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At present, single-modal brain-computer interface (BCI) still has limitations in

practical application, such as low flexibility, poor autonomy, and easy fatigue

for subjects. This study developed an asynchronous robotic arm control system

based on steady-state visual evoked potentials (SSVEP) and eye-tracking in virtual

reality (VR) environment, including simultaneous and sequential modes. For

simultaneous mode, target classification was realized by decision-level fusion

of electroencephalography (EEG) and eye-gaze. The stimulus duration for each

subject was non-fixed, which was determined by an adjustable window method.

Subjects could autonomously control the start and stop of the system using

triple blink and eye closure, respectively. For sequential mode, no calibration was

conducted before operation. First, subjects’ gaze area was obtained through eye-

gaze, and then only few stimulus blocks began to flicker. Next, target classification

was determined using EEG. Additionally, subjects could reject false triggering

commands using eye closure. In this study, the system effectiveness was verified

through offline experiment and online robotic-arm grasping experiment. Twenty

subjects participated in offline experiment. For simultaneous mode, average ACC

and ITR at the stimulus duration of 0.9 s were 90.50% and 60.02 bits/min,

respectively. For sequential mode, average ACC and ITR at the stimulus duration

of 1.4 s were 90.47% and 45.38 bits/min, respectively. Fifteen subjects successfully

completed the online tasks of grabbing balls in both modes, and most subjects

preferred the sequential mode. The proposed hybrid brain-computer interface

(h-BCI) system could increase autonomy, reduce visual fatigue, meet individual

needs, and improve the efficiency of the system.
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1. Introduction

Brain-computer interface (BCI) is a communication system
that transmits information between the brain and the outside
world, without relying on the channels composed of muscles and
nerves. Electroencephalography (EEG) is widely used for non-
invasive BCIs because of its simplicity and safety (Sreeja and
Samanta, 2019; Ke et al., 2020). Robotic arm control can help
disabled people do rehabilitation training, such as motor function
rehabilitation for stroke patients. In recent years, the use of EEG to
control robotic arms has attracted researchers’ wide attentions, and
has made great progress (Liu et al., 2018; Xu et al., 2019; Jeong et al.,
2020; Zeng et al., 2020).

The BCI-controlled robotic arm systems can be divided into
two types: synchronous systems and asynchronous systems (Diez
et al., 2011). The synchronous systems operate according to a
fixed time series. Chen et al. (2018) used the filter bank canonical
correlation analysis (FBCCA) algorithm to implement a 7-DOF
robotic arm control system based on steady-state visual evoked
potentials (SSVEP) signals without system calibration. Later, Chen
et al. (2019) proposed a new method combining high-frequency
SSVEP with computer vision to complete the control of robotic
arm. Ke et al. (2020) integrated augmented reality (AR) with
BCI to provide a high-performance robotic arm control method.
However, when the above-mentioned synchronous systems started,
the users could not freely control systems’ start and stop. Thus,
the asynchronous systems were proposed, in which a state switch
was added to convert the states of working and idle. In this way,
users could freely control the systems according to their wills.
Pfurtscheller et al. (2010b) designed a brain switch based on motor
imagery (MI) which was capable of activating an SSVEP-based
four-step orthosis. Zhu et al. (2020) detected blinks using EOG
to flicker the stimuli and completed the basic control of the 6-
DOF robotic arm through SSVEP-BCI. Chen et al. (2021) used
high-frequency SSVEP to switch the system state, and utilized low-
frequency SSVEP to control the robotic arm to complete the puzzle
tasks. In addition, MI was analyzed to change the command state
autonomously to complete the multiple grasping tasks (Meng et al.,
2016) and the continuous pursuit tasks (Edelman et al., 2019) of
robotic arm.

In order to make good use of BCI for practical applications,
more researchers pay attentions to hybrid brain-computer
interfaces (h-BCIs) (Pfurtscheller et al., 2010a), especially those
based on eye-tracking. Eye-tracking is characterized by easy
acquisition and direct interaction. SSVEP is originally elicited
by visual stimuli, which has high signal-to-noise ratio (SNR)
and information transmission rate (ITR). Since simultaneous
acquisition of the SSVEP and eye-tracking cannot bring additional
burden to the subjects, the combination of the two modalities is
natural for human-computer interaction (Kos’ Myna and Tarpin-
Bernard, 2013). Stawicki et al. (2017) utilized eye-gaze to determine
the stimulus range and then used SSVEP for fine-grained target
selection. A hybrid system of spelling was realized, which enabled
reliable control for most subjects. Lim et al. (2015) designed a
three-region typing system. If the position of word selected by
SSVEP was different from the region judged by eye-gaze, the
current input would be rejected. Otherwise, the word would be
inputted. Ma et al. (2018) realized a 40-target high-speed typing

system integrating eye-gaze with SSVEP in VR environment.
Mannan et al. (2020) combined eye tracking with SSVEP to achieve
recognition of 48 targets using 6 stimulus frequencies, which
improved the performance of the speller. Yao et al. (2018) reduced
the number of SSVEP stimulus blocks by detecting eye-gaze before
flickering stimulus, and realized a high-speed typing system in VR
environment. A 30-target typing system was designed by Saboor
et al. (2018). A single target was first selected by eye-gaze, and
then the confirmation of the command was completed by high-
frequency SSVEP. From these studies, two main modes of EEG-eye
fusion could be summarized. The first one was to make fusion
decision between EEG and eye-tracking (Lim et al., 2015; Ma et al.,
2018; Mannan et al., 2020). The second one was to let eye-tracking
and EEG execute sequentially to complete the task (Stawicki et al.,
2017; Saboor et al., 2018; Yao et al., 2018). However, there were
still some problems in the current researches on h-BCIs based
on eye-tracking. First, many systems developed in the existing
studies were still synchronous (Lim et al., 2015; Ma et al., 2018; Yao
et al., 2018; Mannan et al., 2020), which had poor autonomy and
flexibility. Second, most systems required a long time of calibration,
such as the system calibration of the eye-tracking (Stawicki et al.,
2017; Saboor et al., 2018; Mannan et al., 2020), and the training
of the supervised algorithm (Ma et al., 2018; Yao et al., 2018; Tan
et al., 2022), which were inconvenient for practical applications.
Third, individual differences were not fully considered. In the BCI
system, each subject had different performance in terms of stimulus
interval, stimulus duration and susceptibility to fatigue. If system
parameters were set without considering individual differences,
system performance would be affected.

