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Application of conditional
generative adversarial network to
multi-step car-following
modeling

Lijing Ma and Shiru Qu*

School of Automation, Northwestern Polytechnical University, Xi’an, China

Car-following modeling is essential in the longitudinal control for connected

and autonomous vehicles (CAVs). Considering the advantage of the generative

adversarial network (GAN) in capturing realistic data distribution, this paper applies

conditional GAN (CGAN) to car-following modeling. The generator is elaborately

designed with a sequence-to-sequence structure to reflect the decision-making

process of human driving behavior. The proposed model is trained and tested

based on the empirical dataset, and it is compared with a supervised learning

model and a mathematical model. Numerical simulations are conducted to verify

the model’s performance, especially in the condition of mixed tra�c flow. The

comparison result shows that the CGAN model outperforms others in trajectory

reproduction, indicating it can e�ectively imitate human driving behavior. The

simulation results suggest that the introduction of CGAN-based CAVs improves

the stability and e�ciency of the mixed tra�c flow.

KEYWORDS

mixed tra�c flow, unsupervised learning, deep learning, connected and autonomous
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1. Introduction

The development of connected and autonomous vehicles (CAVs) has become a topic

of intense interest recently (SAE, 2021). CAVs have the potential to significantly improve

the operation of transportation systems in various aspects, including traffic efficiency, safety,

and sustainability. CAVs are equipped with advanced technologies such as sensors, cameras,

and GPS systems, which allow them to collect and process vast amounts of data in real-time,

enabling them tomake informed decisions and respond quickly to changing road conditions.

Such kind of new technologies (Wu D. et al., 2017; Yan et al., 2020; Du et al., 2021; Xu et al.,

2021, 2022; Chen, 2022; Liu et al., 2022) has sprung up in recent years. One of the main

advantages of CAVs is their ability to communicate with other vehicles and infrastructure,

allowing them to operate more efficiently and safely. For example, CAVs can share real-time

traffic information, such as traffic density, speed, and congestion, with other vehicles and

traffic management systems, which can optimize traffic flow and reduce congestion.
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The introduction of CAVs poses some significant challenges.

One of the main challenges is that CAVs will operate in the mixed

traffic environment, which includes both human-driven vehicles

(HVs) and CAVs. This is because, at present, the majority of

vehicles on the road are still human-driven. This creates a complex

and dynamic traffic environment, where CAVs need to be able to

interact and adapt to the driving behavior of HVs. To address this

challenge, researchers have been developing data-driven models

(Yang et al., 2019; Li et al., 2020) based on HVs’ trajectory data

to assist CAVs in adapting to the mixed traffic flow environment.

These models are designed to imitate human driving behavior and

perform realistic trajectory prediction, enabling CAVs to anticipate

and respond to the driving behavior of HVs.

The outperforming data-driven car-following models are

mainly established with prevailing machine learning approaches

(Li et al., 2020), such as reinforcement learning and deep learning.

In terms of reinforcement learning (RL) based models, the early

studies go back to Wu C. et al. (2017) and Zhu et al. (2018). Then,

inverse reinforcement learning (IRL) is introduced to car-following

modeling (Gao et al., 2018; Huang et al., 2021), overcoming the

difficulty in reward function designing. In terms of the deep

learning approach, car-following models based on recurrent neural

network (RNN) and its extended variants, such as long short-

termmemory (LSTM) and gated recurrent unit (GRU), embedding

the memory effect of human driving behavior in car-following

modeling (Wang et al., 2017, 2019; Zhou et al., 2017; Huang

et al., 2018), have been demonstrated to be superior to the models

based on conventional neural networks. Recently, to improve

the decision-making process, some studies have proposed car-

following models with advanced structures, for example, encoder-

decoder (Gu et al., 2020; Ma and Qu, 2020), attention mechanism

(Lin et al., 2021; Shi K. et al., 2022), and transformer (Sachdeva

et al., 2022; Zhu et al., 2022). However, in the supervised learning

framework, the empirical data only contains limited observations,

lacking abnormal states, such as almost rear-end collision. As a

result, in the testing process, the data distribution can be very

different from the training data, and the learned model has no

clue what to do when a slight deviation occurs. Moreover, there

can be mistakes or poor behaviors in the empirical data, such as

unnecessarily slamming on the brakes, and the learned model may

copy these errors.

