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Introduction: Boxing as a sport is growing on Chinese campuses, resulting in a

coaching shortage. The human pose estimation technology can be employed to

estimate boxing poses and teach interns to relieve the shortage. Currently, 3D

cameras can provide more depth information than 2D cameras. It can potentially

improve the estimation. However, the input channels are inconsistent between 2D

and 3D images, and there is a lack of detailed analysis about the key point location,

which indicates the network design for improving the human pose estimation

technology.

Method: Therefore, a model transfer with channel patching was implemented

to solve the problems of channel inconsistency. The differences between the

key points were analyzed. Three popular and highly structured 2D models of

OpenPose (OP), stacked Hourglass (HG), and High Resolution (HR) networks were

employed. Ways of reusing RGB channels were investigated to fill up the depth

channel. Then, their performances were investigated to find out the limitations of

each network structure.

Results and discussion: The results show that model transfer learning by the

mean way of RGB channels patching the lacking channel can improve the average

accuracies of pose key points from 1 to 20% than without transfer. 3D accuracies

are 0.3 to 0.5% higher than 2D baselines. The stacked structure of the network

shows better on hip and knee points than the parallel structure, although the

parallel design shows much better on the residue points. As a result, the model

transfer can practically fulfill boxing pose estimation from 2D to 3D.

KEYWORDS

boxing robot, computer vision, human pose estimation, 3D model transfer, negative
transfer

1. Introduction

Boxing as a strenuous exercise is gradually being accepted by the general public in China.
It has been promoted in many universities and has relevant professional courses (Xu, 2018; Li
L., 2019; Li X., 2019; Logan et al., 2019). It can improve citizens’ and students’ physical and
mental health (Tjønndal, 2019), and even enhances the self-protection abilities of women
(Hu, 2018; Fuerniss and Jacobs, 2020). However, this results in a new problem of a coach
shortage. Many researchers have tried to employ computer vision and robot technology to
solve the shortage problem of coaches (Huang et al., 2019; Li et al., 2021; Lin et al., 2021, 2022;
Mendez et al., 2022). The human pose estimation technology can predict boxing elements for
better teaching, which can reduce reliance on coaches and increase entertainment in boxing
training.
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Currently, the 3D camera can provide more depth information
than the traditional 2D RGB camera. This advantage can help in
the advancement of many tasks of image processing, such as MRI
images (Chen et al., 2019; Wu G. et al., 2022), robots (Song et al.,
2020), 3D faces (Ning et al., 2020; Wu H. et al., 2022), and so on.
3D human pose estimation becomes a cutting-edge and interesting
direction. Many researchers have attempted to reconstruct a
3D human pose estimation with 2D or 3D cameras. Since 2D
estimation has been researched comprehensively and wholistically
(Wang et al., 2021), it will be crucial to determine whether 2D
estimation is compatible with 3D estimation. Adapting the existing
2D models to the application with 3D cameras and studying the
advantages of these models is essential to boxing applications and
promoting the technology of human pose estimation.

In the field of artificial intelligence, there are two main ways
for human pose estimation: bottom-up and top-down (Xiao et al.,
2018; Wang et al., 2021). For instance, the top-down method
detects each person first, and then directly detects the key points
of each person. It is a two-stage method. Most research is based on
2D imagery and shows brightness design and theoretical structures
that achieve SOTA results, such as Hourglass (HG) models (Newell
et al., 2016; Xiao et al., 2018; Hua et al., 2020; Xu and Takano,
2021), and High Resolution (HR) networks (Sun et al., 2019; Yu
et al., 2021; Xu et al., 2022). In contrast, the bottom-up method
recognizes the limbs of people at the beginning and groups these
limbs for each person, such as in the OpenPose(OP) models (Cao
et al., 2017) and Hourglass(HG) models (Nie et al., 2018). Three
mainstream models of the OP, HG, and HR networks are suitable
for our boxing application. However, the problem of channel
inconsistency directly affects the transfer of a 2D model to a 3D
image. The basic popular methods need to be investigated deeply,
and it is important to reveal their performance differences in detail
for better improvement.

Model transfer technology is employed to help improve the
application of human pose estimation by transferring their models
and parameters. The performance of estimation of boxing poses is
evaluated on RGBD image. The main contributions of this paper
are:

• The depth channel is patched by different strategies
when data input is inconsistent, which illustrates that
the negative transfer can happen in this step, and it
implies that the machine learning method can further
improve the strategy.
• A detailed analysis of human pose estimation technology

reveals the advantages and disadvantages of mainstream
models used in boxing pose estimation, indicating the new
improving direction of this technology.
• The model transfer from 2D to 3D images is studied

for boxing practice, which shows that 2D models can be
compatible with the 3D inputs of 3D cameras.

