
fnbot-17-1143032 April 19, 2023 Time: 13:38 # 1

TYPE Original Research
PUBLISHED 24 April 2023
DOI 10.3389/fnbot.2023.1143032

OPEN ACCESS

EDITED BY

Deepika Koundal,
University of Petroleum and Energy Studies,
India

REVIEWED BY

Zhiqin Zhu,
Chongqing University of Posts
and Telecommunications, China
Yu Liu,
Hefei University of Technology, China
Xiaotong He,
Jilin University, China

*CORRESPONDENCE

Xin Jin
xinjin@ynu.edu.cn

RECEIVED 12 January 2023
ACCEPTED 04 April 2023
PUBLISHED 24 April 2023

CITATION

Shi S, Jiang Q, Jin X, Wang W, Liu K, Chen H,
Liu P, Zhou W and Yao S (2023) A comparative
analysis of near-infrared image colorization
methods for low-power NVIDIA Jetson
embedded systems.
Front. Neurorobot. 17:1143032.
doi: 10.3389/fnbot.2023.1143032

COPYRIGHT

© 2023 Shi, Jiang, Jin, Wang, Liu, Chen, Liu,
Zhou and Yao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

A comparative analysis of
near-infrared image colorization
methods for low-power NVIDIA
Jetson embedded systems
Shengdong Shi1,2, Qian Jiang1,2, Xin Jin1,2*, Weiqiang Wang1,2,
Kaihua Liu1,2, Haiyang Chen1,2, Peng Liu3, Wei Zhou1,2 and
Shaowen Yao1,2

1Engineering Research Center of Cyberspace, Yunnan University, Kunming, Yunnan, China, 2School
of Software, Yunnan University, Kunming, China, 3Guangxi Power Grid Co., Ltd., Nanning, China

The near-infrared (NIR) image obtained by an NIR camera is a grayscale image

that is inconsistent with the human visual spectrum. It can be difficult to perceive

the details of a scene from an NIR scene; thus, a method is required to convert

them to visible images, providing color and texture information. In addition, a

camera produces so much video data that it increases the pressure on the cloud

server. Image processing can be done on an edge device, but the computing

resources of edge devices are limited, and their power consumption constraints

need to be considered. Graphics Processing Unit (GPU)-based NVIDIA Jetson

embedded systems offer a considerable advantage over Central Processing

Unit (CPU)-based embedded devices in inference speed. For this study, we

designed an evaluation system that uses image quality, resource occupancy,

and energy consumption metrics to verify the performance of different NIR

image colorization methods on low-power NVIDIA Jetson embedded systems

for practical applications. The performance of 11 image colorization methods on

NIR image datasets was tested on three different configurations of NVIDIA Jetson

boards. The experimental results indicate that the Pix2Pix method performs best,

with a rate of 27 frames per second on the Jetson Xavier NX. This performance is

sufficient to meet the requirements of real-time NIR image colorization.

KEYWORDS

near-infrared image, image colorization, Jetson, performance evaluation, embedded
systems

1. Introduction

In surveillance and vehicle driving scenes (Ni et al., 2022), color image sensors are
preferred because their images are close to human visual perception. However, visible images
have obvious limitations related to lighting conditions (Yu et al., 2022) and the color of an
object’s surface (Liao et al., 2022). However, NIR sensors are usually used in night vision and
low-illumination scenes because they provide more useful information than visual sensors
(Jin et al., 2017). An NIR image is a shaded gray image, which is not in line with human
visual habits; so, it is preferable to colorize it, enhancing its color and texture information.
Colorized images can improve an observer’s ability to assess a scene and increase the

Frontiers in Neurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1143032
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1143032&domain=pdf&date_stamp=2023-04-24
https://doi.org/10.3389/fnbot.2023.1143032
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1143032/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 2

Shi et al. 10.3389/fnbot.2023.1143032

efficiency of target detection. The problem of image colorization
lies in generating a plausible visible image from only an NIR image
(Sun et al., 2019). Thus, NIR image colorization aims to generate a
reasonable visible image from an NIR image while preserving the
texture in the NIR domain so that the coloring of the converted
visible image looks natural.

In the common gray image colorization domain, chromaticity
is the only feature that needs to be calculated because the input gray
image provides brightness levels. However, the colorized results
of NIR images are usually fuzzy and lack high-frequency scene
details. Therefore, it is necessary to test the common gray image
colorization methods to determine whether they are suitable for
NIR image colorization on embedded systems (Liang et al., 2021).

Deep learning models usually require many computing
resources (Qin et al., 2020; Fortino et al., 2021), which are deployed
on the cloud server. The large amount of data collected by video
surveillance equipment needs to be processed by the cloud server
(Ma et al., 2018) so that the deep learning model of image
processing is affected by network delay (Zhang et al., 2020) or
shutdown. Since a deep learning model can be deployed on edge
devices that process data in real-time, there is no need to connect
the cloud computing platform to process the data from an edge
of the network (Han et al., 2020). This would reduce latency and
bandwidth costs, improving availability and protecting data privacy
and security (Shi et al., 2016). For example, many researchers
deploy target detection (Zhao et al., 2019) and visual tracking (Cao
et al., 2022) to the edge device for testing and striving for real-time
processing.

There has been considerable research that evaluated the
effectiveness of various image processing methods (Jin et al., 2017;
Liu et al., 2020; Huang et al., 2022). However, most colorization
techniques have not been tested for edge devices, and there is
no widely recognized system for evaluating these methods on
edge devices. However, image colorization has many potential
applications on edge devices (Liu et al., 2022). Our study designed
an evaluation system to examine the performance of current
methods on edge devices. Eleven image colorization methods were
tested for NIR image datasets on the Jetson AGX Xavier, Jetson
Xavier NX, and Jetson Nano devices. Seven indexes were selected in
analyzing the experimental results, and the results using each index
were tabulated for evaluating the performance of each method on
an edge device.

The contributions of this work are as follows:
We analyzed current image colorization methods to provide

guidance in their practical application.
We deployed and tested image colorization methods on three

different edge devices and analyzed their resource utilization and
energy consumption.

This work inferred general rules and determined key points
requiring attention in evaluating the performance of test methods.
These were based on the performance of current image colorization
methods on edge devices, focusing on resource occupancy, energy
consumption, and image quality metrics.

