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vehicle stability based on dynamic
stable region regression analysis
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Xiaoqiang Tan1 and Guangqiang Wu1*

1School of Automotive Studies, Tongji University, Shanghai, China, 2Global Technology Co., Ltd.,

Nantong, China

The intervention time of stability control system is determined by stability

judgment, which is the basis of vehicle stability control. According to the di�erent

working conditions of the vehicle, we construct the phase plane of the vehicle’s

sideslip angle and sideslip angular velocity, and establish the sample dataset of

the stable region of the di�erent phase planes. To reduce the complexity of phase

plane stable region division and avoid large amount of data, we established the

support vector regression (SVR) model, and realized the automatic regression of

dynamic stable region. The testing of the test set shows that themodel established

in this paper has strong generalization ability. We designed a direct yaw-moment

control (DYC) stability controller based on linear time-varying model predictive

control (LTV-MPC). The influence of key factors such as centroid position and

road adhesion coe�cient on the stable region is analyzed through phase diagram.

The e�ectiveness of the stability judgment and control algorithm is verified by

simulation tests.
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1. Introduction

Active safety technology has increasingly become one of the key research fields of the

automotive industry. The stability of the vehicle indicates the safety of the vehicle driving,

and vehicle stability control is the basis for the implementation of active safety technology

(Lai et al., 2021). The judgment of vehicle stability determines the intervention and exit time

of the control system, which is an extremely critical part of stability control (Chen et al.,

2020).

There are two mainstream methods of vehicle stability judgment. The first is to use

the stability criterion, such as Lyapunov criterion, in control theory to conduct stability

judgment based on a multi-DOF model of the vehicle or tire (Zhenyong, 2006; Yang et al.,

2009; Vignati et al., 2017). The second is to use the phase plane to judge the stability

of the vehicle, which is very intuitive. It is an important research method of vehicle

stability judgment.

The vehicle stability judgment methods based on the phase plane can be divided into

two main types: the sideslip angle—yaw rate phase plane method and the sideslip angle—

sideslip angular velocity phase plane method. Because the sideslip angle—yaw rate phase

plane method cannot accurately judge the vehicle stability under the unstable conditions

such as pure sideslip with small yaw rate fluctuation, while the sideslip angle—sideslip

angular velocity phase plane method does not have this problem, so the latter is more widely

used (Inagaki et al., 1995).
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The sideslip angle-sideslip angular velocity phase plane method

was originally proposed by Inagaki et al. (1995) and Yamamoto

et al. (1995). They use the “double-line method” to distinguish

vehicle stability. Two straight lines passing through the saddle

point are determined in the sideslip angle-sideslip angular velocity

phase plane. The region surrounded by these two straight lines

is considered as the stable region in the phase plane, but the

stable region still contains many unstable trajectories far from

the equilibrium point. Taeyoung and Kyongsu (2006) proposed to

determine a rhombic region in the sideslip angle-sideslip angular

velocity phase plane as the stable region of the vehicle. The four

vertices of the rhomb fall on the two coordinate axes, and the

vehicle stability control with variable threshold is achieved by

setting the relaxation factor. The experimental results show that

the stability control scheme has good performance, but more

parameters will be introduced at the same time, which leads to

difficulties in dividing stable region. Von Vietinghoff et al. (2008)

verified the work of Taeyoung and Kyongsu (2006) by simulation

and found that the rhombic method may not be able to determine

the upper and lower endpoints. Yu et al. (2015) introduced the

stable region determined by the yaw rate method based on the

double-line method, reduced the unstable operating conditions

in the stable region obtained by the double-line method, and

established a database of stable region at different vehicle speeds,

road adhesion coefficients and front wheel angles. Liu et al. (2014)

proposed an improved five-eigenvalue rhombus stable region

determination scheme, and established a stability region database

for different vehicle speeds, road adhesion coefficients and front

wheel angles through simulation. During the simulation process,

the table can be checked according to vehicle state parameters to

judge vehicle stability. In summary, most of the existing documents

have considered the effect of real-time vehicle speed, adhesion

coefficient and front wheel angle on the phase plane. In fact, due to

the uncertainty of the mass and position of the load and passengers,

the mass and centroid position of the vehicle will change. These

changes will lead to great changes in vehicle performance, such

as braking performance, acceleration performance and anti-roll

performance. Therefore, it is necessary to consider the change of

centroid position when plotting the vehicle phase plane.