Generative adversarial networks (GAN) (Goodfellow et al.,

2020) and variants achieve significant success in computer vision,

inspiring researchers to explore their application in other fields:

dialogue generation (Li et al., 2017), stock price prediction (Fu

et al., 2019), trajectory generation (Gao et al., 2022), etc. There are

two components in the framework of GAN: the generator network

and the discriminator network. As the generator learns to generate

data distribution similar to the training data, the discriminator tries

to distinguish the generated data from the real one. They update

adversarially in an unsupervised manner, potentially improving

the deficiencies of supervised learning. Currently, in the field of

longitudinal control for CAVs, car-following models based on

GANs (Kuefler et al., 2017; Greveling, 2018; Zhou et al., 2020;

Bhattacharyya et al., 2022; Mo and Di, 2022; Shi H. et al., 2022)

are state-of-the-art. Nevertheless, few studies ponder over the

continuity of time series. In other words, the discriminator needs to

not only estimate whether the generated data is like human driving

behavior but also judge whether it is the correct action. Moreover,

the generator is better to be meticulously designed considering the

decision-making process of car-following behavior.

Hence, we outline the potential limitations: (i) The

discriminator of the previous GAN-based model cannot evaluate

whether the generated action is appropriate for a given situation.

(ii) The ordinary design of the generator cannot cover the decision-

making process of car-following behavior. (iii) The car-following

models are constructed for CAVs but seldom verified in the mixed

traffic flow environment.

The core task of our study is building an outperforming car-

following strategy for CAVs in mixed traffic flow. We propose

a multi-step car-following model based on conditional GAN

to bridge the above gaps. The main contributions are: (i) A

variant of GAN, conditional GAN (CGAN), is applied to car-

following modeling to better estimate the generated action due

to its improved discriminator structure. (ii) The Encoder-Decoder

framework is introduced to design the generator network, which

imitates the decision-making process of car-following behavior

and gives multi-step predictions. (iii) The platoon simulation

and a periodic boundary condition are introduced for numerical

simulation, and the performance of the proposed CGAN model

is verified, demonstrating its availability for CAVs in mixed traffic

flow.

The rest of this paper is organized as follows. Section 2

is dedicated to reviewing related work. Section 3 proposes the

architecture and configuration of the CGAN car-following model.

In Section 4, the proposed model is trained with the empirical

dataset, and the models are compared in terms of prediction

accuracy. Section 5 presents the performance of the model based

on numerical simulation. In Section 6, our findings are concluded.

2. Related work

In recent years, the research on longitudinal control of CAVs

has gradually changed from establishing various mathematical

models (Brackstone andMcDonald, 1999; Saifuzzaman and Zheng,

2014) to focusing more on building data-driven models based on

HVs’ trajectory data (Yang et al., 2019; Li et al., 2020). Data-driven

car-following models do not require mathematical formulas or

calibration but instead can extract behavior from mass field data.

Machine learning approaches, including nonparametric regression,

support vector regression (SVR), reinforcement learning (RL),

and deep learning (DL), have become popular for car-following

behavior modeling due to their success in outperforming

mathematical models.

Nonparametric regression-based models. The main concept

behind nonparametric regression car-followingmodels is to predict

vehicle positions as a way of reproducing traffic dynamics. The

estimation of vehicle trajectories using locally weighted regression

was initially presented by Toledo et al. (2007) and later enhanced

by Papathanasopoulou and Antoniou (2015). A nonparametric car-

following model based on k-nearest neighbor was introduced and

experimentally validated using field data by He et al. (2015).
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Support vector regression-based models. A universal learning

method called Support Vector Machine (SVM) is based on

statistical learning theory, and its application for regression

problems is SVR. In the case of car-following modeling, Wei

and Liu (2013) introduced SVR to investigate the asymmetric

characteristic in car-following behavior since it can discover

inherent relationships among the variables in a dataset. The SVR

car-following model uses space headway, the follower’s speed, and

relative speed as inputs and produces the follower’s speed as output.

Reinforcement learning-based models. Wu C. et al. (2017)

presented Flow, a computational framework that simplifies the

development of controllers for autonomous vehicles in complex

traffic scenarios with deep reinforcement learning. Flow integrates

the micro traffic simulator SUMO and the deep RL library rllab,

enabling the efficient design of traffic tasks and the creation

of controllers for mixed-autonomy traffic scenarios. Zhu et al.