Section 1 summarizes the status of current research on NIR
image colorization and the deployment of models on edge devices.
Section 2 introduces the structure and operation of the proposed
evaluation system and explains why the tested models were chosen.
The edge devices used and the evaluation metrics are also described
in detail. Experiments on three edge devices and the RGB-NIR

scene dataset (Brown and Süsstrunk, 2011) are described in Section
3. Section 4 presents the conclusions of our work and possible
directions of future development in this research.

2. Materials and methods

In this work, we designed a system for evaluating the
performance of an image colorization method on edge devices,
as shown in Figure 1. We selected 11 classical image colorization
methods based on their network structures, and we briefly
introduce these models’ structures here. We trained these
models using the RGB-NIR scene dataset (Brown and Süsstrunk,
2011) on a server equipped with an RTX3060 GPU to obtain
the corresponding model weight files. Then, according to the
development of current embedded devices, Nvidia Jetson series
edge devices were selected. The Jetson AGX Xavier, Jetson Xavier
NX, and Jetson Nano offer high, middle, and low performance
levels, respectively. When configuring the software environment of
the edge device, we chose the system with the same version number
from NVIDIA, which ensures that the software environment for
the three edge devices is as similar as possible. According to the
environmental requirements of different models, we configured
the running environment for each device and compiled the
ARM Python package suitable for the particular device. Then, we
uploaded the model weight files from the server to each edge device.
To better compare the various methods’ performance on edge
devices, we selected seven evaluation metrics for the experiment.
Finally, we analyzed the experimental data and summarized the
results of the experiments presented in this paper.

2.1. Image colorization methods

In recent years, methods based on convolutional neural
networks (CNNs) have been used extensively in computer vision.
ResNet (He et al., 2016) and deep convolution generated adversarial
networks (DCGANs) (Radford et al., 2015) are two types of neural
networks that have become popular recently. Finding meaningful
information in the image is an essential problem in machine vision
and image processing research. Attention mechanisms have also
attracted the interest of researchers in image processing (Zhu et al.,
2023). Many image colorization methods have been proposed based
on these structures (Huang et al., 2022).

2.1.1. Convolutional neural network
CICZ (Zhang et al., 2016) is an automatic image colorization

method that transforms the colorizing problem into a classification
problem by quantifying the color space and combining the method
of category balancing, as shown in Figure 2. The encoder-decoder
structure is adopted. The L channel of the grayscale image is input
to predict the a and b channels of the image, and then, the colorized
result is obtained.

ELGL (Iizuka et al., 2016) is a fully automatic image
colorization method that combines global information and local
features, as shown in Figure 3. The method first extracts shared
low-level features from the image and then uses these features to
obtain global image features and middle-level image features. Next,

Frontiers in Neurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 3

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 1

Architecture of the evaluation system.

FIGURE 2

Architecture of CICZ (Zhang et al., 2016).

FIGURE 3

Architecture of ELGL (Iizuka et al., 2016).

Frontiers in Neurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 4

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 4

Architecture of ChromaGAN (Vitoria et al., 2020).

FIGURE 5

Architecture of SCGAN (Zhao et al., 2020)’s generator.

the shallow and global features are fused through the fusion layer,
which inputs the result to the colorization network and outputs the
final chrominance information.

2.1.2. Wasserstein generated adversarial network
ChromaGAN (Vitoria et al., 2020) is an adversarial learning

colorization method that infers the chromaticity of a given
grayscale image according to semantic clues. In the adversarial
network-based method, a three-term loss function combining
color, perceptual information, and semantic category distribution
was proposed. A self-supervised strategy is used to train the model.
The discriminator is based on Markovian architecture [PatchGAN
(Isola et al., 2017)]. Figure 4 shows the method’s block diagram.

SCGAN (Zhao et al., 2020) is an automatic saliency map-
guided colorization method with a generative adversarial network.

It combines predictive colorizing and saliency maps to minimize
semantic confusion and color bleeding in the colorized image, as
shown in Figure 5. The global features of the pre-trained VGG-
16-Gray network were embedded in the color encoder. Branches
of the color decoder are used to predict saliency maps as proxy
targets. Then, the method uses two hierarchical discriminators to
distinguish between the generated colorized result and saliency
maps, as shown in Figure 6.

2.1.3. Conditional generated adversarial network
Pix2Pix (Isola et al., 2017) is based on the idea of a conditional

generated adversarial network (CGAN). Generator G uses the
U-Net structure. The input contour map x is encoded and
decoded into a real image. The discriminator D uses the condition
discriminator PatchGAN proposed by the author himself. The

Frontiers in Neurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 5

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 6

Architecture of SCGAN (Zhao et al., 2020)’s discriminator.

function of discriminator D is to judge the generated image as false
and the real image as true under the condition of the contour map x.
Figure 7 shows the structure of Pix2Pix.

MemoPainter (Yoo et al., 2019) is a novel storage memory-
enhanced colorizing model that obtains the given color information
in the training set with the memory network by querying to guide
colorizing. This model can generate high-quality colorized images
from limited data and proposes a novel threshold triplet loss, which
can complete unsupervised training of storage networks under
classless labels. MemoPainter’s architecture is shown in Figure 8.

TIC-CGAN (Kuang et al., 2020) uses a detail-preserving coarse-
to-fine generator to learn transformation mapping, as shown in
Figure 9. The method proposes a composite loss function that
integrates content, adversarial, perceptual, and total variation loss.
Content loss is used to restore global image information, and the
other three losses synthesize local realistic textures.

2.1.4. Cycle-consistent adversarial network
CycleGAN (Zhu et al., 2017) is an unsupervised GAN. Its main

idea is to train two pairs of generator-discriminator models (two
mapping functions G: X—> Y and F: Y—> X) to convert images
from one domain to another. In this process, two cycle-consistency
losses are introduced to ensure that the generator does not convert
an image from one domain to another that is entirely unrelated
to the original image. The architecture of CycleGAN is shown in
Figure 10.

RecycleGAN (Bansal et al., 2018) is an unsupervised data-
driven method for video redirection that combines spatial and
temporal information and adversarial loss for content translation
and style retention for video redirection. The method proves that

under different conditions, the use of time information provides
more constraints for optimizing the transformation from one
domain to another, which helps to obtain better local minima. The
combination of temporal and spatial constraints helps to learn the
style characteristics of a given domain. The difference in design
between this method and CycleGAN (Zhu et al., 2017) and Pix2Pix
(Isola et al., 2017) is shown in Figure 11.