At present, in the study of using the phase plane method

to determine the driving stability of vehicles, most of them use

the method of establishing databases and looking up tables to

determine the stable region under different working conditions.

This scheme can meet the accuracy requirements, but when the

vehicle parameters change, the database needs to be reconstructed,

resulting in high time and space complexity and poor practicability.

With the rapid development of data transmission and artificial

intelligence technology, machine learning algorithms are widely

used in various disciplines to solve various classification and

regression problems. The division of stable regions of vehicles in

different states is also a regression prediction problem of data

feature extraction, which can be solved by machine learning.

In this paper, based on the traditional double-line method,

we proposed an improved double-line method for stable region

division considering the limit value of the sideslip angular velocity.

Then, we designed the SVR vehicle stable region regression model

with a small dataset, which can make reasonable speculation on

FIGURE 1

Thesis structure.

the stable region of the vehicle. In addition, we constructed a DYC

controller to verify its feasibility and superiority.

The structure of this paper is as follows. Section 1 is the

introduction of the background. Section 2 introduces the process

of vehicle β − β̇ phase plane plotting and stable region dividing.

Section 3 introduces the dynamic stable region regression model,

including data sample making, model construction, parameters

optimization and test set comparison. Section 4 introduces the

summary of influential factors and effect analysis. Section 5

introduces the design of the stability controller and simulation test

scheme, and analyzes the simulation results. Section Conclusion is

the conclusion of the paper. The architecture of this paper is shown

in Figure 1.

2. β − β̇ phase plane establishment
and stable region division

2.1. Vehicle dynamics modeling

As shown in Figure 2, this paper carries out vehicle driving

stability research based on a 2-DOF nonlinear monorail model,

where β denotes the sideslip angle, δ denotes the front wheel angle,

αf denotes the front wheel slip angle, αr denotes the rear wheel

slip angle, vCOG denotes the velocity at the centroid of the vehicle,

γ denotes the yaw rate, CG denotes the centroid of the vehicle,

O denotes the instantaneous center of the steering motion of the
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FIGURE 2

Vehicle dynamics model.

TABLE 1 Partial parameter setting of the vehicle model.

Parameters Values Units

Mass of the vehiclem 1, 690 kg

Rotational inertia around the Z-axis Iz 4, 192 kg/m2

Wheel base L 2.776 m

Distance between roll axis and centroid hr 0.50 m

vehicle at this moment, a denotes the distance from the centroid to

the front axis, b denotes the distance from the centroid to the rear

axis, F1 indicates the lateral force on the front axle and F2 indicates

the lateral force on the rear axle.

According to the 2-DOF monorail model of the vehicle shown

in Figure 2, the kinematics equation of the whole vehicle is derived

from Newton’s law. As shown in (1), where m denotes the mass of

the whole vehicle, vx denotes the component of the vehicle velocity

in the X-axis direction, Iz denotes the rotational inertia of the whole

vehicle around the Z-axis.











β̇ =
cosβ
mvx

[F1cosδ + F2]−
sinβ
mvx

F1sinδ − γ

β̈ = −
sinβ
mvx

[F1cosδ + F2]−
cosβ
mvx

F1sinδ − γ̇

γ̇ = F1cosδa−F2b
Iz

(1)

2.2. Phase plane plotting

In this paper, the lateral forces on the front and rear axles of the

vehicle under different road adhesion coefficient, centroid position,

front wheel angle and speed are obtained through simulation tests

(Zha et al., 2021). According to the formula (1), the changes of

the sideslip angle and the sideslip angular velocity under different

working conditions can be calculated. Using the parameters in

Table 1, the phase trajectories of sideslip angle and sideslip angular

velocity can be drawn (Li et al., 2014), as shown in Figure 3.