In this manner, the three mainstream models of the OP, HG,
and HR networks are studied. The following sections are mainly
divided into three parts: (1) Related work. Research work about
human pose estimation is presented and analyzed. The important
structures of neural networks are discussed; (2) Method. The
model-transfer technology is employed to study the transfer of

relative top-down and bottom-up models, respectively. 2D inputs
are transferred to adaptive 3D inputs. This section also describes
different ways for model transfer. (3) Results and discussion.
The previously mentioned approaches are carried out after model
transfer, and 3D and 2D transfer results are analyzed in detail. Three
basic methods are discussed to analyze their existing problems.

2. Related work

2.1. Top-down way

Newell et al. (2016) proposed the HG method, which expanded
the ResNet structure to realize the extraction of pose information.
To improve the joint position regression, Xiao et al. (2018)
added a few deconvolutional layers over the last convolution stage
in the ResNet, which generated heatmaps from deep and low-
resolution features. Considering Xiao’s architecture, Moon et al.
(2019) designed a PoseFix network to refine the estimation, which
applies to a model-agnostic pose refinement method. Hua et al.
(2020) took a multipath affinage way to improve HG networks.
Furthermore, Graph stacked HG network was developed by Xu
and Takano (2021). It has an HG shape consisting of a chain of
convolution and up-convolution layers followed by a regression
part for generating a 3D pose. However, this estimation is based
on 2D image inputs.

Chen et al. (2018) proposed a cascaded pyramid network (CPN)
for human pose estimation. It has GloableNet and RefineNet as
two parts, and each layer was parallel to exchange information.
But for a better exchange of information between different scale
features, Sun et al. (2019) further proposed a high-resolution (HR)
network method for information exchange at the base of a huge
pyramid structure. HigherHRNet was proposed (Cheng et al.,
2020) to use the high-resolution feature pyramid for prediction
by a 1 × 1 convolution to heatmaps based on the HR network.
It can solve the scale variation challenge in bottom-up multi-
person pose estimation. To reduce the parameters and improve
speed, Yu et al. (2021) refined the HR network called the Lite-
HR network, which applies shuffle blocks to the HR network. The
accuracy got a slight drop. Xu et al. (2022) applied the transformer
model to human pose estimation. This simple structure can
be the backbone to extract features for the HR network. This
improvement is based on longer training, and it has challenges
for patch embedding when there is less information around key
points.

2.2. Bottom-up way

The OP network model (Cao et al., 2017) based on the affinity
field could simultaneously locate multiple people and get wild
applications (Nakai et al., 2018; Viswakumar et al., 2019; Chen
et al., 2020; Nakano et al., 2020). The key points are detected
in each joint class and grouped into limbs between each joint
point. With a part association field (PAF) restriction, the limbs
are gathered at a minimum cost. Nie et al. (2018) proposed a
pose partition network (PPN) to detect joints and regression for
multi-persons, which is based on the HG network. Since a PAF
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FIGURE 1

OP network model with a parallel steam structure of heatmaps and PAFs.

FIGURE 2

Stacked HG network with local and global contexts.

was used to associate body parts with each other, a part intensity
field (PIF) was proposed to localize body parts (Kreiss et al., 2019)
and help form full human poses. Osokin (2018) proposed a
lightweight OP network, which only remained in one refinement
stage and replaced the VGG network with the MobileNet in the
backbone. Wu et al. (2021) proposed a rapid OP network for
astronaut operation attitude detection. They changed the original
two-branch structure to a single-branch structure, which improved
the calculation speed. Geng et al. (2021) proposed disentangled
key point regression (DEKR), which uses a multi-branch structure
for separate regressions to get the key points in the bottom-
up paradigm. For multi-person pose estimation, Jin et al. (2020)
reformulated the task of multi-person pose estimation as a graph-
clustering problem. The OP networks rely on the backbone network
for feature extraction.

According to the above analysis, studies based on the OP, HG,
and HR networks are very extensive, and the HR and HG networks
can be used both in the top-down and bottom-up way. The study

of these three methods can be better at comprehensively finding
problems in our boxing sport application.