PearlGAN (Luo et al., 2022) is a GAN based on top-
down attention and gradient alignment. First, a top-down guided
attention module and an elaborate attentional loss reduce semantic
coding ambiguity during translation. Then, the model introduces a
structured gradient alignment loss to encourage edge consistency
between transmissions. The internal structure of PearlGAN is
shown in Figure 12.

I2V-GAN (Li et al., 2021) is an infrared-to-visible
video conversion method that generates fine-grained and
spatiotemporally consistent visible video from a given unpaired
infrared video, as shown in Figure 13. The model utilizes
adversarial constraints to generate a synthetic frame similar
to the real frame and then introduces the circular consistency
of perceptual loss for effective content transformation and
style preservation. Finally, it utilizes the similarity constraints
between and within domains to enhance the content and motion
consistency of space and time-space at the fine-grained level.

2.2. Edge devices

While the Raspberry Pi offers low power consumption
and energy-saving performance, NVIDIA Jetson platforms

Frontiers in Neurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 6

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 7

Architecture of Pix2Pix (Isola et al., 2017).

FIGURE 8

Architecture of MemoPainter (Yoo et al., 2019).

FIGURE 9

Architecture of TIC-CGAN (Kuang et al., 2020).

have a higher GPU speed, leading to better deep learning
inference performance. The security and reliability of the
NVIDIA Jetson series make it possible to deploy deep learning
models in harsh environments; hence, the Jetson series of

edge devices have been used in many industrial fields. The
Jetson platform is compatible with the Jet Pack software
development kit, which includes libraries for deep learning,
such as computer vision and accelerated computing. By using

Frontiers in Neurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 7

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 10

Architecture of CycleGAN (Zhu et al., 2017).

FIGURE 11

Architecture of RecycleGAN (Bansal et al., 2018).

FIGURE 12

Architecture of PearlGAN (Luo et al., 2022).

the same version of the NVIDIA official system, we can maintain
consistency in the experimental environment to a certain
degree. Thus, we test the performance of different models
on Jetson AGX Xavier, Jetson Xavier NX, and Jetson Nano

devices that belong to three edge devices of high, middle,
and low-performance levels. It is appropriate to compare the
performance of different models under the constraints of different
hardware conditions.

Frontiers in Neurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 8

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 13

Architecture of I2V-GAN (Li et al., 2021).

FIGURE 14

Subjective comparison of near-infrared (NIR) image colorization effects of different models on RTX3060. (A) Input; (B) label; (C) CICZ (Zhang et al.,
2016); (D) ELGL (Iizuka et al., 2016); (E) ChromaGAN (Vitoria et al., 2020); (F) SCGAN (Zhao et al., 2020); (G) Pix2Pix (Isola et al., 2017);
(H) MemoPainter (Yoo et al., 2019); (I) TIC-CGAN (Kuang et al., 2020); (J) CycleGAN (Zhu et al., 2017); (K) RecycleGAN (Bansal et al., 2018);
(L) PearlGAN (Luo et al., 2022); (M) I2V-GAN (Li et al., 2021).

2.2.1. Jetson AGX Xavier
Jetson AGX Xavier is a 30 W GPU workstation from NVIDIA

that was launched in December 2018. Its CPU is eight-core ARM
NVIDIA Carmel, the GPU is NVIDIA Volta architecture with 512
NVIDIA CUDA cores, and the memory is 32 GB LRDDR4x. Jetson
AGX Xavier provides good memory bandwidth and computing
performance. It has a computing speed of up to 32 TOPS (30 W)
in deep learning and computer vision tasks. For image processing
tasks, real-time effects can be achieved on some models (Mazzia
et al., 2020; Jeon et al., 2021).

2.2.2. Jetson Xavier NX
Jetson Xavier NX is a mid-end product launched by NVIDIA in

November 2019. Its CPU is 6-core ARM NVIDIA Carmel, the GPU
is NVIDIA Volta architecture with 384 NVIDIA CUDA cores, and

the memory is eight GB LRDDR4x. Due to the Volta architecture, it
has a server-level performance of up to 21 TOPS (15 W) or 14 TOPS
(10 W). For image processing tasks, Jetson Xavier NX already offers
the performance requirements of most models (Jeon et al., 2021).

2.2.3. Jetson Nano
Jetson Nano is an entry-level product launched by NVIDIA

in March 2019. Its CPU is four-core ARM A57, the GPU is
NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores,
and the memory is four GB LRDDR4, which supports switching
between 5 W and 10 W modes. The Jetson Nano has the
lowest performance in the series at only 0.5 TFLOPS, but
it also has the lowest price and power consumption, making
it more suitable for use in less-demanding edge scenes. The
Jetson Nano is unsuitable for infrared image colorization, mainly

Frontiers in Neurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 9

Shi et al. 10.3389/fnbot.2023.1143032

TABLE 1 Evaluation of different image colorization models based on
Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) on
Jetson AGX Xavier, Jetson Xavier NX, Jetson Nano, and RTX3060 devices.

Devices RTX3060 AGX NX Nano

Method PSNR/SSIM

CICZ 14.249/0.565 14.265/0.565 14.265/0.565 14.265/0.565

ELGL 14.834/0.572 14.806/0.572 14.834/0.572 14.834/0.572

ChromaGAN 14.902/0.569 14.902/0.570 14.696/0.564 14.902/0.570

SCGAN 16.714/0.621 16.714/0.621 16.714/0.621 16.714/0.621

Pix2Pix 22.140/0.580 22.139/0.580 22.122/0.579 22.122/0.580

MemoPainter 18.645/0.535 18.645/0.535 18.645/0.535 –

TIC-CGAN 20.589/0.642 20.590/0.642 20.590/0.642 20.590/0.642

CycleGAN 14.139/0.535 14.139/0.535 14.139/0.535 14.139/0.535

RecycleGAN 14.083/0.474 14.087/0.472 14.098/0.472 14.087/0.471

PearlGAN 13.548/0.475 13.536/0.474 13.536/0.474 13.536/0.474

I2V-GAN 13.637/0.485 13.614/0.485 13.599/0.484 13.631/0.484

TABLE 2 Evaluation of different image colorization models based on
latency and Frames Per Second (FPS) on Jetson AGX Xavier, Jetson Xavier
NX, and Jetson Nano.