2.3. Stable region dividing

This section proposes a method for dividing the stable region in

the β − β̇ phase plane based on the improved double-line method.

FIGURE 3

Phase plane trajectory with road adhesion coe�cient 0.2,

longitudinal speed 11 m/s and front wheel angle 0◦.

We establish the coordinate axis with the balance point as the

center, its intersection with the two parallel lines on the phase plane

which are tangent to the phase trajectory are the boundary values

of the vehicle stability region, and their intersection points with

the transverse axis of the equilibrium point are called saddle points,

which characterize the limit value of the sideslip angle. The left and

right boundary values of the quadrilateral stable region are the left

saddle point and the right saddle point respectively. The upper and

lower boundary values are composed of two intersections of the

double parallel lines and the vertical axis of the equilibrium point,

as shown in Figure 4. Since the phase trajectory in this region always

extends in the direction of decreasing the absolute value of the

sideslip angle, controlling the centroid sideslip angle in the phase

plane stable region can effectively maintain the lateral stability of

the vehicle (Zhang et al., 2011). The phase plane represents the

relationship between the sideslip angle and the sideslip angular

velocity. Its phase trajectory varies according to the changes of the

centroid position, road adhesion coefficient, vehicle speed and front

wheel angle, etc.

From the above, the four boundaries and equilibrium points

of the regression model output determine the stable region. The

specific methods will be described in the next section.

3. Dynamic stable region regression
and stability judgment

3.1. Sample making

SVR machine is widely used to solve data regression problems

because of its good predictive property for small dataset and its

robustness to abnormal data (Zhang et al., 2019). In this paper, we

will use SVR to realize the regression of phase plane stable region.

Firstly, the samples of dataset are made according to the improved

double-line method, i.e., the phase plane is artificially divided and

the information of the division of stable region is recorded. To
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FIGURE 4

Phase plane stable region.

TABLE 2 Working condition parameters setting.

Descriptions Symbols Values Units

Ratio of distance from center

of mass to front axle and

wheel base

α/L [0.4, 0.4881] –

Vehicle speed v [11, 20, 30] m/s

Road adhesion coefficient µ [0.2, 0.6, 1.0] –

Front Wheel Angle δ [0, 10, 20, 30] rad

study the effects of centroid position, vehicle speed, road adhesion

coefficient and front wheel angle on the phase plane trajectory, set

the working condition parameters as shown in Table 2.

In this paper, five MISO SVR models are established based

on data sets, as shown in Figure 5A. The input and output of the

model have the following mapping relationship. The model output

includes three sideslip angle boundary predictions and two sideslip

angular velocity boundary predictions, and each output is shown

in Figure 5B. The data set is divided into training set and test set

according to the ratio of 8:2. The training set is used to train the

SVR model, and the test set is used to evaluate its performance, as

shown below.

3.2. Model structure

For linearly divisible SVM problems (Huang et al., 2014), a

convex optimization problem needs to be solved by the maximum

interval algorithm: minimizing a linear inequality constrained

quadratic function. Given linearly differentiable training samples

whose number is l, the optimization problem is solved as follows

(Sun et al., 2008).

S = (
(

x1, y1
)

, . . . , (xl, yl)) (2)

minimisew,b 〈w · w〉 , subject to yi
(

〈w · xi〉 + b
)

≥ 1 i = 1, . . . , l (3)

FIGURE 5

SVR model. (A) Model input-output mapping relationship. (B) Model

predicted value output information.

The solution process requires the transformation of

the above optimization problem using Lagrange function,

from the minimax problem to the corresponding duality

problem, and then substituted back into the original

equation to obtain the following objective function, which

is further solved by sequential minimal optimization

(SMO) algorithm.