Aiming at the above problems and the two EEG-eye fusion
modes, a robotic arm control system with simultaneous and
sequential modes was implemented combining SSVEP with eye-
tracking in virtual reality (VR) environment. For the simultaneous
mode, the classification results were determined by the decision-
level fusion of SSVEP and eye-gaze. In order to meet the individual
needs of the subjects, the stimulus duration and fusion coefficient
of each subject were determined by the adjustable window method
in the calibration phase. In addition, subjects could control the
start and stop of the system using triple blink and eye closure, so
as to improve the subjects’ autonomy. For the sequential mode,
no calibration was required before operation. In order to reduce
subjects’ fatigues, the fixation area was determined by eye-gaze
and then only half of the stimulus blocks flickered. And then
the control command was selected using SSVEP. Subjects could
switch the fixation area to freely control the start of the system.
Moreover, subjects could close eyes during stimulus to avoid the
execution of wrong commands caused by false triggers. In this
study, offline and online experiments were conducted. The offline
experiment was a cue-based stimulus experiment to demonstrate
the effectiveness of the proposed system and determine parameters
of the online system. In online experiment, subjects controlled
the robotic arm to complete the ball-grabbing tasks in the
two modes.

The main contributions and novelties of this study are as
follows:

• In the VR environment, a high-performance virtual robotic
arm control system combining EEG with eye-tracking
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was developed. It included simultaneous mode and
sequential mode.
• For the simultaneous mode, the appropriate stimulus duration

of each subject was determined by adjustable window method,
which satisfied individual needs. And the start and stop of the
system could be controlled by eye closure and triple blink,
which improved subjects’ autonomous control ability.
• For the sequential mode, no calibration was required before

use, which saved time and was conducive to practical
application. And only half of the stimulus blocks flickered
during the stimulus, which could reduce the fatigue of subjects.
In addition, subjects were able to automatically control the
start of the system by changing the fixation area.

The remainder of this study is organized as follows: Section “2.
Materials and methods” introduces the structure of the proposed
system, two control modes, data processing and experimental
procedures. Section “3. Results” shows the results of offline
and online experiments. Section “4. Discussion” discusses the
performance of our proposed system and future work.

2. Materials and methods

2.1. System setup

2.1.1. Architecture
The structure of the robotic arm control system included virtual

scene module and signal processing module, as shown in Figure 1.
The system was built on a desktop computer with Intel Core i9
CPU and NVIDIA GTX3070 GPU. In virtual scene module, the
construction of virtual scenes was realized by Unity 3D Engine and
Steam VR platform. In signal processing module, the acquisition
and real-time processing of EEG and eye-tracking data were
completed. Real-time communication between both modules was
completed through TCP/IP protocol. The head-mounted display
HTC VIVE Pro was used to present the virtual scene, and its dual
OLED display had a resolution of 2,880× 1,600 (1,400× 1,600 per
eye) and a refresh rate of 90 Hz. An embedded infrared eye tracking
module of aGlass DKII was used to acquire the eye movement data.
A wireless 8-channel NeuSen W system equipment was utilized to
collect EEG data. At the beginning of stimulus, in virtual scene
module, eye movement indices were recorded and event triggers
were sent to the parallel port to realize the simultaneous acquisition
of EEG and eye movement data.

2.1.2. Virtual scene
The virtual scene of this system mainly included two parts: the

scene of robotic arm and the stimulus plane, as shown in Figure 2A.
The scene of robotic arm contained a dark room, a table, a red
ball and a robotic arm. There were a total of 21 light-colored
markers with a green position on the table, which represented
where the red ball might appear during the online experiment.
The stimulus plane was a transparent canvas, which could move
with subjects’ perspectives. The robotic arm could perform 8
commands. The 4 commands in the left stimulus area were “↑”,
“←”, “go” and “grab”, which corresponded to the spinning up,
turning left, going forward and grabbing actions of the robotic

arm, respectively. The 4 commands in the right stimulus area
were: “↓”, “→”, “back “ and “rls”, corresponding to the spinning
down, turning right, going back and releasing actions, respectively.
Above 8 commands corresponded to 8 flickering stimulus blocks, as
shown in Figure 2B. They were encoded in joint frequency-phase
modulation (JFPM) mode (Chen et al., 2015b), whose frequency
range was from 8 Hz to 15 Hz with 1 Hz interval, and whose phase
range was from 0 to 2π with 0.25π interval. The entire fixation
area was divided into three parts: central area, left stimulus area
and right stimulus area. Both length and width of each flickering
stimulus block were 3.4◦, where ◦ was the unit of viewing angle.
The vertical distance between two flickering stimulus blocks on the
ipsilateral side was 3.4◦, and the horizontal distance between the left
and right flickering stimulus blocks was 25.8◦.

2.2. Online control mode

This study utilized the advantages of EEG and eye movement
to develop a convenient and high-performance h-BCI system.
Based on the combination of EEG and eye movement, two online
control modes were proposed in our study: simultaneous mode and
sequential mode, as shown in Figure 3.

2.2.1. Simultaneous mode
System calibration was needed before operation. In this mode,

eye-gaze was involved in the fine classification of targets, so
five-point calibration of eye-tracking equipment was required. In
addition, EEG-eye fusion required calibration to determine the
fusion coefficients. First, five-point calibration of eye-gaze was
conducted. Second, subjects were required to successively gaze at
each stimulus block for 2 s to calculate the gaze-center coordinates
of 8 stimulus blocks. Third, subjects stared at 8 stimulus blocks in
turn again, and each stimulus block flickered for 2 s. Meanwhile,
the eye movements and EEG data were collected synchronously.
The adjustable window method was used to change the time
window to calculate the classification accuracy of EEG and eye
movements, so as to determine the optimal stimulus duration and
fusion coefficient for each subject.

The adjustable window method was to intercept EEG and eye-
gaze data in the range of 0.7-2 s with a step of 0.1 s. The current
period was assumed as T. First, for three consecutive periods of
T − 0.1, T, and T + 0.1, their classification accuracies of the fusion
between EEG and eye-gaze needed to be all greater than or equal
to 87.5%. Next, if the classification accuracy in the period of T was
greater than 87.5%, T was selected as the stimulus duration. If the
classification accuracy in the period of T was equal to 87.5%, and
the output labels in the periods of T and T − 0.1 were different, T
was selected as the stimulus duration. Otherwise, the time period
would be increased till the period T satisfied the above conditions,
and then the stimulus duration was found. If T satisfying the
precision condition was not found, the stimulus duration would be
set as 2 s. Because of the less calibration data, when the stimulus
duration was short, the classification accuracy might be unstable,
or some commands could not be recognized. Considering the
situations, the adjustable window method was proposed to ensure
that subjects could successfully complete the online experiment.