Devices AGX NX Nano AGX NX Nano

Method Latency (s) FPS

CICZ 0.157 0.263 0.831 6.370 3.801 1.203

ELGL 0.021 0.043 0.191 46.823 23.397 5.244

ChromaGAN 0.035 0.072 0.270 28.387 13.805 3.703

SCGAN 0.159 0.303 1.221 6.305 3.301 0.819

Pix2Pix 0.022 0.036 0.146 44.986 27.426 6.863

MemoPainter 0.063 0.109 – 15.806 9.164 –

TIC-CGAN 0.044 0.081 0.412 22.731 12.288 2.427

CycleGAN 0.022 0.038 0.157 44.900 26.395 6.351

RecycleGAN 0.250 0.433 2.291 4.006 2.309 0.436

PearlGAN 0.147 0.252 1.058 6.799 3.968 0.945

I2V-GAN 0.226 0.388 2.051 4.433 2.574 0.488

playing a comparative role in the experiment (Mazzia et al.,
2020).

2.3. Evaluation metrics

In research on deploying deep learning methods in edge
devices, the allocation of computing resources is a crucial concern.
The choice of resources varies depending on the specific scenario.
Computing resources such as CPU, GPU, and memory are
considered for computing-sensitive tasks (Toczé and Nadjm-
Tehrani, 2018). Storage and communication resources such as
IO, hard disk, spectrum, and bandwidth are considered for data-
sensitive tasks (Toczé and Nadjm-Tehrani, 2018).

The evaluation metrics selected in this work include Peak
Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), latency,
memory usage, maximum current, maximum power, and power
consumption. We have considered CPU occupancy, but in the

TABLE 3 Evaluation of different image colorization models based on
RAM and maximum current (Imax) on Jetson AGX Xavier, Jetson Xavier
NX, and Jetson Nano.

Devices AGX NX Nano AGX NX Nano

Method RAM (GB) Imax (A)

CICZ 15.150 4.440 2.520 1.370 0.650 1.460

ELGL 16.010 4.640 3.050 1.840 0.860 1.510

ChromaGAN 16.530 4.810 2.950 1.970 0.890 1.650

SCGAN 15.170 4.380 2.740 1.980 0.910 1.710

Pix2Pix 6.200 3.780 2.470 1.630 0.800 1.610

MemoPainter 8.160 5.230 – 1.680 0.770 –

TIC-CGAN 6.110 4.750 2.790 1.730 0.820 1.590

CycleGAN 6.560 4.060 2.840 1.650 0.810 1.600

RecycleGAN 5.930 3.530 2.530 1.770 0.840 1.610

PearlGAN 5.850 2.830 1.960 1.700 0.850 1.690

I2V-GAN 5.730 3.220 2.350 1.730 0.840 1.540

actual test process, the occupancy rate is difficult to evaluate as a
metric because of its multi-core architecture.

2.3.1. Image quality
Peak Signal to Noise Ratio is generally used between the

maximum signal and background noise. Usually, after image
processing, the processed image x1 will be different from the
original image x2. To measure the quality of the processed
image, we usually refer to the PSNR value to measure whether
a processing program is satisfactory. PSNR’s formula is shown
in Equation 1. MAX2

x1
represents the maximum pixel value of

the processed image x1. The size of the processed image x1 and
original image x2 is m∗n. PSNR can be calculated as follows:

PSNR = 10∗log10

(MAX2
x1

1
m∗n
∗∑m

i = 1
∑n

j = 1
[
x2(i, j)− x1(i, j)

]2

)
.

(1)
Structural Similarity is a metric that considers luminance,

contrast, and structure. The SSIM value of two images is
calculated using the original image x2 and the processed image
x1. SSIM can measure the degree of distortion and the similarity
between the two images. SSIM ranges from –1 to 1. When
two images are the same, the SSIM value is 1. SSIM’s formula
is shown in Equation 2. l(x2, x1) represents the luminance
contrast function. c(x2, x1) represents the contrast function.
s(x2, x1) represents the structural contrast function. µx2 and
µx1 represent the averages of x2 and x1, respectively. σx2 and
σx1 represent the variances of x2 and x1, respectively. σx2x1

represents the covariances of x2 and x1. θ1, θ2, and θ3 are
designed with three constants to avoid zero denominators. SSIM
is given by

SSIM (x2, x1) =
[
l (x2, x1)

]α[c (x2, x1)]β[s (x2, x1)]γ,where (2)

l (x2, x1) =
2µx2µx1+θ1

µ2
x2
+µ2

x1
+θ1

, (3)

c (x2, x1) =
2σx2σx1+θ2

σ2
x2
+σ2

x1
+θ2

, and (4)

Frontiers in Neurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 10

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 15

Performance of different image colorization models on Jetson AGX Xavier, Jetson Xavier NX, Jetson Nano, and RTX3060 devices for RAM metrics.

s (x2, x1) =
σx2x1+θ3

σx2σx1+θ3
. (5)

2.3.2. Resource occupancy
By comparing the latency of different models, a suitable model

is selected to deploy in different industrial application scenarios
(Cao et al., 2022). Meanwhile, the memory of edge devices is a
scarce resource because multiple models with different purposes
may need to be deployed. By clarifying the memory usage of
different models, we can select a suitable model without affecting
the deployment of other models.

Latency refers to the average time consumed per image when
the model colorizes the image continuously. Because the time
consumed is the same as different models have the same operation
when reading and saving images, we only calculate the time
consumed in generating the colorized image [forward()]. We tested
20 NIR images 100 times to calculate the accurate latency and
then averaged them. The formula to calculate latency is shown
in Equation 6. a represents the number of different images used
to calculate the latency. b represents the number of times the
same image runs forward(). Time() represents the time calculation
function. Frames Per Second (FPS) is also used in this article to
represent inference speed, as shown in Equation 7. The formulas
are as follows:

Latency =
1
a

∑a

i = 1

Time(forward()∗b)
b

and (6)

FPS =
1

Latency
. (7)

Memory usage refers to the occupied memory monitored by the
system process Jtop during the model test. We use RAM to denote
the occupied memory in the experiment, including the video
memory of the Jetson device, which is also calculated as a part of
memory. In contrast, the video memory of the server with RTX
3,060 is calculated separately; so, when comparing the results, the
sum of the memory usage and the video memory usage of the server
is calculated. To test the accurate memory usage of the colorizing
image, we continue to colorize the image for 180 s. The test results
are the increase in memory usage from reading an NIR image to
outputting a colorized image.