(2018) proposed an autonomous car-following framework based

on deep reinforcement learning that trains an RL agent using

historical driving data to learn a car-following model. The model

can map speed, relative speed, and inter-vehicle spacing to the

acceleration of a following vehicle and outperforms traditional

and recent data-driven car-following models, reproducing human-

like behavior with higher accuracy and adaptability. The study

highlights the potential of reinforcement learning to improve

autonomous driving algorithms and traffic-flow models. Gao

et al. (2018) discussed the challenge of designing a car-following

decision-making system for complex traffic conditions in the field

of autonomous driving. It presents a method based on an inverse

reinforcement learning algorithm to establish driver data reward

functions, analyzes driving characteristics and following strategies,

and demonstrates the method’s effectiveness through simulation in

a highway environment. Huang et al. (2021) proposed an internal

reward function-based driving model with inverse reinforcement

learning to learn personalized reward functions for individual

human drivers from driving data. A structural assumption

about human driving behavior is proposed, which focuses on

discrete latent driving intentions to make maximum entropy IRL

tractable. The proposedmethod outperforms general modeling and

baseline methods and demonstrates the importance of considering

interactive behaviors among the ego and surrounding vehicles in

estimating generated trajectories.

Deep learning-based models. Zhou et al. (2017) proposed

a recurrent neural network-based model for predicting traffic

oscillation in car-following. The model outperforms classical

car-following models under different driver characteristics,

demonstrating the efficacy of data-driven neural network

approaches for traffic flow dynamics. Huang et al. (2018) proposed

an LSTM-based car-following model considering asymmetric

driving behavior. The model is calibrated and validated with a real

dataset and outperforms other models in reproducing realistic

traffic flow features. Ma and Qu (2020) proposed a car-following

model using sequence-to-sequence (seq2seq) learning. The model

includes spatial anticipation and improves platoon simulation

accuracy and traffic flow stability, making it an effective solution for

simulating car-following behavior and suitable for traffic analysis

and simulation. Zhu et al. (2022) proposed a long-sequence car-

following trajectory prediction model based on an attention-based

Transformer model, which outperforms traditional models in

terms of accuracy and can be used to simulate traffic flow and

develop intelligent vehicles.

In brief, machine learning approaches, particularly

reinforcement learning and deep learning, have successfully

outperformed mathematical models in recent studies and show

promise in improving autonomous driving algorithms and traffic

flow models.

3. Car-following model based on
CGAN

3.1. Architecture

In general, Conditional Generative Adversarial Network

(CGAN) (Mirza and Osindero, 2014) is a type of neural network

used in deep learning to generate new data samples similar to

a given training set. CGANs are an extension of Generative

Adversarial Networks (GANs) and are conditioned on additional

input variables, such as class labels, images, or text. The main

components of a CGAN are the generator and the discriminator.

The generator and discriminator are trained in a competitive

process. The generator tries to produce samples similar to the real

data while also satisfying the given conditions. The discriminator

tries to correctly classify whether the samples are real or fake while

also taking the conditional variables into account. By incorporating

additional information into the generation process, CGANs are

able to produce more realistic and diverse outputs that are tailored

to specific conditions. CGANs are used in various tasks, such

as image-to-image translation, text-to-image synthesis, and super-

resolution.

Compared to supervised learning, which is a common

approach for car-following models, CGAN has the advantage

of being able to learn from unlabeled data and can potentially

generate more diverse and realistic driving behaviors. Compared

to a traditional GAN, the advantage of CGAN is that it can

generate more specific and tailored outputs based on the additional

conditioning variables, making it a more precise and effective

model. Additionally, CGAN can better handle situations where the

data has a complex structure, and additional context is required

for the generation task. However, the weakness of CGAN is that

it can be more complex and challenging to implement than the

above intelligent networks, as it may require more computational

resources to train. Overall, CGAN is a promising approach for

car-following models in autonomous driving.

In our study, we improve the Generator to an Encoder-Decoder

framework, which predicts the action (output sequence o) with a

given state (input sequence c). Also, the input sequence is additional

information for the Discriminator in the CGAN structure. The

Discriminator learns to distinguish the output sequence from the

real sample (i.e., ensuring the action is similar to human behavior)

and estimate whether it corresponds to the input sequence (i.e.,

ensuring the action is correct). The overall framework for CGAN-

based car-following modeling are presented in Figure 1.