L
(

w, b, a
)

=
1

2
〈w · w〉 −

∑l

i=1
αi

(

yi
(

〈w · xi〉 + b
)

− 1
)

=
∑l

i=1
αi −

1

2

∑l

i,j=1
yiyjαiαj

〈

xi · xj
〉

(4)

where αi ≥ 0 are the Lagrange multipliers.

However, the hard margin classifier mentioned above

cannot be used in many real-world problems. If the

experimental data are noisy, a soft margin classifier is used

to allow the model to tolerate noise and outliers, thus

taking more training points into account, which is a class

of problems called linear SVM. We introduce a margin

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1149201
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2023.1149201

FIGURE 6

ε − SVR regression error bound.

relaxation factor, which allows the formula to violate the

margin constraint to some extent, when the optimization

problem becomes:

minimiseξ ,w,b 〈w · w〉 + C

l
∑

i=1

ξ 2i , subject to yi
(

〈w · xi〉 + b
)

≥ 1− ξi i = 1, . . . , l ξi ≥ 0 (5)

The SVR, which is the main topic of this paper, retains all the

main features of the maximum interval algorithm. In this paper,

we will use the ε − SVR, which is a common form of regression

estimation, and we will propose an insensitive loss function ε to

ignore the error within a certain upper and lower range of the true

value, as shown in Figure 6, ξ measures the cost of the error at

the training points in linear regression while the error within the

insensitive region of ε is zero.

Further, the final single-objective optimization problem with

constraints takes the following expression:

minimize ‖w‖2 + C
∑l

i=1

(

ξ 2i + ξ̂ 2i

)

,

subject to
(

〈w · xi〉 + b
)

− yi ≤ ε + ξi,

yi −
(

〈w · xi〉 + b
)

≤ ε + ξ̂i, ξi, ξ̂i ≥ 0 , i = 1, . . . , l (6)

The kernel function is a widely used computational tool in

SVM (Cai et al., 2019), which can calculate the inner product
〈

φ (xi) · φ (x)
〉

in the feature space directly, then build a nonlinear

learner. In this paper, a Gaussian kernel function is used for

high-dimensional mapping, and the equation is as follows:

K
〈

xi, xj
〉

= exp (−

∥

∥xi − xj
∥

∥

2

2σ 2
) (7)

Where σ is the scale of Gaussian kernel function.

FIGURE 7

Model parameter optimization process.

3.3. Parameter optimization

As with most learning algorithms, the hyperparameters

in the SVR model determine the performance of the SVR

model, including the regularization parameter C, the insensitivity

parameter ε and the radial basis kernel parameter σ (Xiao et al.,

2008). For different nonlinear regression problems, it is necessary

to select different hyperparameters to find the optimal high-

dimensional feature space to reflect the characteristics of the data

(Jia et al., 2022).

K-fold cross-validation is a statistical concept. Its practice is to

divide the training set into K equal parts, and take the first part as

the validation set and the rest as the training set in the first round.

In the second round, take the second part as the verification set, the

rest as the training set, and so on. Finally, the average error of K-fold

cross validation is calculated to represent the training effect of

the model. Bayesian optimization is a common method for tuning

parameters in machine learning. The main principle is to perform

probabilistic sampling in the feature space and return the optimal

solution from the sampling point after multiple iterations. In this

paper, we will use Bayesian optimization to perform automatic

parameter search to minimize the 5-fold cross validation loss of the

SVR model that meets the training set samples. The optimization

process of one SVR model is shown in Figure 7.

Optimal parameters of the five SVR models were obtained,

which were shown in Table 3.

3.4. Test set comparison

In this section, the model performance is evaluated using a

test set based on the stable region regression model obtained from

the training above. The mean square error (MSE) of the test set is

selected to represent the relative closeness between the predicted

output and the expected output. It is also used to evaluate the
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TABLE 3 Optimal SVR parameters.

Variable name Regularization parameter C Insensitivity parameter ε Radial basis kernel parameter σ

Down_Y 50.312 0.075441 6.3182

Left_X 99.542 0.0094612 4.7863

Up_Y 7.0772 0.071628 1.6875

Right_X 0.81525 0.00020469 0.0015695

Balance point 115.43 0.0086606 3.2569

TABLE 4 MSE values for test set.