2.3.3. Energy consumption
In laboratory studies, we usually do not consider the energy

consumed by the model operation. In the actual application
scenario, users take the energy consumption problem seriously.
Therefore, recording the model’s energy consumption when
deployed on edge devices makes sense.

The maximum current (Imax) refers to the maximum current
recorded. The maximum power (Pmax) is the product of the
maximum current and voltage. Power consumption (PC) refers to
the total power consumption of the model running on the edge
device for a certain time. The UD18 detector measures these three
metrics during the model test. To test the accurate data, we need
only to test the function of colorizing images and can continue

Frontiers in Neurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 11

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 16

Performance of different image colorization models on Jetson AGX Xavier, Jetson Xavier NX, and Jetson Nano for maximum current (Imax) (A),
maximum power (Pmax) (B), and power consumption (PC) (C).

to colorize the image for 180 s. It measures the process of end-
to-end inference, from reading an NIR image to outputting a
colorized image.

3. Results and analysis

We trained the different methods using a computer with an
AMD Ryzen7 5800H 3.2 GHz CPU and one NVIDIA Geforce RTX

TABLE 4 Evaluation of different image colorization models based on
maximum power (Pmax) and power consumption (PC) on Jetson AGX
Xavier, Jetson Xavier NX, and Jetson Nano.

Devices AGX NX Nano AGX NX Nano

Method Pmax (W) PC (Wh)

CICZ 26.400 12.400 7.200 1.300 0.620 0.340

ELGL 35.400 16.400 7.400 1.770 0.820 0.370

ChromaGAN 37.800 17.000 8.100 1.890 0.850 0.390

SCGAN 38.000 17.400 8.300 1.890 0.830 0.410

Pix2Pix 31.400 15.300 7.900 1.530 0.760 0.390

MemoPainter 32.300 14.600 – 1.610 0.730 –

TIC-CGAN 33.300 15.700 7.700 1.670 0.790 0.380

CycleGAN 31.800 15.500 7.800 1.550 0.780 0.380

RecycleGAN 34.100 16.100 7.900 1.690 0.810 0.380

PearlGAN 32.700 16.300 8.200 1.650 0.810 0.400

I2V-GAN 33.300 16.100 7.500 1.660 0.800 0.370

3060 GPU. We compared the following methods [CICZ (Zhang
et al., 2016), ELGL (Iizuka et al., 2016), ChromaGAN (Vitoria et al.,
2020), SCGAN (Zhao et al., 2020), Pix2Pix (Isola et al., 2017),
MemoPainter (Yoo et al., 2019), TIC-CGAN (Kuang et al., 2020),
CycleGAN (Zhu et al., 2017), RecycleGAN (Bansal et al., 2018),
PearlGAN (Luo et al., 2022), and I2V-GAN (Li et al., 2021)] on
three different edge devices based on the selected metrics.

3.1. Experimental dataset

We used the RGB-NIR scene dataset (Brown and Süsstrunk,
2011), which contains 477 image pairs with a resolution of
1,024 × 680 captured from nine scene categories. Image scene
categories were villages, fields, forests, indoors, mountains, ancient
buildings, streets, cities, and water. The image pairs in this dataset
are coarsely registered using a global calibration method; so, pixel-
level registration could not be guaranteed. We cropped each of the
nine types of scene images to 256× 256 and did a mirror flip. Then,
we selected two types of scene images, fields, and streets, to merge
as the training set and test set of the experiment, for a total of 5,616
RGB-NIR image pairs. Among them, 5,460 image pairs were used
as the training set and 156 were used as the test set.

3.2. Experimental environment

The basic configuration of the operating environment of the
edge device is the same. The system is Ubuntu 18.04 for ARM,
the Jet Pack version is 4.5, the CUDA version is 10.2, the cuDNN

Frontiers in Neurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 12

Shi et al. 10.3389/fnbot.2023.1143032

version is 8.0.0, the OpenCV version is 4.1.1, and the TensorRT
version is 7.1.3. The selected configuration is currently more stable
because different system versions and dependent environments
impact device performance.

3.3. Subjective assessment

As shown in Figure 14, different methods perform quite
differently on the RGB-NIR scene dataset used in this work. Pix2Pix
has the best image effect, closest to the visible image, as shown
in Figure 14G. TIC-CGAN’s performance is slightly blurrier than
that of Pix2Pix. The image effect of the MemoPainter is different
from the color of the visible image, and the image effect of
SCGAN is dark. The subjective evaluation of the models based on
Cycle-Consistent Adversarial Networks (CycleGAN, RecycleGAN,
PearlGAN, I2V-GAN) is poor, especially in the images shown in
Figure 14L. The reason is that the number of training sets is small,
and the network cannot learn representative features. The CICZ
does not learn helpful information on the datasets used in this
work, resulting in subjective evaluation close to NIR images, as
shown in Figure 14C. ELGL and ChromaGAN directly combine
the L-channels of the NIR image during colorization to preserve
details but with severe color deviations.

3.4. Objective assessment

3.4.1. Image quality
We found that in the 11 models tested, the results of

their image quality metrics on different edge devices were
the same with only a few subtle differences; so, we only
compared the test results on the RT3060 device. As shown
in Table 1, from the image quality metrics, PSNR and SSIM,
Pix2Pix, and TIC-CGAN have the best results, followed by
MemoPainter. Part of the reason for the poor performance of
CNN methods is that they combine L-channels, the brightness
of NIR images when they finally generate the colorized images.
This results in a significant difference between them and visible
images.

3.4.2. Resource occupancy
As shown in Table 2, the latency and the inference speed

of the 11 compared models vary significantly across different
edge devices. We found that, as the performance of the devices
decreases, the ratio of latency difference to each other also narrows.
ELGL (46.8 FPS), Pix2Pix (45.0 FPS), CycleGAN (44.9 FPS),
ChromaGAN (28.4 FPS), and TIC-CGAN (22.7 FPS) achieve real-
time colorization on the Jetson AGX Xavier. Pix2Pix (27.4 FPS),
CycleGAN (26.4 FPS), and ELGL (23.4 FPS) can achieve real-time
colorization on the Jetson Xavier NX. The fastest on the Jetson
Nano is Pix2Pix (6.8 FPS), followed by CycleGAN (6.3 FPS). We
found that the fastest model to run on high-performance devices
does not necessarily represent the fastest model to run on low-
performance devices. Combined with the data in Figure 14, we
believe that the running speed of a model with larger memory
usage may be significantly affected when the memory resources are
limited.