In this way, for car-following modeling, the Discriminator

updates to have a better judgment of the generated behavior,

and the Generator obtains feedback from the Discriminator and

updates to imitate human driving behavior better. Therefore, the
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FIGURE 1

CGAN architecture for car-following modeling.

training process of CGAN is a min-max game, as the objective

functions given in Equations (1)–(3).

D∗ = argmax
D

V(G,D) (1)

G∗ = argmin
G

max
D

V(G,D) (2)

V(G,D) = E(c,o)∼Pdata [logD(c, o)]+ Ec∼Pdata ,x∼PG [log(1− D(c, o))]

(3)

WhereV(G,D) is the loss function, denoting the difference between

ground truth and generated data. Pdata is the real data distribution,

and PG is a distribution learned by the Generator.D(c, o) represents

the probability that o is from the real data.

Based on the architecture of CGAN, the detailed training

process is presented in Algorithm 1. θg and θd represent parameters

in the Generator and the Discriminator, which are updated in

training iterations.

1 Initialize θg for generator G and θd for

discriminator D;

In each training iteration:

2 Sample input sequence c and output sequence o

from training set;

3 Get the real samples {(c1, o1), (c2, o2), ..., (cm, om)} ;

4 Sample input sequence c from training set, and

generate output sequence õ by G(c);

5 Get the generated samples {(c1, õ1), (c2, õ2), ..., (cm, õm)} ;

6 Update discriminator parameters θd to increase

D(c, o) and decrease D(c, õ), i.e., maximize

Ṽ = 1
m

∑m
i=1 logD(c

i , oi)+ 1
m

∑m
i=1 log(1− D(ci, õi)),

θd ← θd + η∇Ṽ(θd) ;

7 Update generator parameters θg to minimize

Ṽ = 1
m

∑m
i=1 log(1− D(ci, G(ci))), θg ← θg − η∇Ṽ(θg )

Algorithm 1. CGAN training.

3.2. Configuration

Figure 2 shows the detailed framework of CGAN car-following

model. The structure of the Generator is a sequence-to-sequence

learning (Seq2Seq) model, which takes multi-step driving states as

input and outputs multi-step actions. For clarity, the basic structure

of the Seq2Seq model and long short-term memory (LSTM) unit

can be found in our previous study (Ma and Qu, 2020).

Ma and Qu (2020) has investigated the configuration of input

and output variables based on literature review and the car-

following process, determining the distance and speed-related

variables as the input and the acceleration as the output. For CAVs,

the technology enables the vehicle to detect acceleration besides

distance and speed. Therefore, the gap distance (1x), relative speed

(1v), speed (v), acceleration (a), and acceleration of leading vehicle

(ap) are adopted as the input variables, and the acceleration (a)

is adopted as the output variable. Furthermore, according to the

decision-making process studied in Ma and Qu (2020), the input

and output of the Generator are sequences, and the lengths are

T and L, respectively. The mapping function is formulated in

Equation (4):

at+1, ..., at+L = f ( 1xt−T+1, ...,1xt ,

1vt−T+1, ...,1vt ,

vt−T+1, ..., vt ,

at−T+1, ..., at ,

apt−T+1, ..., apt ) (4)

The structure of the Discriminator is a fully connected neural

network with two hidden layers. The output layer is a sigmoid

function, giving the scalar that indicates the probability of the

action belonging to real or generated data. In terms of the input

of the Discriminator, part of the input sequence of the Generator

(i.e., the action at previous time steps), which is the condition,

is concentrated with the Generator’s output sequence (i.e., the

predicted action for future time steps) and forms the input. The

mapping function is formulated in Equation (5):

D = g(at−T+1, ..., at , at+1, ..., at+L) (5)

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1148892
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ma and Qu 10.3389/fnbot.2023.1148892

FIGURE 2

The framework of CGAN car-following model.
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4. Case study

4.1. Data preparation

Data-driven car-following models for CAVs need to learn

from the real human-driven vehicle trajectory data. The Next

Generation Simulation (NGSIM) (FHWA, 2008) dataset is a

commonly used empirical dataset, a detailed and high-fidelity

traffic dataset collected from the real world. One of the primary

benefits of using NGSIM for data-driven car-following modeling

is that it provides a realistic and comprehensive view of

traffic dynamics, which is critical for developing accurate car-

following models for CAVs. This allows car-following models

to be validated and tested under a wide range of scenarios

and conditions, which can help improve the models’ robustness

and reliability. Another advantage of using NGSIM is that it

provides a standardized benchmark dataset for researchers to

compare and evaluate their car-following models. This allows

researchers to assess the accuracy and effectiveness of their

models and compare them to other existing models in a fair and

standardized manner.