3. Materials and methods

3.1. Device and dataset

The image data collecting tool was a 3D Intel Realsense D455
camera with a 640 × 480 resolution. It was placed approximately
185 cm above the ground, with a depression angle of 10 degrees
around. RGBD data was collected in various indoor environments
such as classrooms and research labs. Five basic boxing poses,
including punch, swing, hook, backward, and side slide were
recorded in left and right ways. More than 100 students contributed
to the collection. After data cleaning, 280 images were selected to
form a dataset for this research. The dataset was randomly divided
into three parts: a training set (120 images), a validation set (40
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FIGURE 3

HR model with an inverse pyramid parallel structure and information exchange fuse.

FIGURE 4

The RGB-D model transfer based on the RGB model.

images), and a test set (120 images). These three sets didn’t have
the same person.

3.2. Model transfer learning

After testing, three SOTA models of the OP, HG, and HR
networks were studied. They were transferred as source models
since these three basic models have been researched extensively
and achieve each best performance. All the models are 2D inputs.
The boxing pose estimation was the target learning task. The
640 × 480 boxing image is estimated directly because three

models are studied under the same size of the input, feature
maps, and heatmaps.

3.2.1. OP network model
There are two primary parallel branches in the OP network.

One branch is trained to predict the heatmap of human pose key
points, and the other branch is trained to predict the PAF that
can help organize the components of body limbs in a bottom-
up way. The model repeats the basic branches several times
as stages as displayed in Figure 1. This design can be easy
for multi-person estimation as it estimates every person’s key
point at one computation, but the heatmap branch is simple for
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TABLE 1 The average accuracy of different key points.

Network Key point Head Shoulder Elbow Wrist Hip Knee Ankle Total average

Without 82.3 89.9 80.2 72.6 71.7 91.4 92.8 83.0

2D 98.9 95.2 91.7 91.3 88.2 97.1 97.4 95.3

OP (%) 3D-R 98.6 96.2 89.7 88.9 85.7 95.8 97.4 93.2

3D-G 97.9 94.7 85.2 86.3 86.7 95.3 97.6 92.0

3D-B 97.3 96.4 86.8 90.6 85 97.2 97.4 93.0

3D-Mean 99.4 96.9 92.2 92.1 92.1 97.5 97.9 95.8

Without 95.8 89.9 80.2 72.6 87.6 90.2 94.6 90.7

2D 99.7 95.2 91.7 91.3 92.9 99.2 97.5 96.1

HG (%) 3D-R 99.8 96.2 89.7 88.9 93.4 98.0 97.2 96.3

3D-G 99.6 94.7 85.2 86.3 92.5 98.7 96.8 95.9

3D-B 99.6 96.4 86.8 90.6 92.3 98.6 96.9 96

3D-Mean 99.8 96.9 92.2 92.1 93.8 99.5 98.9 96.5

Without 94.5 98.7 91.6 81.2 79.5 97.5 98.7 91.7

2D 99.8 98.6 94.0 95.9 90.5 97.9 99.8 96.6

HR (%) 3D-R 99.5 97.5 85.0 91.7 85.4 93.1 96.1 92.6

3D-G 99.6 97.9 91.4 93.6 86.5 97.2 97.4 96.9

3D-B 96.2 98.3 85.0 93.5 86.4 93.5 96.7 92.8

3D-Mean 99.8 98.6 94.6 96.8 91.8 97.9 99.8 97.0

Bold values represent the best results of 2D and 3D model transfer.

FIGURE 5

The average results of different transfer way by OP, HG, and HR models.

extracting complex features and structures since it only depends on
convolution layers.

3.2.2. Stacked HG network model
In Figure 2, the HG network is inspired by the pyramid

structure to deal with the local and global context. In each stack,
there is a pyramid structure integrated inside, and the heatmaps

are generated to predict key points, and each stack is repeated
to group a complex network. It can be seen that the learning
ability is improved by its pyramid structure. The stack is very
similar to the OP stage, so it can be used in both top-down
and bottom-up ways, but there is less information exchange
for each stack. This may cause limited learning in the local
context.
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FIGURE 6

The average accuracy on each kind of key point in a 2D way.

3.2.3. HR network model
As shown in Figure 3, the HR network has an inverse pyramid

parallel structure compared to the HG network. It can be seen that
there are 4 parallel channels in different image scales, which can get
local and global information. Besides, this separates 3 or 4 stages
to make the model better exchange information between different
scale feature maps. The parallel branches in each stage are usually
repeated a few times to make a better extraction. Therefore, features
can be combined in multiple ways. Compared with the above two
networks, the HR network in each stage doesn’t keep the same
size, which means it may have less learning ability for symmetry
structures.