The initial memory usage of the server is 7.2 GB, the initial
memory usage of Jetson AGX Xavier is 0.72 GB, the initial memory
usage of Jetson Xavier NX is 0.56 GB, and the initial memory usage
of Jetson Nano is 0.52 GB. The RAM values in Table 3 are the
measured values minus the initial memory usage. As shown in
Table 3, Figure 15, when the model is deployed on edge devices
with sufficient running memory, it will occupy more than those
with limited memory. This phenomenon may be related to the
memory invocation principle of the PyTorch framework. I2V-GAN
consumes the least memory on Jetson AGX Xavier. PearlGAN
consumes the least memory on Jetson Xavier NX and Jetson Nano.
MemoPainter cannot be run on Jetson Nano due to excessive
memory usage.

3.4.3. Energy consumption
As shown in Figures 16B, C, the comparison model’s

performance of the maximum power and total power consumption
has the same trend. Since both Jetson AGX Xavier and Jetson
Xavier NX are rated at 19 V and Jetson Nano is rated at 5 V,
the maximum current of the model on Jetson Nano is higher
than that on Jetson Xavier NX when the performance is limited,
as shown in Figure 16A and Table 3. CICZ has the smallest
energy consumption per unit time when it runs on the three edge
devices, as shown in Table 4. The total power consumption is
the power consumption in a certain period rather than the power
consumption of each inference. Therefore, when selecting a model
on an edge device with limited energy, we had to consider both the
model’s latency (or FPS) and energy consumption metrics.

3.4.4. Equilibrium assessment
From the results shown in Table 5, we believe that, if a model

is suitable for running on edge devices, it requires a balance
between the quality of colorized results and the inference speed.
In general, on the edge device (Jetson Xavier NX), Pix2Pix can
achieve real-time NIR image colorization requirements and has
good image quality, as shown in Figure 17A. TIC-CGAN is slightly
inferior in terms of latency. The performance differences between
RecycleGAN, PearlGAN, and I2V-GAN are insignificant, as shown
in Figure 17B.

TABLE 5 Evaluation of different image colorization models based on
Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and
Frames Per Second (FPS) on Jetson Xavier NX.

Method PSNR (%) SSIM (%) FPS (%)

CICZ 0.645 0.976 0.139

ELGL 0.671 0.988 0.853

ChromaGAN 0.664 0.974 0.503

SCGAN 0.756 1.072 0.120

Pix2Pix 1.000 1.000 1.000

MemoPainter 0.843 0.924 0.334

TIC-CGAN 0.931 1.109 0.448

CycleGAN 0.639 0.923 0.962

RecycleGAN 0.637 0.815 0.084

PearlGAN 0.612 0.819 0.145

I2V-GAN 0.615 0.836 0.094

This (%) represents the ratio of the model and Pix2Pix on the corresponding metric.

Frontiers in Neurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 13

Shi et al. 10.3389/fnbot.2023.1143032

FIGURE 17

Comparison of different image colorization models [(A): CICZ (Zhang et al., 2016), ELGL (Iizuka et al., 2016), ChromaGAN (Vitoria et al., 2020),
SCGAN (Zhao et al., 2020), Pix2Pix (Isola et al., 2017), MemoPainter (Yoo et al., 2019), TIC-CGAN (Kuang et al., 2020), CycleGAN (Zhu et al., 2017); (B):
RecycleGAN (Bansal et al., 2018), PearlGAN (Luo et al., 2022), I2V-GAN (Li et al., 2021)]. The size of the circle represents the combined weight of the
values on X-axis and Y-axis. The larger the circle, the better the performance.

4. Conclusion

The Jetson series is a widely used embedded system. Limits
on hardware resources and energy consumption restrict the
deployment of current deep learning models on edge devices.
In this study, an evaluation system was designed to test the
performance of NIR image colorization methods on edge devices
on the RGB-NIR scene dataset (Brown and Süsstrunk, 2011). From
the experimental results, we summarize several conclusions for
reference and provide suggestions for future work:

1. We found that the data were very close by comparing the
results of the image quality metrics of the same model on
the server and the edge devices. When considering image
quality metrics of methods, researchers only needed to
refer to the results on the server.

2. Among the 11 methods, the image quality metrics of
Pix2Pix and TIC-CGAN were the best on the RGB-NIR
scene dataset (Brown and Süsstrunk, 2011).

3. The latency of each model varied significantly across
different edge devices. As device performance decreased,
the proportion of the latency differences among the
models also changed.

4. Of the 11 methods, ELGL had the smallest latency on
Jetson AGX Xavier. On Jetson Xavier NX and Jetson Nano,
Pix2Pix had the smallest latency.

5. When deployed on an edge device with enough running
memory, the model will occupy more memory than
the memory-limited device. The memory usage may be
related to the memory allocation policy of the deep
learning framework.

6. The RecycleGAN, PearlGAN, and I2V-GAN had smaller
memory usage on edge devices than the others. Since

we used only the generator to create colorized results
for model testing, researchers who wish to optimize
a model’s memory usage can refer to these models’
generator structures.

7. Of the 11 methods, CICZ had the smallest energy
consumption per unit of time, while the maximum current
and maximum power were the smallest. Meanwhile, the
difference in energy consumption among other models
was lower than the difference between CICZ and them. For
optimizing energy consumption, researchers can refer to
the structure of CICZ.

8. Combining the testing results of image quality and latency
metrics, it can be concluded that Pix2Pix and TIC-CGAN
could serve as a basis for further optimization of NIR
image colorization on edge devices.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: https://www.epfl.ch/labs/ivrl/research/
downloads/rgb-nir-scene-dataset/.

Author contributions

SS proposed the theory, conducted the experiment, and wrote
the manuscript. XJ proposed the general idea of this theory.
QJ and XJ supervised this work and revised the manuscript.
WW, KL, and HC participated in the design and testing
of the experimental process. PL, WZ, and SY discussed the
theory. All authors contributed to the article and approved the
submitted version.

