′

M
and ZL′

N are output to the gesture classification model.

3.3. Gesture classification module

The short-term feature zS′′
cls and long-term feature zL′′

cls
classification tokens are obtained, and the sum of the gesture scores

of each branch is output to obtain the gesture category.

gestures = LL(LayerNorm(zS′′
cls))+ LL(LayerNorm(zL′′

cls)) (14)

4. Experiments and results

Our experiments employed a deep learning framework on a
computer platform for model training and testing. The computer
hardware configuration used was an Intel Core i7-8700K CPU
processor (32 GB RAM) and a GeForce GTX 3090 GPU (24
GB RAM). The operating system was Ubuntu 18.04.4LTS, and
network models were constructed, trained, and validated using the
Python 3.6.5 programming language under the PyTorch 1.8.0 deep
learning framework. The cross-entropy loss was used to measure
classification performance.

4.1. LST-EMG-Net model training
parameter setting

We evaluated different variants of the LST-EMG-Net
architecture. For all model variants, we used the Adam optimizer
to set the parameters to 0.9, 0.999, and the learning rate was
corrected using StepLR, with the step size set to 3 and gamma set
to 0.5. We set the initial learning rate to 6e-4 with a batch size of
512. The short-term patch length and long-term patch length were
dynamically set according to the sEMG window length used for
the dataset. For the short-term branch, the short-term subencoder
depth was set to 1 (i.e., M = 1), and the number of short-term
subencoder heads was set to eight. For the long-term branch,
the long-term subencoder depth was set to 2 (i.e., N = 2), and
the number of long-term subencoder heads was set to eight. The
feature cross-attention depth = 4 (i.e., L = 4), and the number of
feature cross-attention heads = 8. All models were trained under
these parameters until convergence.

4.2. Ablation experiments

In this article, we evaluate the LST-EMG-Net model on three
datasets and describe the ablation experiments of the LST-EMG-
Net model. This ablation experiment used the ViT model extended
to dual streams as the baseline and added the gesture recognition
effects of FCA, ECA, MHRA, and SA. The baseline model
framework was used to remove the yellow module in Figure 3. We
recorded the average accuracy of all subjects on each dataset to form
Table 1.

LST-EMG-Net shows the best model results obtained by
simultaneously adding FCA, ECA, MHRA, and SA. Model 1
improves the average recognition accuracy by 2.78% compared
to the baseline. This demonstrates that dual-stream information
fusion helps improve accuracy. Model 2 improved the average
recognition accuracy by 2.73% on the three datasets compared
to Model 1, with a 4.29% improvement on the CapgMyo DB-c
high-density dataset. Because of the high number of channels of
the sEMG acquisition device in this dataset, 128 channels, and
the rich muscle activity information between channels, the ECA
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TABLE 1 Hand gesture recognition accuracy achieved on each dataset in the ablation experiments.

Model name FCA ECA MHRA SA DB2 exercise B DB5 exercise C CapgMyo DB-c
Baseline 76.25% 77.17% 91.60%

Model 1
√

78.13% (+1.88%) 83.00% (+5.83%) 92.24% (+0.64%)

Model 2
√ √

79.51% (+1.38%) 85.53% (+2.53%) 96.53% (+4.29%)

Model 3
√ √ √

80.62% (+1.11%) 86.96% (+1.43%) 98.95% (+2.32%)

Model 4
√ √ √ √

81.47% (+0.85%) 88.24% (+1.28%) 98.80% (−0.15%)

The bold value means the best recognition accuracy.

effect is evident in this dataset. Model 3 improved the average
recognition accuracy by 1.62% compared with model 2. Because
the amount of sEMG data in this experiment was smaller and the
number of required network layers was relatively shallow, with
the addition of MHRA, the network may perform better on more
extensive sEMG data. Model 4 achieves an average recognition
accuracy improvement of 0.66% compared to model 3. However,
on the CapgMyo DB-c high-density dataset, the original signal size
reached saturation due to the high sampling rate and the number of
channels in this dataset. Therefore, compared to model 3, the model
accuracy stabilized.

4.3. Comparison experiment

We compare the proposed LST-EMG-Net with the existing
MSCNN of the multistream CNN (Wei et al., 2019), the
bidirectional temporal convolutional network (BiTCN) (Chen
et al., 2020), and TEMG based on the vision transformer (ViT)
(Siddhad et al., 2022) on the above three EMG datasets.