The Interstate 80 (I-80) Highway dataset is one of the several

datasets collected under the NGSIM program. It was collected on

April 13, 2005, eastbound I-80 in the San Francisco Bay Area in

Emeryville, California. The study area is approximately 400 m in

length.

Montanino and Punzo (2015) reconstructed the trajectory

of the NGSIM dataset to repair the measurement errors in the

original dataset and ensure that the trajectory data conforms to

vehicle kinematics and microscopic traffic dynamics. We take this

reconstructed I-80 dataset (Montanino and Punzo, 2013), which

contains 15 min of vehicle trajectory data (4:00 p.m. to 4:15

p.m.) at a data resolution of 10 Hz. Since our study only focuses

on longitudinal control, we extract car-following events from the

dataset with the following four steps:

• Trajectories on five regular lanes (from Lane 2 to Lane 6) are

picked out, getting rid of the trajectories on Lane 1, as it is a

High Occupancy Vehicle (HOV) lane, and the traffic may be

irregular.

• Vehicle lengths no more than 5 m are kept, excluding trucks.

• Clearance distances of more than 120 m are filtered out,

avoiding unimpeded traffic situations.

• Continuous car-following times of fewer than 30 s are filtered

out, eliminating the influence of lane-changing.

As a result, we obtain 1,386 car-following events involving

662,378 trajectory data points. Each data point contains trajectory

information at that time step. Figure 3 shows the spatio-

temporal map of some car-following events. These 1,386 car-

following events need to be split into two parts to train

and test data-driven models. Due to the required independent

testing procedure, trajectories from one lane can be selected to

compose the test dataset. Therefore, 332 car-following events

collected from Lane 2 are chosen as the testing dataset, and

the trajectory samples from the remaining lanes (from Lane

3 to Lane 6) form the training dataset, with a total of 1,054

car-following events.

4.2. Model training

The CGAN car-following model is trained based on the

procedure in Algorithm 1, implemented with Python. With

experimental optimization, the hyperparameters are tuned and

listed as follows:

• Optimizer. The adaptive optimizer Adam (Kingma and Ba,

2014) is utilized, as it is effective in training car-following

models (Ma and Qu, 2020; Shi H. et al., 2022). In this study,

the parameters in Adam are tuned as lr = 0.00005, beta1 =

0.9, beta2 = 0.999, epsilon = 1e− 08, decay = 0.0.

• Neuron. In the Generator, the number of neurons for the

LSTM units in the Encoder-Decoder framework is 32. In the

Discriminator, the number of neurons for the hidden layers is

64.

• Activation function. In the Generator, the hyperbolic tangent

function tanh(·) is chosen as the activation function. In

the Discriminator, two hidden layers adopt the leaky ReLU

function, and the output layer adopts the sigmoid function.

• Epoch. At each epoch, the learning algorithm traverses the

entire training dataset. The number of epochs is 2000, and

the batch size is 128. As the best convergence and balance of

the Generator and the Discriminator is fleeting, at the end of

each epoch, the performance of the Generator is presented to

capture the best parameters.

The Mean Squared Error (MSE) is a commonly used metric for

trajectory prediction tasks. It is suitable to evaluate the performance

of the Generator. To directly measure the accuracy of the predicted

trajectory, we formulate the MSE based on the spatio-temporal

data, as shown in Equation (6), where the average errors between

the actual and predicted locations are calculated. The predicted

location is constructed with the discrete-time kinematic rule based

on the generated action. The detail is presented in Equation (7).

MSE =
1

M

M
∑

t=1

[xt − x̂t]
2 (6)

{

v̂t+1 = v̂t + ât+11t

x̂t+1 = x̂t + v̂t1t + 1
2 ât+11t2

(7)

Where â is the generated action, i.e., acceleration. v̂ and x̂ denote the

predicted speed and location. xn represents the observed location.