Frontiers in Neurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://www.epfl.ch/labs/ivrl/research/downloads/rgb-nir-scene-dataset/
https://www.epfl.ch/labs/ivrl/research/downloads/rgb-nir-scene-dataset/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 14

Shi et al. 10.3389/fnbot.2023.1143032

Funding

This study was supported by the National Natural Science
Foundation of China (Nos. 62101481, 62002313, 62261060,
62162067, 62101480), Basic Research Project of Yunnan Province
(Nos. 202301AW070007, 202301AU070210, 202201AU070033,
202201AT070112, 202001BB050076, and 202005AC160007),
Major Scientific and Technological Project of Yunnan Province
(No. 202202AD080002), the Fund Project of Yunnan Province
Education Department (No. 2022j0008), the Open Project of
Engineering Research Center of Cyberspace in 2021–2022 (No.
KJAQ202112012), Key Laboratory in Software Engineering of
Yunnan Province (No.2020SE408), and Research and Application
of Object Detection Based on Artificial Intelligence.

Acknowledgments

The authors acknowledge XJ, Xiang Cheng, and Guoliang
Yao from Yunnan University for their useful suggestions and

discussions and Ming Feng and Youwei He from Yunnan
University for their generous assistance in the experiments.

Conflict of interest

PL was employed by Guangxi Power Grid Co., Ltd.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bansal, A., Ma, S., Ramanan, D., and Sheikh, Y. (2018). “Recycle-gan: unsupervised
video retargeting,” in Proceedings of the European conference on computer vision
(ECCV), (Berlin: Springer). doi: 10.1007/978-3-030-01228-1_8

Brown, M., and Süsstrunk, S. (2011). Multi-Spectral SIFT for Scene Category
Recognition. Piscataway, NJ: IEEE. doi: 10.1109/CVPR.2011.5995637

Cao, Z., Huang, Z., Pan, L., Zhang, S., Liu, Z., and Fu, C. (2022). “TCTrack: temporal
contexts for aerial tracking,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, (Piscataway, NJ: IEEE). doi: 10.1109/CVPR52688.
2022.01438

Fortino, G., Zhou, M. C., Hassan, M. M., Pathan, M., and Karnouskos, S. (2021).
Pushing Artificial intelligence to the edge: emerging trends, issues and challenges. Eng.
Appl. Artif. Intell. 103:104298. doi: 10.1016/j.engappai.2021.104298

Han, D., Liu, Y., and Ni, J. (2020). Research on multinode collaborative computing
offloading algorithm based on minimization of energy consumption. Wirel. Commun.
Mob. Comput. 2020:8858298. doi: 10.1155/2020/8858298

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, (Piscataway, NJ: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Huang, S., Jin, X., Jiang, Q., and Liu, L. (2022). Deep learning for image colorization:
current and future prospects. Eng. Appl. Artif. Intell. 114:105006. doi: 10.1016/j.
engappai.2022.105006

Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2016). Let there be color! joint end-
to-end learning of global and local image priors for automatic image colorization
with simultaneous classification. ACMTrans. Graphics 35, 1–11. doi: 10.1145/2897824.
2925974

Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A. (2017). “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, (Piscataway, NJ: IEEE). doi: 10.1109/CVPR.
2017.632

Jeon, J., Jung, S., Lee, E., Choi, D., and Myung, H. (2021). Run your visual-inertial
odometry on NVIDIA jetson: benchmark tests on a micro aerial vehicle. IEEE Robot.
Autom. Lett. 6, 5332–5339. doi: 10.1109/LRA.2021.3075141

Jin, X., Jiang, Q., Yao, S., Zhou, D., Nie, R., Hai, J., et al. (2017). A survey of
infrared and visual image fusion methods. Infrared Phys. Technol. 85, 478–501. doi:
10.1016/j.infrared.2017.07.010

Kuang, X., Zhu, J., Sui, X., Liu, Y., Liu, C., Chen, Q., et al. (2020). Thermal infrared
colorization via conditional generative adversarial network. Infrared Phys. Technol.
107:103338. doi: 10.1016/j.infrared.2020.103338

Li, S., Han, B., Yu, Z., Liu, C. H., Chen, K., and Wang, S. (2021). “I2v-gan: unpaired
infrared-to-visible video translation,” in Proceedings of the 29th ACM International
Conference on Multimedia, (New York, NY: ACM). doi: 10.1145/3474085.3475445

Liang, W., Ding, D., and Wei, G. (2021). An improved DualGAN for near-infrared
image colorization. Infrared Phys. Technol. 116:103764. doi: 10.1016/j.infrared.2021.
103764

Liao, H., Jiang, Q., Jin, X., Liu, L., Liu, L., Lee, S. J., et al. (2022). MUGAN: thermal
infrared image colorization using mixed-skipping UNet and generative adversarial
network. IEEE Trans. Intell. Vehicles 1–16. doi: 10.1109/TIV.2022.3218833

Liu, L., Jiang, Q., Jin, X., Feng, J., Wang, R., Liao, H., et al. (2022). CASR-net: a
color-aware super-resolution network for panchromatic image. Eng. Appl. Artif. Intell.
114:105084. doi: 10.1016/j.engappai.2022.105084

Liu, Y., Wang, L., Cheng, J., Li, C., and Chen, X. (2020). Multi-focus image fusion: a
survey of the state of the art. Information Fusion 64, 71–91. doi: 10.1016/j.inffus.2020.
06.013

Luo, F., Li, Y., Zeng, G., Peng, P., Wang, G., and Li, Y. (2022). Thermal Infrared
Image Colorization for Nighttime Driving Scenes with Top-Down Guided Attention.
IEEE Transactions on Intelligent Transportation Systems. Piscataway, NJ: IEEE. doi:
10.1109/TITS.2022.3145476

Ma, X., Xu, S., An, F., and Lin, F. (2018). A novel real-time image restoration
algorithm in edge computing. Wirel. Commun. Mob. Comput. 2018:3610482. doi:
10.1155/2018/3610482

Mazzia, V., Khaliq, A., Salvetti, F., and Chiaberge, M. (2020). Real-time apple
detection system using embedded systems with hardware accelerators: an edge AI
application. IEEE Access 8, 9102–9114. doi: 10.1109/ACCESS.2020.2964608

Ni, J., Shen, K., Chen, Y., Cao, W., and Yang, S. X. (2022). An improved deep
network-based scene classification method for self-driving cars. IEEE Trans. Instrum.
Meas. 71, 1–14. doi: 10.1109/TIM.2022.3146923

Qin, Z., Qiu, X., Ye, J., and Wang, L. (2020). User-edge collaborative resource
allocation and offloading strategy in edge computing. Wirel. Commun. Mob. Comput.
2020, 1–12. doi: 10.1155/2020/8867157