(1) LST-EMG-Net’s accuracy and inference time: The
performance is shown in Table 2.

From Table 2, we can see that our method reaches the optimum
results on the three datasets of DB2 Exercise B, DB5 Exercise C,
and CapgMyo DB-C, and the accuracy is improved by 2.70, 4.49,

TABLE 2 Accuracies and inference times of LST-EMG-Net and the
comparison algorithms.

Dataset Model name Accuracy Inference
time

DB2 exercise B MSCNN 71.89% 5.60 ms

BiTCN 65.79% 5.75 ms

TEMG 78.77% 1.09 ms

LSTEMGNet [ours] 81.47% 6.47 ms

DB5 exercise C MSCNN 79.14% 7.27 ms

BiTCN 83.75% 7.29 ms

TEMG 68.18% 1.18 ms

LSTEMGNet [ours] 88.24% 6.36 ms

CapgMyo DB-C MSCNN 86.67% 7.78 ms

BiTCN 98.38% 7.30 ms

TEMG 92.90% 1.12 ms

LSTEMGNet [ours] 98.80% 6.32 ms

The bold value means the best recognition accuracy.

and 0.42%, respectively, compared to the optimum comparison
methods.

Regarding the recognition time aspect, we can also see from
Table 2 that LST-EMG-Net not only has higher recognition
accuracy but also outperforms the CNN-based MSCNN model
and the RNN-based BiTCN model in terms of inference time.
Both LST-EMG-Net and TEMG are designed based on the
transformer model, but the difference is that LST-EMG-Net
extends the transformer to a dual-flow structure. Compared with
the single-stream structure of TEMG, the average recognition
accuracy of LST-EMG-Net is 9.5% higher on the three datasets,
which demonstrates improved recognition accuracy and stability.
Furthermore, the dual-stream structure of LST-EMG-Net increases
the computational and parametric quantities of the model to a
certain extent. On average, it is 5.25 ms slower than TEMG, but
both can meet the requirements of real-time recognition.

(2) LST-EMG-Net’s stability: To verify the stability of LST-EMG-
Net in recognizing various types of gestures, we compare the
fluctuation of the recognition accuracy of the method in this
article with that of MSCNN, BiTCN, and TEMG. We choose
the standard deviation (STD) as an indicator to measure the
fluctuation of each gesture between subjects. Taking gesture
one as an example, the fluctuation value is calculated as
follows in Equation 15.

G1 =

√∑n
i=1 acci − acc

n
(15)

where i is the subject number, acci denotes the i-th subject
gesture one accuracy, acc is the average gesture pne accuracy,
and n is the number of subjects. A smaller fluctuation value
means that the gesture recognition is more stable, and we
calculate the average fluctuation value of each gesture in the
three datasets, as shown in Table 3.

The experimental results in Table 3 show that the average
fluctuation value of the proposed LST-EMG-Net is low for all kinds

TABLE 3 Average fluctuation values of LST-EMG-Net and the
comparison algorithms.

Model name DB2
exercise B

DB5
exercise C

CapgMyo
DB-C

MSCNN 0.1795 0.1835 0.1252

BiTCN 0.2232 0.1324 0.0396

TEMG 0.1197 0.1392 0.1045

LST-EMG-Net [ours] 0.1181 0.1098 0.0179

The bold value means the highest recognition stability.
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of gestures. It is suitable for recognition tasks because it learns the
information of EMG sampling points with different timing lengths,
thus maintaining a relatively stable and high recognition rate for
gestures of different complexity.

5. Conclusion

Current research gives little attention to the problem of
matching the amount of information in features with the amount
of information needed to recognize gestures. Here, we propose
the LST-EMG-Net-based sEMG gesture recognition method to
address the above problems; it is mainly composed of a long
short-term encoder and a feature cross-attention module. Our
method maintains a high level of accuracy for all types of gesture
recognition in both sparse EMG datasets and high-density sEMG
datasets. It improves the stability of gesture recognition compared
to other network structures.

Our LST-EMG-Net framework can be applied well to recognize
various types of gestures by subjects. Nevertheless, due to the
individual variability among subjects, LST-EMG-Net is difficult
to apply to the intersubject recognition of gestures and has a
high burden of use for new subjects, which needs further study
in clinical applications. In the future, we will improve the LST-
EMG-Net framework to achieve intersubject gesture recognition
for controlling exoskeletons or other rehabilitation devices for
post-surgical rehabilitation of stroke patients.
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