In the training process, MSE is taken as the evaluation indicator

for configuration optimization. Based on the ranges of historical

time steps and prediction horizons investigated by Ma and Qu

(2020), we test different lengths of input and output sequences for

the Generator. It turns out that T = 50 and L = 10 achieve

considerable performance.

4.3. Models comparison

To verify the performance of the CGAN car-following

model, we applied it to trajectory reproduction based on
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the test dataset. The experiment is also conducted on

other car-following models, including the Seq2Seq model

and a classic mathematical model, and their performances

are compared.

The intelligent driver model (IDM) is a prevailing

mathematical car-following model first proposed by Treiber

et al. (2000), as formulated in Equations (8)–(9). The

predicted acceleration (a) is calculated with the observed

gap distance (1x), relative speed (1v), and speed (v). The

parameters include maximum acceleration (ã), comfortable

deceleration (b̃), desired speed (ṽ), desired time headway (t0),

FIGURE 3

The spatio-temporal map of some car-following events from Lane

2.

TABLE 1 Calibrated parameters of the IDM.

IDM ã b̃ ṽ t0 s0

Calibrated value 2.02 1.43 22.89 1.40 2.75

and safe gap distance (s0), which can be calibrated with the

training dataset.

a = ã

[

1−
(v

ṽ

)4
−

(

S(v,1v)

1x

)2
]

(8)

S(v,1v) = s0 + t0v−
v1v

2
√

ãb̃
(9)

IDM is a classic car-following model widely used as a

comparative model in recent studies (Zhou et al., 2017; Zhu et al.,

2018, 2022; Ma and Qu, 2020). IDM captures some of the key

behaviors exhibited by human drivers, such as maintaining a

safe distance from the vehicle in front, adjusting speed to avoid

collisions, and accelerating and decelerating in response to changes

in traffic flow. This makes it a useful baseline for evaluating

the performance of more complex and advanced car-following

models. In this study, we calibrate the parameters of IDM with

genetic algorithm (GA) (Mitchell, 1998), and the values are given

in Table 1.

The models’ performances are evaluated by the indicator

MSE. To visually illustrate the performance, we randomly select

a car-following event (the subject vehicle is Vehicle 1898) and

plot the spatio-temporal diagrams in Figure 4. The reproducing

trajectories with IDM, Seq2Seq, and CGAN are compared with the

observation, and the MSE are 36.10, 21.89, and 14.19, respectively.

Figure 5 presents the trajectory profiles, showing the deviations

at speed and acceleration levels besides the distance level. It

reveals that all three models imitate the primary behavior well,

while the trajectory reproduced by CGAN is more in line with

the observation.

In order to draw a general comparison, we conduct statistical

analysis on the MSE values of the test dataset (332 car-following

events), as presented in Table 2. For IDM, Seq2Seq, and CGAN,

the mean MSE values are 26.74, 21.60, and 19.58, respectively. The

FIGURE 4

Spatio-temporal diagrams (Vehicle 1898).
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FIGURE 5

Trajectory profiles of Vehicle 1898.

standard deviation and the percentiles show that the MSE values

of CGAN are more densely distributed than the values of the other

two models.

It is widely acknowledged that IDM is an outstanding

mathematical model that provides reliable car-following

performance. Moreover, it has been proved that Seq2Seq

achieves outperformance for multi-step prediction considering the

decision-making process of human driving behavior. Therefore,

the comparison indicates that the proposed CGAN car-following

model is available as it yields an excellent fitting quality with the

empirical driving data.

The case study results show that the proposed multi-step

car-following model based on CGAN outperforms existing car-

following models (IDM and Seq2Seq) in terms of MSE for

the test dataset. The proposed model also produces trajectory

profiles that are more in line with the observation, indicating

that it provides more accurate and effective car-following

strategies for CAVs. Moreover, the proposed CGAN-based model

has a more flexible and diverse generation of car-following

strategies, depending on the specific traffic flow conditions

and requirements. This means that the proposed model can

adapt to the dynamic and complex nature of mixed traffic

flow, further improving the safety and efficiency of CAVs on

the road.

5. Simulations

5.1. Platoon simulation

Platoon simulation is a vital strategy for car-following model

testing, and its implementation differs from the operation of

vehicle pairs’ trajectory reproduction. In trajectory reproduction,

the predicted action is based on the actual states of the preceding

vehicle. Nevertheless, in platoon simulation, except for the first

following vehicle, the other following vehicles are simulated based

on their initial states and the simulation results of their preceding

vehicles. In this way, the errors induced by the controlling model

may be exaggerated to test the model’s performance. Therefore,

to further explore the performance of the proposed car-following

model, we conduct platoon simulation assuming the following

vehicles are controlled by the CGAN.