The implementation procedure of the simultaneous mode is
shown in Figure 3A. First, the gaze switching interval was set at
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FIGURE 1

Schematic diagram of virtual robotic arm control system combining EEG and eye-gaze.

1.2 s, in which subjects could switch the gaze to find the target.
Afterwards, there was a beep to remind subjects to focus on the
target stimulus block. After beeping for 0.3 s, stimulus blocks began
to flicker, and the stimulus duration of flickers was determined by
the adjustable window method for each subject. And then EEG and
eye-gaze data with a length of a stimulus duration were intercepted.
The classification result was determined by the decision-level fusion
of EEG and eye-gaze. The robotic arm then performed relevant
action, and the corresponding stimulus block turned blue. In
addition, there was a voice prompt to provide feedback to subjects,
which was the Chinese pronunciation of the command for the
corresponding stimulus block. Later, the system entered the next
trial, and automatically repeated the above procedure until the end
of the task.

When subjects felt fatigued or were unable to keep up with
the control rhythm, they could close their eyes during stimulus
to stop the system. After that, subjects could think about the next
control command or have a rest. Meanwhile, a sliding window with
a length of 3 s and a step of 0.1 s started to detect subjects’ triple
blink. If subjects wanted to restart the system, they could blink
three times in a row.

2.2.2. Sequential mode
No system calibration was required before operation. In this

mode, eye-gaze was only utilized to roughly estimate the location
of stimulus blocks, and then the final target was classified by EEG.
Therefore, eye-gaze could require neither the calibration of eye-
tracking equipment nor the calibration to determine the EEG-eye
fusion coefficients. The implementation procedure of the sequential
mode is shown in Figure 3B. In the gaze switching interval, subjects
utilized eye-gaze to freely select the target. During this period, a

sliding window with a length of 0.5 s and a step of 0.1 s was used
to detect subjects’ gazes. If the variance of eye-gaze was smaller
than the predetermined threshold (≤ 0.005), it was judged as gaze
state. In the gaze state, if gaze center fell on the area to the left
of the left boundary or the area to right of the right boundary
(i.e., left or right stimulus areas in Figure 2B), the system beeped
and partial stimulation started, that is, the four ipsilateral stimulus
blocks started to flicker simultaneously for 1.4 s. Then, the control
command was selected using SSVEP. The execution process of the
robotic arm and the feedback to the subjects in this mode were the
same as those in the simultaneous mode. The system repeated the
above procedure until the end of the task.

In this mode, subjects could use eye-gaze to switch the fixation
area, so as to freely control the start of the system. In addition,
due to subjects’ sight shift, false triggers might occur, which caused
the system to send wrong commands. At this time, subjects could
close their eyes during stimulus, and the robotic arm could refuse
to execute the wrong commands.

2.3. Data processing

2.3.1. EEG
First, a bidirectional zero-phase Chebyshev type I IIR filter

was used for 7-90 Hz bandpass filtering (Ke et al., 2020), and a
50 Hz digital notch filter was used to filter out power frequency
interference. Next, baseline removal of each trial was performed
using EEG data pre-trigger 200 ms. Finally, considering the visual
latency of 0.14 s (Chen et al., 2015b), the effective EEG signal
was intercepted in [0.14 s 0.14+x s], where x was the stimulus
duration.
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FIGURE 2

(A) Diagram of virtual scene. (B) Flickering stimulus blocks.

Considering the contribution of high-order harmonics with
high SNR in SSVEP data to target classification, the FBCCA (Chen
et al., 2015a) algorithm was used to classify SSVEP data in this
study. This algorithm first used a filter bank to decompose the
preprocessed EEG data into multiple sub-band components. Then

according to the principle of CCA algorithm (Lin et al., 2006),
the correlation coefficients of all sub-bands were obtained. Finally,
a weighted method combining these coefficients was utilized to
obtain the feature for target classification, and the frequency
corresponding to the maximum feature was selected as the target.
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FIGURE 3

Implementation procedure. (A) Simultaneous mode. (B) Sequential mode.

2.3.2. Eye-tracking
For the simultaneous mode, the gaze-center coordinates of the

8 targets needed to be obtained in the calibration phase. First, the
zero points of the binocular eye-gaze data were removed, which
might be caused by subjects’ eye closure or the loss of sampling
data. Second, the average values of all sampling points of left and
right eye-gaze data were calculated, respectively. And then the
gaze-center coordinates of 8 targets were obtained. In the phase
of target recognition, the sum of the Euclidean distances between
the test data and 8 gaze-center coordinates were calculated point
by point. Finally, the target with the smallest sum of Euclidean
distances was selected.

Triple blink was detected to restart the system. The general
binocular pupil diameters of triple blink are shown in Figure 4A.
There are three segments with pupil diameters of 0, which
correspond to three eye closures in triple blink. The first-order
difference was used to detect the triple blink, as illustrated in
Figure 4B. The brief steps of triple blink detection in a sliding
window were as follows. First, the first 8 positive peaks and
their time points were found. The number of peaks was set
to 8 according to prior knowledge. Second, if the intervals of
these time points were within 1/12 s, their amplitudes would be
summed. Third, the first 8 negative peaks were dealt with in the
same way. Fourth, if the intervals of the time points between
positive and negative peaks were within 1/24 s, the peak with
smaller absolute value would be deleted. Fifth, if the absolute
amplitudes of the first 3 positive and 3 negative peaks among the
remaining ones were all greater than 2.5 mm, then triple blink
for one eye was detected. Finally, if at least one triple blink was
detected for both eyes, it was judged as triple blink in the sliding
window.

Eye closure was detected to pause the system. If the non-zero
values of the binocular pupil diameters accounted for less than 30%
in the whole stimulus duration, it was judged as eye closure in the
stimulus duration.

For the sequential mode, the gaze state needed to be detected.
First the zero points of the binocular fixation coordinates were
removed, and then the variance of binocular eye-gaze data
during fixation was calculated. If the variance was less than a

predetermined threshold, it was indicated that gaze state was
detected. In addition, eye-closure detection was used to refuse the
false triggers, and the detection method was the same as that in the
simultaneous mode.