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv [Preprint]

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: vision and
challenges. IEEE Internet Things J. 3, 637–646. doi: 10.1109/JIOT.2016.2579198

Sun, T., Jung, C., Fu, Q., and Han, Q. (2019). Nir to rgb domain translation using
asymmetric cycle generative adversarial networks. IEEE Access 7, 112459–112469.
doi: 10.1109/ACCESS.2019.2933671

Toczé, K., and Nadjm-Tehrani, S. (2018). A taxonomy for management and
optimization of multiple resources in edge computing. Wirel. Commun. Mobile
Comput. 2018:7476201. doi: 10.1155/2018/7476201

Vitoria, P., Raad, L., and Ballester, C. (2020). “Chromagan: adversarial picture
colorization with semantic class distribution,” in Proceedings of the IEEE/CVF Winter

Frontiers in Neurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://doi.org/10.1007/978-3-030-01228-1_8
https://doi.org/10.1109/CVPR.2011.5995637
https://doi.org/10.1109/CVPR52688.2022.01438
https://doi.org/10.1109/CVPR52688.2022.01438
https://doi.org/10.1016/j.engappai.2021.104298
https://doi.org/10.1155/2020/8858298
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.engappai.2022.105006
https://doi.org/10.1016/j.engappai.2022.105006
https://doi.org/10.1145/2897824.2925974
https://doi.org/10.1145/2897824.2925974
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/LRA.2021.3075141
https://doi.org/10.1016/j.infrared.2017.07.010
https://doi.org/10.1016/j.infrared.2017.07.010
https://doi.org/10.1016/j.infrared.2020.103338
https://doi.org/10.1145/3474085.3475445
https://doi.org/10.1016/j.infrared.2021.103764
https://doi.org/10.1016/j.infrared.2021.103764
https://doi.org/10.1109/TIV.2022.3218833
https://doi.org/10.1016/j.engappai.2022.105084
https://doi.org/10.1016/j.inffus.2020.06.013
https://doi.org/10.1016/j.inffus.2020.06.013
https://doi.org/10.1109/TITS.2022.3145476
https://doi.org/10.1109/TITS.2022.3145476
https://doi.org/10.1155/2018/3610482
https://doi.org/10.1155/2018/3610482
https://doi.org/10.1109/ACCESS.2020.2964608
https://doi.org/10.1109/TIM.2022.3146923
https://doi.org/10.1155/2020/8867157
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/ACCESS.2019.2933671
https://doi.org/10.1155/2018/7476201
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

fnbot-17-1143032 April 19, 2023 Time: 13:38 # 15

Shi et al. 10.3389/fnbot.2023.1143032

Conference on Applications of Computer Vision, (Piscataway, NJ: IEEE). doi: 10.1109/
WACV45572.2020.9093389

Yoo, S., Bahng, H., Chung, S., Lee, J., Chang, J., and Choo, J. (2019). “Coloring with
limited data: Few-shot colorization via memory augmented networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (Piscataway,
NJ: IEEE). doi: 10.1109/CVPR.2019.01154

Yu, B., Chen, Y., Cao, S. Y., Shen, H. L., and Li, J. (2022). Three-channel infrared
imaging for object detection in haze. IEEE Trans. Instrum. Meas. 71, 1–13. doi: 10.
1109/TIM.2022.3164062

Zhang, P., Zhang, A., and Xu, G. (2020). Optimized task distribution based on task
requirements and time delay in edge computing environments. Eng. Appl. Artif. Intell.
94:103774. doi: 10.1016/j.engappai.2020.103774

Zhang, R., Isola, P., and Efros, A. A. (2016). “Colorful image Colorization,” in
Proceedings of the European Conference on Computer Vision. Cham: Springer. doi:
10.1007/978-3-319-46487-9_40

Zhao, M., Cheng, L., Yang, X., Feng, P., Liu, L., and Wu, N. (2019). TBC-net: a
real-time detector for infrared small target detection using semantic constraint. arXiv
[Preprint]

Zhao, Y., Po, L. M., Cheung, K. W., Yu, W. Y., and Rehman, Y. A. U. (2020).
SCGAN: saliency map-guided colorization with generative adversarial network. IEEE
Trans. Circuits Syst. Video Technol. 31, 3062–3077. doi: 10.1109/TCSVT.2020.303
7688

Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, (Piscataway, NJ: IEEE). doi: 10.1109/
ICCV.2017.244

Zhu, Z., He, X., Qi, G., Li, Y., Cong, B., and Liu, Y. (2023). Brain tumor
segmentation based on the fusion of deep semantics and edge information in
multimodal MRI. Information Fusion 91, 376–387. doi: 10.1016/j.inffus.2022.1
0.022

Frontiers in Neurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1143032
https://doi.org/10.1109/WACV45572.2020.9093389
https://doi.org/10.1109/WACV45572.2020.9093389
https://doi.org/10.1109/CVPR.2019.01154
https://doi.org/10.1109/TIM.2022.3164062
https://doi.org/10.1109/TIM.2022.3164062
https://doi.org/10.1016/j.engappai.2020.103774
https://doi.org/10.1007/978-3-319-46487-9_40
https://doi.org/10.1007/978-3-319-46487-9_40
https://doi.org/10.1109/TCSVT.2020.3037688
https://doi.org/10.1109/TCSVT.2020.3037688
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1016/j.inffus.2022.10.022
https://doi.org/10.1016/j.inffus.2022.10.022
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/

	A comparative analysis of near-infrared image colorization methods for low-power NVIDIA Jetson embedded systems
	1. Introduction
	2. Materials and methods
	2.1. Image colorization methods
	2.1.1. Convolutional neural network
	2.1.2. Wasserstein generated adversarial network
	2.1.3. Conditional generated adversarial network
	2.1.4. Cycle-consistent adversarial network

	2.2. Edge devices
	2.2.1. Jetson AGX Xavier
	2.2.2. Jetson Xavier NX
	2.2.3. Jetson Nano

	2.3. Evaluation metrics
	2.3.1. Image quality
	2.3.2. Resource occupancy
	2.3.3. Energy consumption

	3. Results and analysis
	3.1. Experimental dataset
	3.2. Experimental environment
	3.3. Subjective assessment
	3.4. Objective assessment
	3.4.1. Image quality
	3.4.2. Resource occupancy
	3.4.3. Energy consumption
	3.4.4. Equilibrium assessment

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