The simulation design is similar to the study in Treiber et al.

(2006), where the platoon includes 100 vehicles, and the first vehicle

is an externally controlled leader. All the vehicles’ lengths are set to

be 5 m. The simulation lasts 2000 s, and the update interval is 0.1

s same as the resolution of the empirical dataset. The first vehicle

travels at a constant speed v = 15.3 m/s for the first 50 s, then it

decelerates to v = 14.0 m/s with a = −0.65 m/s2 and continues

to move at this speed until the simulation ends. The initial states
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TABLE 2 Statistics results of the performance.

Model Mean (SD) Min Max Percentile [25%,
50%, 75%]

IDM 26.74 (38.70) 1.21 374.28 [8.28, 14.87, 29.91]

Seq2Seq 21.60 (28.42) 0.73 233.29 [7.57, 12.27, 25.23]

CGAN 19.58 (22.73) 0.33 229.12 [6.66, 13.01, 24.18]

of other vehicles are assumed to be equilibrium at speed ve =

15.3 m/s. As in previous studies (Treiber et al., 2006; Ma et al.,

2023), the corresponding equilibrium gap distance (1xe) is derived

from the IDM. As the relative speed and acceleration are both zeros

at the equilibrium state, they are substituted into Equations (8), (9),

obtaining 1xe as in Equation (10). Calculated with the calibrated

parameters in Table 1, all the initial gap distances between adjacent

vehicles are 27.02 m.

1xe =
s0 + vet0

√

1− ( v
e

ṽ )
4
, (10)

The platoon simulation is conducted with the CGAN model,

and the result is summarized in Figure 6. Figure 6A visualizes the

simulated trajectory set as a space-time diagram, and Figure 6B

presents the space-time evolution of gap distance. It shows that,

influenced by the deceleration of the first vehicle, the following

vehicles in the platoon experience traffic oscillation over a period of

time. This is a typical phenomenon as the disturbance propagates

upstream. Soon afterward, trajectories are smoothed with less

oscillation, and the speed and gap fluctuations become weaker with

time.

Besides, to clearly observe the final states, we plot the snapshots

of gap distance and speed of all vehicles at 2000 s, i.e., the end of

the simulation, as presented in Figure 7. It shows that the simulated

vehicles are not running in a duplicate way, and their gap distances

and speeds vary but stay in specific ranges. The platoon simulation

result indicates that the proposed CGANmodel is available as it can

reproduce the actual traffic flow. Nevertheless, the simulated speeds

do not converge to a constant, and the model’s stability is further

verified in the next section.

The results of the platoon simulation indicate that the

CGAN model is capable of reproducing the traffic oscillation

and smoothening phenomena that occur in a platoon when the

first vehicle decelerates. This shows that the proposed model can

accurately capture the dynamics of traffic flow and generate car-

following strategies that adapt to the complex nature of traffic flow,

improving transportation safety and efficiency.

5.2. Simulation in a mixed tra�c flow
environment

As CGAN car-following model is constructed for CAVs,

it should be tested in a mixed traffic flow environment,

including HVs and CAVs, to verify its performance. To conduct

mixed traffic flow simulation, Ma et al. (2023) has designed

FIGURE 6

Platoon simulation result. (A) Space-time diagram. (B) Space-time

evolution of gap distance.

a periodic boundary condition. It is an essential experimental

approach for traffic flow stability analysis (Li and Shrivastava,

2002), which is consistent with the assumption of an infinitely

long platoon in the theoretical stability analysis. This study

uses the same periodic boundary condition to verify the

CGANmodel.

A circular road without ramps is used, and 20 vehicles operate

on the road with a head-to-tail structure. The assumption of

vehicle length and the initial speed and gap distance is the same

as in the platoon simulation: l = 5 m, v2 = 15.3 m/s,

and 1xe = 27.02 m. Thus, the length of the circular road

is 640.4 m. At 50 s, one vehicle is randomly chosen, and a

disturbance is applied, letting it decelerates with 0.65 m/s2 until

its speed equals 14.0 m/s. Then, all the vehicles on the road

follow the vehicle in front according to its car-following strategy

until the end. Among the vehicles, HVs and CAVs are randomly

distributed. The HVs are controlled by Seq2Seq car-following

model, as this model is proven to be outstanding in imitating

human driving behavior. The penetration rate for CAVs varies from
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FIGURE 7

Snapshot profiles at 2,000 s. (A) Snapshot of gap distance. (B)

Snapshot of speed.