Left_X/rad Down_Y/rad.s−1 Right_X/rad Up_Y/rad.s−1 Balance point/rad

MSE 0.0030 0.0423 0.0028 0.0428 0.0024

generalization ability of the model (Jingxu, 2006). The form of MSE

is as follows:

MSE =
1

m

m
∑

i=1

(

Yi − Ŷi

)2
(8)

From the Table 4, we can see that the maximum MSE of the

boundary of the sideslip angular velocity is 0.0428 (rad.s−1)2, while

the maximum MSE of the boundary of the sideslip angle is 0.0030

rad2, which proves that the stable region regression model has

strong generalization ability.

4. Summary of influential factors &
e�ect analysis

According to the SVR model of vehicle stable region, the

influencing factors of vehicle stability region are summarized and

analyzed. The intercept of the stable region boundary on the

horizontal axis characterizes the limit of the stable-state sideslip

angle, which is the base point of the whole stable region boundary.

The slope of the boundary represents the limit of the sideslip

angle under different sideslip angular velocities. The smaller the

absolute value of the boundary slope, the stronger the limit of the

boundary on the sideslip angle under transient conditions (Huang

et al., 2021). Through the analysis of the phase plane stable region

and the quadrilateral stability boundary, the following conclusions

are drawn:

(1) The slope of the left and right boundaries is mainly affected by

vehicle speed. In Figure 8, with the increase of vehicle speed,

the values of the left and right boundaries remain basically

unchanged, and the absolute value of the boundary slope

decreases with the increase of vehicle speed. This shows that

under the same sideslip angle, the limit of transient sideslip

angular velocity increases, the convergent phase trajectory

decreases significantly, and the stable region of the phase

plane shrinks.

(2) The intercept of the stable boundary is mainly affected by the

road adhesion coefficient. In Figure 9, with the decrease of the

adhesion coefficient, the slope of the non-adjacent boundary

of the stable region remains basically unchanged, but the left

and right boundary values converge to the equilibrium point.

This shows that under the same sideslip angle, the restriction

on the transient sideslip angle is strengthened, the stable

region shrinks, and the trajectory of convergence in the phase

plane decreases.

(3) The effect of the front wheel angle on the phase plane mainly

is making the phase trajectory no longer symmetrical. In

Figure 10, when the current wheel angle is small, the number

of convergence trajectories does not change significantly, but

the stable region will flatten along the horizontal axis, and the

asymmetry is not obvious at this time. When the current wheel

angle is large, the slope of the left boundary will change so that

it is no longer parallel to the right line. This means that the

absolute value of the slope decreases, resulting in a greater limit

of the steady-state sideslip angle and a sharp reduction of the

transient sideslip angle limit.

(4) The main effect of the centroid position on the stable region

is the distance from the centroid position to the front and rear

axles. In the Figure 11, when the centroid position is shifted

backward, the slope of the boundary is basically unchanged,

the absolute value of the intercept between the left and right

boundaries of the stable region decreases, the convergent phase

trajectory is significantly reduced, and the stable region of the

phase plane decreases.

5. Stability controller designing and
simulation test

5.1. Stability controller designing

When there is a high risk of instability, the ESP system will

automatically intervene to prevent the vehicle from losing control.

Both DYC and Active Front Steering (AFS) control technology

can improve the driving stability of the vehicle. Among them,

DYC generates a transverse torque acting on the body through

four-wheel differential braking force to achieve vehicle stability

control. It is widely used because of its good performance in vehicle

handling and trajectory keeping.
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FIGURE 8
[

µ, δ, a

L

]

= [0.2, 0, 0.4]. (A) v = 20. (B) v = 30.