The above three source models (Model2D) were transferred
as shown in Figure 4. The input data in a source learning task
can be described asXS = {xn

1 , xn
2 , xn

3 , · · · , xn
k }, n is the input data

dimension, and k is the instance number. In the target learning
task, the input data isXT = {xn+1

1 , xn+1
2 , xn+1

3 , · · · , xn+1
k }, and the

instance number m is far less than k. Therefore, the posterior
distribution of the source domain PS(y|xn) needs to change to the
target domain posterior distribution PT(y|xn+1). The fine-tuning
method can be used to adapt the source posterior distribution to
the target domain. To solve the problem of lacking depth channel in
source models, an additional channel of the parameter was patched
based on RGB channels as in formula (1):

Model3D = Model2D (R, G, B)+Paramchannel (1)

Where the channel parameters can be chosen from R, G, and
B channels or the mean combination of these three channels.
When transferring parameters from source models, the different
channel effects should be examined, and the best way to improve
the depth channel effects on predicting posture points should be

determined. Boxing pose data were used to fine-tune the models to
generate new models.

4. Results and discussion

The performance of transferred models was studied in four
ways: (1) the average accuracy was obtained about boxing pose key
point positions, and the corresponding accuracy of each model after
the transfer of different channels was compared to baselines of 2D
transfer; (2) the impact of fine-tuning instance amount on model
transfer improvement; (3) the Flops and parameter number of each
model were shown for evaluating model complex, and average cost
times of models per image were compared; (4) a direct comparison
of the pose estimation of boxing basic actions among different
models, along with pose estimation display.

4.1. The average prediction accuracies of
key points

There are seven distinct critical points for estimating human
poses including the head, shoulder, elbow, wrist, hip, knee, and
ankle. To keep the comparison of points consistent, the neck
point of OP does not show here. Table 1 shows the average
accuracy of 10 times repeat on each point recorded without fine-
tuning, 2D transfer with fine-tuning, and 3D transfer with a
different kind of channel. The source models of the OP, HR,
and HG networks were pretrained and released publicly by their
developers.
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FIGURE 7

The detailed performance of different networks comparing
2D and mean of 3D.

Table 1 shows that three models are listed in each column, and
in each row, the average accuracy of each key point is compared.
The 2D rows can be chosen as baselines for 3D transfer. In 3D
transfers, the R, G, and B channels were examined, respectively. In
addition, the mean of the three channels was also examined.

Each network in Table 1 includes 6 different methods of fine-
tuning; 2D, and 3D are displayed in Figure 5. There are 6 groups
for three networks. The accuracies of the first group are lower than
those of the second group after finetuning in 2D transfer, and the
HR network achieves the highest average accuracy of 96.6%. The
HG network achieves a similar performance at 96.1%, while the
OP network achieves 95.3%, which is increased by 12.3%. After
fine-tuning, both networks perform slightly better than the OP
network. When in 3D transfer, the third to sixth groups in Figure 5
show different channel parameters that are chosen or combined to

patch the lacking depth channel. The R and B channels affect the
OP and HG networks the most, whereas the G channel affects the
HR network the most, and the R and B channels even can cause
a negative transfer on the HR network (from 96.6 to 92.8%). The
mean strategy of R, G, and B channels get the best estimation than
in a single one-channel way. This situation shows that the three
networks learn different patterns in different channels. The OP and
HG network extracts features from three channels equally, while
the HR network gets features from the G channel, which is highly
related to depth information. Features from B and R channels are
less related to depth information.

Figure 6 shows the detailed results of 2D. The HR network can
get the best estimation on the head, shoulder, elbow, wrist, and
ankle points. However, the HG network estimates hip and knee
points better than the HG network. Both the OP and HR networks
are worse in hip point estimation. This phenomenon might be
caused by the lower learning ability of the OP network and the
lower symmetric ability of the HR network than the HG network
since these two kinds of points have fewer texture features in the
image. The HG model has a lower feature extraction than the HR
network.

Finally, compared with the second group of 2D transfer, the
mean 3D group average accuracies are all higher than that of the
2D group as shown in Figure 7. The OP network is improved by
3.3% on hip points, which is higher than other networks. This may
be caused because of the previous imbalance training by authors.
In Figure 8, the 3D transfer also shows a similar result as the 2D
transfer. The HR network performs better on the head, shoulder,
elbow, wrist, and ankle points, but the HG network performs better
on hip and knee points. It means that the HR network has a
deficiency on the hip and knee points when there is less texture
information around. The depth channel shows less help to the
estimation. This may be the bottleneck of transfer learning when
lacking depth training data.