2.3.3. EEG-eye fusion method
The decision-level fusion method between EEG and eye-gaze

proposed in this study is as follows:

ρfuse = Ceye ×Weye × Norm
(

1
ρeye

)
+Weeg × Norm

(
ρeeg

)
,

Where ρfuse is the final fusion coefficient. Since the eye
movement data may be lost during acquisition, the eye-tracking
credibility Ceye is utilized. If there are no valid data for both
eyes, Ceye = 0, otherwise Ceye = 1. Weye and Weeg are the fusion
weights of eye-gaze and EEG data, respectively. Norm(·) is a linear
normalization function. The normalized value can be regarded as
the output probability of each target, and

∑
Norm(·) = 1. ρeye is

the eye-gaze coefficient obtained through the Euclidean distance
method. Since the target with the minimum value of the eye-gaze
coefficient is selected, the reciprocal of the eye-gaze coefficient
is conducted. ρeeg is the EEG coefficient obtained using FBCCA
algorithm. Finally, the target with the largest fusion coefficient
ρfuse is desired.

The performance of three fusion methods including average
fusion, prior fusion, and particle swarm optimization (PSO) fusion
were compared in this study. The weights of eye-gaze and EEG in
the average fusion were the same, that is, Weye =Weeg = 0.5. The
weights of eye-gaze and EEG in the prior fusion were determined
by the classification accuracy in calibration phase (Ma et al., 2018),
that is, Weye =

(
ACCeye

)2, Weeg =
(
ACCeeg

)2. For the PSO fusion,
the particle swarm optimization algorithm was used to obtain the
weights of eye-gaze and EEG (Tan et al., 2022).

2.4. Subjects

Twenty-four healthy subjects (14 males and 10 females, aged
from 22 to 26 years old) participated in the experiments, all of
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FIGURE 4

Schematic diagram of triple blink data. (A) Original pupil diameter. (B) First-order difference.

whom had normal or corrected-to-normal visions. 20 subjects
participated in the offline experiment, and 15 subjects participated
in the online experiment, of whom 11 subjects participated in the
both. All subjects signed the consent form before the experiment.
The experiments complied with the Declaration of Helsinki and
was approved by the local ethics committee. Wearing both a head-
mounted display and an EEG cap, subjects sat comfortably in a
sound-proof room to complete all the experiments.

2.5. Data acquisition

For EEG, according to the International 10-20 system, the EEG
amplifier collected 8-channel EEG data (PO5, PO3, POZ, PO4,
PO6, O1, OZ, O2), and Cz and AFz were reference and ground
electrodes, respectively. The sampling rate was set to 1000 Hz. The
impedance of each channel was kept less than 10 k� .

For eye-tracking, the eye-gaze data and pupil diameters of left
and right eyes were collected.

2.6. Experiment design

Offline and online experiments were carried out in this study.

2.6.1. Offline experiment
In order to verify the validity of the stimulus paradigm designed

in the 3D scene and determine the relevant parameters of the online
system, the offline experiment was conducted, including offline

simultaneous and sequential modes. Each mode had two sessions,
and each session contained six blocks. Offline simultaneous mode
comprised Session 1 and 2, whereas offline sequential mode
comprised Session 3 and 4. These two experiment procedures are
shown in Figures 5A, B, respectively.

For the experiment procedure of the offline simultaneous
mode, there were two stimulus tasks. For each stimulus task, a
visual cue lasted for 2 s to remind subjects to gaze the target
which was random in the eight stimulus blocks. Then, all the
stimulus blocks flickered simultaneously for 3 s. Next, there were
two blink tasks. For each blink task, a blink prompt lasted for
4 s, and then subjects were asked to perform the corresponding
blinking action within 4 s. The above process was repeated four
times to form a block. In addition, for each session, the eye
closure and triple blink tasks were interspersed in Block 1, 3, and
5, meanwhile, single and double blink tasks were interspersed in
Block 2, 4, and 6.

For the experiment procedure of the offline sequential mode, a
visual cue first lasted for 2 s, and then subjects were asked to gaze at
the target block for 2 s. Next, the same target cue was kept for 2 s,
and then the four stimulus blocks in the same stimulus area as the
prompted target flickered simultaneously for 3 s. The above process
was repeated 8 times for a block.

In order to improve subjects’ attentions, there were beeps at
the start and end of all stimulus tasks, blink tasks and gaze tasks.
During the visual cue, the target would be highlighted as a green
square, and subjects could shift their gaze to the target. After a
block, subjects had a rest for 10 s. After one session, subjects took
off the head-mounted display and rested for 5 min. In addition,
a five-point calibration was required for Session 1 and 3, but not
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FIGURE 5

Schematic diagram of the offline experiment procedure. (A) Offline simultaneous mode. (B) Offline sequential mode.

for Session 2 and 4 in which the same configuration was used.
For stimulus tasks and blink tasks, EEG and eye movement data
were collected simultaneously. For gaze tasks, only eye-movement
data were collected.

2.6.2. Online experiment
In online experiment, subjects were asked to control the virtual

robotic arm to complete 5 tasks of grabbing balls in two control
modes. As shown in Figure 2A, the goal of each grasping task was
to grab the red ball and put it in the green position.

For each grasping task, subjects first needed to plan the moving
path of the robotic arm, and used “go”, “back”, “←” and “→”
commands to control the robotic arm to move over the red ball,
and then utilized the “↓” command to approach the ball. When
the robotic arm moved in the horizontal plane by executing the
commands “go”, “back”, “←” and “→”, it would move one grid
between the adjacent light-colored marks each time. And the
robotic arm executed “↓” once to get ready to grab the ball.
After that, “grab” command was used to grab the ball. Next, “↑”
command was needed to restore the horizontal position, then the
red ball was moved over the green position, and finally “↓” and
“rls” commands were performed in sequence to complete the task.
If the robotic arm moved incorrectly, subjects should re-plan the
path to complete the grasping task. Finally, if the position of the
red ball coincided with the green position, it was indicated that
the ball was correctly placed and the current grasping task was
successful. If subjects completed 5 grasping tasks without mistakes,
the total steps were 72.

There were some rules during the online experiment. For
example, “grab” action could not be executed twice in a row,
neither could “rls” action. After the robotic arm performed
“↓” command, the robotic arm could not execute “go”, “back”,
“←” or “→” commands. If the above situations occurred, the
system would prompt subjects “this command is invalid, please
resend the command”.