0% to 100%, i.e., p = 0, 0.2, 0.4, 0.6, 0.8, 1, representing different

structures of mixed traffic flows. The schematic is presented

in Figure 8, taking the penetration rate of CAVs being 20% as

an example.

The simulated trajectories of different penetration rates of

CAVs are obtained, as presented in the space-time diagrams

in Figure 9. For clarity, the initial states of the first 50 s

are not necessary to be shown. The simulation results show

that the average running speed of vehicles increases when the

penetration rate of CAVs rises. It can be found in Figure 9A

that the platoon with 100% HVs experiences oscillations (stop-

an-go waves) caused by the perturbation. The introduction of

CAVs smooths the trajectories, as shown in Figures 9B–E. With

regard to 100% CAVs in Figure 9F, it reaches the most mileage

than other structures, which means the traffic flow becomes

more efficient.

In terms of the stability of CAVs, it is hard to have the CGAN

model be analytically solved, because of its black-box nature. But

in fact, this periodic boundary simulation environment has been

determined to be a feasible method to validate the stability of

the car-following model (Ma et al., 2023). It can be seen from

Figure 9F that the effect of the perturbation is short-lived when

FIGURE 8

Schematic of the periodic boundary condition for mixed tra�c flow

(for example, the penetration rate of CAVs is 20%).

all vehicles are controlled by the CGAN model, which indicates

the stability of the CGAN model. As a result, the stability of

mixed traffic flow can be improved with the introduction of

CGAN-based CAVs.

To explore the capacity of mixed traffic flow, we set two

virtual detectors on the circular road with an interval of 100

m between them. During traffic simulation, a detector computes

flow-density values at that location. Consequently, the scatter

points for the fundamental diagram can be drawn, as the

red points presented in Figure 10. The fundamental diagrams

derived from this simulation are compared with the diagrams

simulated with mathematical car-following models, i.e., the black

scatters in the figures. For simplicity, the contrasted group

is not presented here in detail since it is depicted in Ma

et al. (2023). The two groups show consistency, indicating

the reasonability of proposed data-driven models in terms of

traffic flow simulation. In addition, with the increase of CAVs’

proportions, the maximum capacity shown in the fundamental

diagrams gradually rises. Therefore, the performance of the CGAN

model is verified with the efficiency improvement of mixed

traffic flow.

6. Conclusions

This study focuses on exploring the application of CGAN to

multi-step car-following modeling. Based on the advantages of

CGAN architecture and Seq2Seq structure, the proposed model

aims to become a potential framework of longitudinal control

for CAVs. As the mixed traffic flow of HVs and CAVs is an

inevitable traffic environment nowadays, we check out the CAVs’
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FIGURE 9

Space-time diagrams for di�erent penetration rates of CAVs. (A) p = 0%, (B) p = 20%, (C) p = 40%, (D) p = 60%, (E) p = 80%, and (F) p = 100%.

performance in such circumstances. The main findings can be

concluded as follows:

• The case study shows that the CGAN model outperforms

the mathematical models in trajectory reproduction. This

indicates that it can effectively imitate human driving

behavior.

• The CGAN model overcomes the deficiency of supervised

learning-based models in car-following modeling. The

comparison of models suggests the CGAN model is a
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FIGURE 10

Fundamental diagrams for di�erent penetration rates of CAVs. (A) p = 0%, (B) p = 20%, (C) p = 40%, (D) p = 60%, (E) p = 80%, and (F) p = 100%.

promising approach to substitute supervised learning models

in trajectory prediction.

• Platoon simulation shows that the CGAN model reproduces

the oscillation and smoothing of traffic flow. It suggests that

the proposed model is practicable in natural traffic scenes.

• The performance of the CGAN model is further verified in

the mixed traffic flow environment, conducted in a periodic

boundary condition. The results suggest that the introduction

of CGAN-based CAVs improves the stability and efficiency of

the mixed traffic flow.
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