4.2. The fine-tuning effect of different
training data set size

The average accuracy curves of the OP, HR, and HG networks
are drawn under the different training dataset sizes from 40 to 120,
which increases by 20 each step.

As shown in Figure 9, the horizontal axis indicates the amount
of training dataset size. The vertical axis indicates the average
accuracy on the test set. The results show the HR model still
performs better than others. But when the data size is small, from
40 to 80, it is almost the same as the HG network. With an
increase in the training dataset size, the HR network becomes better
than the HG network. It means the HR network might get much
better results when the dataset size becomes large. The OP network
performance increases a bit slower than the other two networks and
it tends to be plain.

4.3. The FLOPs and average cost time

The Floating-Point Operations (FLOPs) and average cost time
on the test set are shown in Table 2. The same resolution images
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FIGURE 8

The average accuracy on each key point in the mean 3D way.

FIGURE 9

The total average accuracy of different networks after model transfer.

TABLE 2 FLOPs and average time cost on each model.

Method Input size #Params GFLOPs Average cost
time (s)

OP 640× 480 52.3M 308.5 0.57

HG 640× 480 53.1M 359.8 0.68

HR 640× 480 28.5 M 48.08 0.34

were fed into the three networks. The parameter number of each
kind of network is displayed. It can be seen that the numbers of
HG and OP’s parameters and average cost times are almost equal,

and they are both nearly twice that of HR. As the parameters are
reduced by half, the GFLOPs can be reduced largely.

4.4. Comparison of the pose estimation
on boxing basic movements

Five postures of punch, swing, hook, backward, and side sliding
are estimated in both left and right ways as displayed in Figure 10.
The figure shows two different scenes, and the results are listed in a
sequence of without fine-tuning, after the 3D transfer, and ground
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FIGURE 10

The pose estimation of the OP network (left), HG network (middle), and HR network (right) after model transfer.

truth. It also displays the results of the OP, HG, and HR networks,
respectively.

In the first column of each figure, there are many errors in
five poses. The head and wrist points are wrongly located. The
estimation results are littered randomly since the left and right
results of both the OP and HG networks have a big difference.
This phenomenon may be caused by the background. The edge of
curtains or chairs might be like the human edge. The HR network’s
left and right results are more symmetric than other methods.
Besides, the obscuring from the boxing helmet and the camera’s
inconsistent view also result in locating the wrong place such as the
ankle, hip, and elbow.

The second columns of the left and right poses show the
estimations are improved. It is much closer to the third column
of ground truth. So, fine-tuning can correct the errors from
background interference, obscuring, and view inconsistency. In
addition, it can be seen that the HR network’s estimation of hip
and knee joints is compelled in a line, which is quite different
from the HG’s estimation. That means the HR network can be
further improved.

5. Conclusion

With the popularization of boxing in China, the lack of
coaches and amusement impedes the promotion of this sport.
The research on intelligent humanoid boxing robots becomes
hotter, and the problem of insufficient coaches can be solved.
Through the application of human pose estimation technology,
the actions of boxing athletes can be analyzed, guided, and
taught. The inconsistent inputs between the current image-based
2D human pose estimation technology and the 3D data of
RGBD prevent our study because of the shortage of boxing
data. The model transfer method is adopted to improve the
technology application by patching the lack of channel. Three
SOTA models of this technology were studied and transferred
for experiments. Different strategies of transfer were examined

to patch the lack of depth channel. The results show that the
mean combination of RGB channel parameters is suitable to patch
the depth channel. This strategy can improve models’ estimation
performance stability. In addition, model transfer learning can
efficiently reduce the dependence on collecting new data. The
three SOTA models of the OP, HR, and HG networks exhibit
competitive ability, and each model achieves a better performance
after a mixture of depth channel information. Based on this
research, the technical problems existing in the application of
boxing can be revealed further, such as the HR network needing
to improve the estimation of hip and knee joints and integrating
these basic models into a small platform for the different kinds
of applications. A machine learning method to optimize this
combination can be researched further. Nonetheless, transfer
learning with the channel patching method has been successfully
studied for boxing pose estimation, and the 2D model performance
can be improved by a 3D camera. Data can be collected to enhance
the model’s application.
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