Before the formal experiment, subjects completed a pre-
experiment of grabbing balls to ensure that they were familiar with
the two control modes. In the formal experiment, the simultaneous
and sequential modes were performed randomly for each subject.
In addition, a stopwatch was used to record the experimental time.
After the formal experiment, each subject was required to complete
a questionnaire about the performance of the two control modes,
and then subjective evaluation results were obtained.

2.7. Evaluation metrics

SNR was used to evaluate the quality of the elicited SSVEP
signals in VR environment (Wang et al., 2017; Yao et al., 2019).
SNR here was the ratio of the amplitude at the target frequency to
its average amplitude within 2 Hz of its vicinity.

In offline experiment analysis, the performance evaluation
metrics of the system were classification accuracy (ACC) and ITR.
ITR in bits/min is a widely used criterion to evaluate the BCI
performance (Wolpaw et al., 2002; Chen et al., 2020):

ITR =
60
T
×

(
log2M + Plog2P + (1− P) log2

(
1− P
M − 1

))
,

Where M is the number of targets (M = 8 in this study), P is
ACC, and T is the time required to send a command.

In online experiment analysis, the evaluation metrics were the
time and steps required to complete the grasping tasks, and the
questionnaires based on 5-point Likert scale. The approval level
ranged from 1-5, where 1 indicated the strongest disagreement and
5 indicated the strongest agreement.

3. Results

3.1. Offline experiment

3.1.1. SNR of SSVEPs in VR environment
Figure 6 shows the grand average SNR curves of the SSVEPs

for all 8 stimulus frequencies. It was found that the SNR curves had
obvious peaks at the fundamental frequency and co-frequency of
the target frequency, and the obvious sagged at 50 Hz which was
the result of a notch filter. The results illustrated the effectiveness
and stability of stimuli in VR environment.

3.1.2. Comparison of fusion methods between
EEG and eye-gaze in offline simultaneous mode

In order to select a superior EEG-eye fusion method for
online simultaneous mode, the performance of average fusion,
prior fusion and PSO fusion using the data of 6 blocks in
Session 1 was analyzed. Considering the short training time
required for online applications, the process of the former one
block for training and the latter one block for testing was
sequentially conducted 6 times for 6 blocks. The results of ACC
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FIGURE 6

SNR curves of SSVEPs at all 8 stimulus frequencies.

and ITR are shown in Figure 7. Two-way repeated-measure
ANOVAs (method × time) were performed on ACC and ITR,
respectively. The results showed that two factors had significant
main effects on ACC and ITR: method (ACC: F(4,76) = 20.731,
p-value < 0.01; ITR: F(4,76) = 29.229, p-value < 0.01) and time
(ACC: F(28,532)= 34.619, p-value< 0.01; ITR: F(28,532)= 11.369,
p-value < 0.01). Significant interaction effect between method and
time was found (ACC: F(112,2128) = 40.076, p-value < 0.01;
ITR: F(112,2128) = 34.241, p-value < 0.01). And the pairwise
comparisons for “method” using LSD test showed that ACCs of
all three fusion methods were significantly higher than those of
the single-modal EEG data (p-values < 0.01) and single-modal
eye-gaze data (p-values < 0.05), meanwhile the ITRs of both
average fusion and prior fusion were significantly better than
those of single-modal EEG data (p-values < 0.01) and single-
modal eye-gaze data (p-values < 0.05). And the ACC and ITR
of prior fusion were significantly better than that of the other
two fusion methods (p-values < 0.05), whereas there was no
significant difference between average fusion and PSO fusion (p-
value > 0.05). In addition, one-way repeated-measure ANOVAs
(method) were performed at each data length, and it was found that
the ACCs and ITRs of the prior fusion were significantly higher
than those of single-modal eye-gaze data after 0.7 s (except 0.8 s)
(p-values < 0.05) and those of single-modal EEG data at all data
lengths (p-values < 0.05). In general, the performance of prior
fusion was the best, so it was selected as the EEG-eye fusion method
of online simultaneous mode.

3.1.3. Blink detection
To validate the effectiveness of the proposed eye closure and

triple blink detection methods, ACC, true positive rate (TPR) and

false positive rate (FPR) were calculated using the eye movement
data of eye closure, single blink, double blink, and triple blink. The
average ACC, TPR and FPR of eye closure detection were 99.64%,
98.96% and 0.14%, respectively. Meanwhile, those of triple blink
detection were 95.83%, 88.95% and 1.88%, respectively. Therefore,
eye closure and triple blink could be used in the online system to
accomplish the corresponding controls.

3.1.4. Detection of left and right stimulus areas in
offline sequential mode

In order to divide the left and right stimulus areas in VR
environment for the online sequential mode, the eye movement
data of the gaze tasks in Session 3 (with calibration) and Session 4
(without calibration) were analyzed to determine the stimulus area
where subjects’ fixation points were located. As shown in Figure 2,
the area to the left of the central area was regarded as the left
stimulus area, and the area to the right of the central area was
regarded as the right stimulus area. Figure 8 shows the detection
accuracy of the stimulus areas at different distances between the left
and right borders of the central area. As the increase of the distance,
the detection accuracy of the stimulus areas decreased for Session
3 and 4. Paired T-tests were performed on the detection accuracy
of Session 3 and 4 at the distances of 0.04-0.20. When the distance
was 0.20, the accuracy of Session 4 was significantly higher than
that of Session 3 (p-value < 0.01), and the statistical results had no
significant differences at the other distances (p-values > 0.05). It
was indicated that whether or not the five-point calibration of eye
tracker was performed made little difference in the detection of the
stimulus area at the distances of 0.04-0.18.

For the online sequential mode without five-point calibration,
if the distance was smaller, the detection accuracy would be higher,
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FIGURE 7

The performance comparison of the EEG-eye fusion methods with 1 block data for training and 1 block data for testing at data length of 0.2–3 s for
all subjects. Shaded area represents standard deviation (A) ACC. (B) ITR.

but there would be less free fixation area left for subjects and more
false triggers. And if the distance was larger, the detection accuracy
would be lower. Taking the above factors into consideration, the
distance between the left and right borders of the central area was
set at 0.12, so as to ensure that subjects can freely and accurately
select the stimulus areas through eye tracking.

3.1.5. Comparison of EEG classification
performance in offline simultaneous and
sequential modes

In order to determine the suitable stimulus duration of
EEG for online sequential mode, the EEG data of both offline
simultaneous and sequential modes were analyzed. Figure 9 shows
the classification ACCs and ITRs of EEG data at data length of 0.2–
3 s in two offline modes with a time step of 0.1 s. To calculate

ITR in the offline experiment, the gaze switching interval of each
mode was 2 s. Two-way repeated-measure ANOVAs (mode× time)
were performed for ACC and ITR. The results showed that two
factors had significant main effects on ACC and ITR: mode
(ACC: F(1,19) = 23.519, p-value < 0.01; ITR: F(1,19) = 11.994,
p-value < 0.01) and time (ACC: F(28,532) = 143.593, p-
value < 0.01; ITR: F(28,532) = 49.813, p-value < 0.01). Significant
interaction effect between mode and time was found (ACC:
F(28,532) = 16.217, p-value < 0.01; ITR: F(28,532) = 10.049, p-
value < 0.01). And the pairwise comparisons for “method” using
LSD test showed that the ACCs and ITRs of EEG data in offline
sequential mode were significantly higher than those in offline
simultaneous mode (p-values < 0.01). It was indicated that partial
stimulation in the sequential mode could increase the classification
performance.
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FIGURE 8

Detection accuracy of the left and right stimulus areas for sequential mode in the offline experiment.

Figure 9 shows that the ACC of EEG data in offline sequential
mode exceeds 90% for the first time at the stimulus duration of 1.4 s,
and the ITR at this stimulus duration is the highest. In order to
ensure that most subjects can successfully complete the grasping
tasks, the stimulus duration of EEG in online sequential mode was
set to 1.4 s for all subjects.

3.2. Online experiment

3.2.1. Performance comparison of simultaneous
and sequential modes

In online experiment, all 15 subjects successfully completed
the tasks of grabbing balls with two control modes. Table 1
shows the performance comparison between simultaneous and
sequential modes. For the simultaneous mode, the averages
of completion time, calibration time and steps were 356.47 s,
126.47 s and 86.67, respectively. For the sequential mode, the
averages of completion time and steps were 347.33 s and 84.73,
respectively. For the simultaneous mode, the stimulus duration
ranged from 0.7 to 1.7 s (mean, 0.89 s), indicating that the proposed
adjustable window method was effective. And all subjects used
0-2 pauses (mean, 0.87), demonstrating that the proposed state
switch was necessary and effective. For the sequential mode, only
a few subjects conducted the eye closure operation, illustrating
that the false triggering of the system existed but was rare,
and it was necessary and effective to reject false triggers using
eye closure.

Paired T-test was used to compare the same metrics between
the two modes, and the results showed that no significant
differences between the two modes were found for completion
time and steps (p-values > 0.05), respectively. However, if the

completion time of simultaneous mode included calibration time,
the completion time of sequential mode was significantly lower
than that of simultaneous mode (p-value < 0.01).

Taking into account completion time and steps, each subject’s
mode preference was analyzed. Among them, Subject 4 and 12
preferred the simultaneous mode. Subject 1, 2, 3, 5, 8, 10, 11, and
14 preferred the sequential mode. And the remaining subjects had
no obvious preference.

3.2.2. Subjective evaluation of simultaneous and
sequential modes

After the online experiment, subjects were required to
complete a questionnaire. According to 5-point Likert scale, the
controllability, comfort, friendliness and other aspects of the
two modes were compared in the questionnaire. The subjective
evaluation results of the questionnaire are shown in Table 2. There
were no significant differences in the scores of five questions
between simultaneous and sequential modes (p-values > 0.05),
respectively. However, the overall average scores of the sequential
mode were higher than those of the simultaneous mode. Moreover,
the average scores of all questions in the two modes exceeded
4 except for the third question, indicating that the two modes
had great performance in stable controllability, less fatigue, high
accuracy, and good friendliness.

4. Discussion

In this study, a virtual robotic arm control system combining
EEG and eye-tracking in VR environment was developed,
and two control modes including simultaneous and sequential
modes were proposed.
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FIGURE 9

Comparison of EEG classification performance between offline simultaneous and sequential modes at data length of 0.2–3 s. (A) ACC. (B) ITR.

4.1. Performance comparison of robotic
arm control systems with previous
studies

In order to illustrate the advantages of the proposed robotic
arm control system, the performance of the two control modes in
this study were compared with that of the existing synchronous
and asynchronous robotic control systems. The results are shown
in Table 3.

For the proposed simultaneous mode, since the average
stimulus duration of the online experiment was 0.89 s, the offline
ACC and ITR were calculated at this stimulus duration. For

the proposed sequential mode, considering that the average gaze
switching interval of the online experiment was 1.25 s, the offline
ITR was calculated according to the average gaze switching interval.
Although the offline ACCs of the two proposed modes were not
the highest, but the offline ITRs were higher than most of other
systems, because the output time of a command was shorter than
that of other studies. For the study (Chen et al., 2021), four
classifications were required for one effective online command,
but the offline ITR was calculated using the output time of one
classification.

For the online tasks, the average completion time per command
of the proposed simultaneous and sequential modes reached 3.77 s
and 3.75 s, respectively, which outperformed other systems.
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TABLE 1 Performance comparison of each subject between two modes in online experiment.

Subjects Simultaneous mode Sequential mode Preferred
mode

Completion
time (s)

Calibration
time (s)

Stimulus
duration (s)

Steps Pause
times

Completion
time (s)

Steps Refusal
times

1 391 124 0.7 96 2 316 81 0 Sequential

2 359 125 0.7 85 2 310 80 0 Sequential

3* 420 137 1.7 86 0 314 87 0 Sequential

4 276 129 0.7 72 0 379 98 0 Simultaneous

5 336 130 1.0 82 0 304 79 0 Sequential

6* 366 124 0.8 87 2 377 85 9 No preference

7* 366 124 0.9 81 2 335 81 0 No preference

8 341 132 0.7 92 0 335 79 0 Sequential

9 320 124 0.7 82 1 320 83 0 No preference

10 339 124 1.2 79 0 289 75 1 Sequential

11 320 124 0.7 78 1 314 72 0 Sequential

12* 395 124 1.2 87 2 458 100 1 Simultaneous

13 340 125 1.0 84 0 341 83 0 No preference

14 403 124 0.7 106 1 395 88 1 Sequential

15 375 127 0.7 103 0 423 100 5 No preference

Mean± std 356.47± 37.59 126.47± 3.91 0.89± 0.28 86.67± 9.23 0.87± 0.88 347.33± 48.62 84.73± 8.61 1.13± 2.45

*Represents new subjects who did not participate in offline experiment.

As for system start-stop ways of asynchronous systems, MI,
EOG, SSVEP, and eye-tracking were utilized in the studies (Gao
et al., 2017; Zhu et al., 2020; Chen et al., 2021) and this study,
respectively. MI detection in study (Gao et al., 2017) required a long
time about 4 s for each trial and average detection accuracy was
about 75%. For the study (Zhu et al., 2020), individual calibration
of EOG was needed before online operation, and it took 3 s to
complete one start or stop for several trials. And SSVEP used in the
study (Chen et al., 2021) required continuous flickering stimulus
about 2.8 s for each trial, which might increase subjects’ fatigue.
Eye-tracking used in the two proposed modes was more natural and
efficient for interaction. The proposed simultaneous mode needed
3 s to start and one stimulus duration (0.7-1.7 s) to stop for several
trials, and the proposed sequential mode needed only 0.5 s to start
for each trial. Therefore, start-stop way of the proposed system
saved more time than other systems.

For additional system functions, although command
confirmation for each trial in the studies (Zhu et al., 2020;
Chen et al., 2021) could make the system more stable, it came
at a cost of runtime. Teeth clenching was utilized in the study
(Gao et al., 2017) to realize the false-trigger rejection, whereas
eye closure was used in this study. Adjustable stimulus duration
of single EEG modality was conducted for each trial in the study
(Chen et al., 2021), whereas adjustable stimulus duration was
determined by the fusion result of EEG and eye-gaze for each
subject in this study. Furthermore, the proposed sequential
mode also featured no calibration, but other asynchronous
system all needed calibration. Compared with other previous
studies, partial stimulation was only utilized in the proposed
sequential mode.

Furthermore, some studies utilized MI to freely control robotic
arms and effectively completed grasping tasks (Meng et al., 2016)
and the continuous pursuit tasks (Edelman et al., 2019). But in the
two studies, the training time required was long. The number of
commands was only 4, and a larger number of electrodes were used,
that is, 64 in Meng et al. (2016) and 57 in Edelman et al. (2019).
In the proposed system, simultaneous mode and sequential mode
improved on the above problems. Only two runs of calibration were
required for simultaneous mode, and no calibration was needed for
sequential mode. The number of commands was set to 8 according
to the grasping task, and there was still room for expansion. The
number of electrodes used in the proposed online system was
8, which was good for practical applications. In addition, two
modalities of EEG and eye-tracking were utilized to improve the
system performance.

The above results indicated that the proposed system had
high performance of human-computer interaction, such as great
autonomy, good interaction-friendliness, and high efficiency.

4.2. Fusion method of EEG and eye-gaze

In this study, the performance of prior fusion was better than
average fusion and PSO fusion under the condition of 1 block
for training and 1 block for testing. However, in the previous
study (Tan et al., 2022), the performance of PSO was optimal. The
reason was explained as follows. The performance of several fusion
methods was compared using 5 blocks of data for training and 1
block for testing. The results are shown in Figure 10. Two-way
repeated-measure ANOVAs (algorithm× time) were performed on
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TABLE 2 Subjective evaluation results of each subject on two modes.

Subject The system can be
controlled easily

My eyes do not get tired
easily

I do not need to excessively
focus my attention

Commands are always recognized
according to my wishes

This control mode is very
friendly

Simultaneous
mode

Sequential
mode

Simultaneous
mode

Sequential
mode

Simultaneous
mode

Sequential
mode

Simultaneous
mode

Sequential
mode

Simultaneous
mode

Sequential
mode

1 4 5 5 5 4 4 4 5 4 4

2 4 5 4 4 4 4 5 4 4 5

3* 2 3 3 4 2 2 4 4 4 5

4 5 4 5 5 5 5 5 4 5 4

5 5 4 4 4 5 4 4 4 5 4

6* 4 4 3 3 3 3 3 3 3 3

7* 4 3 3 4 4 3 4 4 4 4

8 3 4 4 4 4 4 3 4 3 4

9 5 4 5 5 5 5 5 4 5 4

10 2 3 4 4 2 2 3 4 4 4

11 4 5 4 4 3 3 5 5 5 5

12* 5 4 5 4 3 3 4 4 5 5

13 4 5 5 5 4 5 4 4 4 5

14 5 4 5 5 4 4 4 5 5 5

15 5 5 5 5 4 3 4 4 3 4

Mean± std 4.07± 1.00 4.13± 0.72 4.27± 0.77 4.33± 0.60 3.73± 0.93 3.60± 0.95 4.07± 0.68 4.13± 0.50 4.20± 0.75 4.33± 0.60

*Represents new subjects who did not participate in offline experiment.
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ACC and ITR, and the results showed that the performance of the
PSO fusion method was significantly higher than that of all other
methods (p-values < 0.01), which was consistent with the results
of the previous study (Tan et al., 2022). Therefore, the PSO fusion
method had better performance using 5 blocks of data for training
and 1 block for testing. However, in the case of less training data as
shown in Figure 7, the performance of the PSO fusion method was
significantly lower than that of the prior fusion method. In order to
reduce the calibration time, the prior fusion method was adopted
in the online experiment of this study. In addition, regardless of the
time cost, the ensemble task-related component analysis (e-TRCA)
algorithm could be considered for EEG classification (Nakanishi
et al., 2018), and PSO could be chosen as the fusion method.

In order to further illustrate the robustness of the proposed
prior fusion, it was compared with the previous fusion method
(Ma et al., 2018) and the common fusion algorithms including
support vector machines (SVM), decision trees (DT), extreme
random tree (ET) and random forests (RF). The average fusion
ACCs in the stimulus length of 0.7-2.0 s with a step of 0.1 s
for different fusion methods are shown in Figure 11. The results
showed that the proposed prior fusion method had the best
performance. Two possible reasons were explained as follows. First,
the linear normalization function was used in the proposed method
to convert the EEG and eye-gaze coefficients into the probability
values of the same scale, which could obtain more robust
classification performance. Second, the other fusion methods
including SVM, DT, ET, and RF required more training data to
achieve better performance, thus they had poor performance with
less training trials in this study.

4.3. Comparison of simultaneous and
sequential control modes

In this study, the simultaneous and sequential control modes
were proposed. The characteristics of the two modes were
compared as follows. For the simultaneous mode, the adjustable
window method was used to find a suitable stimulus duration
for each subject. And the data of EEG and eye-gaze were fused
to classify the targets, which improved classification performance.
However, system calibration was needed before the formal
experiment. In addition, continuous stimulation of multiple trials
could speed up the experiment, but subjects must follow the
system’s fixed rhythm. And the start-stop method of eye closure
and triple blink could improve the autonomy for subjects. For the
sequential mode, it did not require calibration, which simplified the
operation process. And partial stimulation improved classification
performance and reduced subjects’ fatigue. Moreover, subjects
could switch the fixation area to freely control the start of the
system, which was more user-friendly. However, in order to ensure
that most subjects successfully completed the control of the robotic
arm, its stimulus duration was relatively long and fixed. In addition,
there might be false triggers in this mode, and the execution of
wrong command could be rejected by eye closure. Therefore, both
the modes improved the autonomy of the subjects’ operations.

In addition, the completion time and steps of online
simultaneous mode were still more than those of online sequential
mode in Table 1. There were two reasons as follows. First, in the
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FIGURE 10

The performance comparison of the EEG-eye fusion methods with 5 block data for training and 1 block data for testing at data length of 0.2–3 s for
all subjects. Shaded area represents standard deviation (A) ACC. (B) ITR.

simultaneous mode, subjects were required to follow system’s fixed
control rhythm. Subjects might be unable to keep up with the
rhythm, resulting in incorrect commands and more completion
steps. Meanwhile, in the sequential mode, subjects could think
clearly before sending control commands, which reduced the
number of incorrect commands. Second, it took less time to think
about the same commands that were executed consecutively, and
more time to think about different instructions and re-planning
paths. Considering thinking time and reaction speed of different
subjects, the gaze switching interval of simultaneous mode was set
to 1.2 s, which might take more time. Meanwhile, the gaze switching

interval of sequential mode was flexibly controlled by subjects,
which could dynamically save completion time. For the above
reasons, the completion time and the steps in online simultaneous
mode were still more than those in online sequential mode.

4.4. Online mode preference and offline
EEG-eye performance

The correlation between online mode preference and offline
EEG-eye classification performance of each subject was analyzed.

Frontiers in Neurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1146415
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1146415 March 21, 2023 Time: 13:46 # 17

Guo et al. 10.3389/fnbot.2023.1146415

FIGURE 11

The average fusion ACCs in the stimulus length of 0.7–2.0 s with a step of 0.1 s for more different fusion methods.

FIGURE 12

ACC comparison of 8-target SSVEP, eye-gaze and prior fusion in offline simultaneous mode and that of 4-target SSVEP in offline sequential mode at
online stimulus duration for each subject who participated in online experiment. Subjects’ preference modes are expressed at the top of the bars,
where ‘+’ indicates the simultaneous mode, ‘#’ indicates the sequential mode, and ‘∼’ indicates no preference.

Figure 12 presents ACCs of 8-target SSVEP, eye-gaze and prior
fusion in offline simultaneous mode and that of 4-target SSVEP in
offline sequential mode at online stimulus duration for each subject
who participated in online experiment. For most of the subjects,
the online performance of the two modes was consistent with
the offline classification performance. For Subject 4, he performed
better in online simultaneous mode, and had better performance
using eye-gaze than using EEG. Thus, the simultaneous mode
was suggested for the subjects who were used to the control
rhythm of traditional synchronous BCI and had better eye-gaze
classification performance. For Subject 1, 2, 5, 8, 10, and 11,

they performed better in online sequential mode, and had higher
ACCs of 4-target EEG than those of prior fusion. Thus, the
sequential mode was recommended for the subjects who had better
EEG performance and preferred free control rhythm. In addition,
Subject 9 and 13 had little difference between the EEG-eye fusion
classification performance of offline simultaneous mode and the
EEG classification performance of offline sequential mode, and
had comparable online performance of the two modes. Subject
14 and 15 had relatively poor offline performance, which was
consistent with their lower online performance. Their EEG and
eye-gaze classification performance was unstable in offline and
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online experiments. Generally speaking, subjects’ preferred modes
for online experiment were related to the offline classification
performance of EEG and eye-gaze.

4.5. Questionnaire results

The questionnaire results of the online experiment showed
that the simultaneous and sequential modes performed well in the
aspects of system controllability, less fatigue of subjects, accuracy of
command recognition and user-friendliness. Generally, the scores
of sequential mode were higher than those of simultaneous mode,
which was consistent with the online mode preference in Table 1.
For the third question about concentration in the questionnaire,
both the modes scored relatively low. The possible reasons for
this phenomenon were explained. For the simultaneous mode, the
system had a fixed gaze switching interval and subjects needed
to stay focused all times. For the sequential mode, since subjects
could not gaze at the stimulus areas for a long time during the
thought of next command, they needed to keep their attentions to
the central area. Therefore, both modes required a certain amount
of concentration, which resulted in the lower scores for the third
question.

4.6. Future work

This study provided two feasible control modes for a wearable
EEG-eye-combination BCI system in VR environment. However,
there is still some room for improvement in practical application.
First, to explore the effect of virtual systems in rehabilitation
training, it is necessary to verify the system performance for
disabled persons. Second, the proposed control methods for virtual
objects in VR environment can be also applied to control the
real objects in AR environment. Third, a richer SSVEP stimulus
method based on the virtual 3D scene can replace the traditional 2D
stimulus blocks to increase the virtual experiences of the subjects.
Fourth, more complex tasks can be completed by increasing the
number of commands in this system.

5. Conclusion

In this study, an online virtual robotic arm control system
was developed based on the combination of SSVEP and eye-
tracking using VR head-mounted displays. The system had two
control modes. For simultaneous mode, system calibration was
needed before operation, and the stimulus duration of SSVEP was
determined by the adjustable window method for each subject. The
output command was executed according to the fusion result of
EEG and eye-gaze data. In addition, triple blink and eye closure
were used to control the start and stop of the system. For sequential
mode, calibration was not required. Subjects could freely switch the
fixation areas through eye-gaze to start the system, and then select
target commands through EEG. Besides, eye closure was utilized to
reject false triggering commands. The effectiveness of the proposed
system was demonstrated through offline and online experiments.
Moreover, the results of online experiment and questionnaire

showed that both modes had better performance, but most subjects
preferred the sequential mode. Comprehensively considering the
convenience, efficiency and friendliness, the proposed system
provided a valuable reference for the practical h-BCI system.
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