Based on the following 2-DOF differential equation of vehicle

motion, vehicle stability is closely related to vehicle state:

{

∑4
i=1 FYi = m (v̇y + vxr)

Mz = Iz ṙ
(9)

Considering the influence of deceleration caused by four-wheel

brake distribution on vehicle speed, vehicle speed is considered as

a time-varying state quantity. The expression of sideslip angular

velocity is as follows.

β̇ =
v̇y

vx
−

v̇x

vx
β (10)

State space equation belongs to the system formula of modern

control theory. It starts from the differential equation of the system

and introduces the concepts of system state, input and output to

FIGURE 9
[

v, δ, a

L

]

= [20, 0, 0.4]. (A) µ = 0.2. (B) µ = 0.6.

construct the system expression. The following vehicle stability

state space equation is obtained by further simplification:

[

ṙ

β̇

]

=





a2kf+b2kr
vxIz

akf−bkr
Iz

akf−bkr

mv2x
− 1

kf+kr
mvx

− v̇x
vx





[

r

β

]

+

[

1
Iz

0

]

1T +

[

−
akf
Iz

−
kf
mvx

]

δ (11)

Where a, b is the distance from the center of mass to the front and

rear axles, kf , kr is the lateral stiffness of front and rear axle, 1T is

the additional yaw moment.

Model predictive control (MPC) is one of the model-based

feedback control strategies, which is widely used in various control

systems because of its good control effect and robustness. The basic

principle of MPC can be summarized as follows: at each sampling
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FIGURE 10
[

µ, v, a

L

]

= [0.2, 20, 0.4]. (A) δ = 0. (B) δ = 10.

time, update the optimization problem with the latest measured

value, solve the updated open-loop optimization problem and apply

the first component of the optimization solution u∗ (k|k) to the

system. LTV-MPC is an extended control method of MPC. Because

MPC is an algorithm with high requirements for model accuracy,

its control accuracy will decline when the system status is updated.

However, LTV-MPC considers the state change of the linear control

system and has stronger adaptability for time-varying systems.

Figure 12 shows the schematic diagram of the open-loop optimal

solution of LTV-MPC.

Considering the time-varying of the vehicle system, this paper

will establish a DYC stability controller based on LTV-MPC,

which includes an upper controller and a lower controller. The

upper controller receives the signal from the stability judgment

module and gives the expected additional yaw moment at the

FIGURE 11

[µ, v, δ] = [0.2, 20, 0]. (A) a/L = 0.4. (B) a/L = 0.4881.

current moment through the online open-loop solution. The

lower controller realizes direct yaw torque control through four-

wheel braking force distribution, thus maintaining the stability of

the vehicle.

The upper controller is mainly composed of LTV-MPC, while

the lower controller is responsible for the four-wheel braking force

distribution of the yaw moment, which is adjusted in real time by

giving the desired additional yaw moment and desired deceleration

speed from the upper controller. The four-wheel braking force

needs to satisfy the following constraints.

{

maaim = FX1 + FX2 + FX3 + FX4
1T = (FX2 + FX4) La − (FX1 + FX3) La

(12)

Where, FX1, FX3, FX2, FX4 corresponds to the left front, left rear,

right front, and right rear wheels respectively, La is the front

and rear axle half axle length, and aaim is the desired braking

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1149201
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2023.1149201

FIGURE 12

LTV-MPC open-loop optimal solution.

FIGURE 13

Simulation test architecture.

deceleration, is given by another upper speed controller, which is

not the focus of this paper and will not be discussed more here.

Due to the axle load transfer during braking, the front wheels

are subjected to greater vertical loads than the rear wheels, and are

subjected to greater braking forces, with the following constraints.







FX3 =
lf g+aaimhg
lrg−aaimhg

FX1

FX4 =
lf g+aaimhg
lrg−aaimhg

FX2
(13)

Where hg is the height of the center of mass of the vehicle.

According to the above constraints, there is a unique four-

wheel braking force distribution scheme for the given expected

additional yaw moment and expected deceleration. At this point,

a DYC stability controller based on LTV-MPC is proposed, and

the model-in-loop simulation test will be launched based on the

algorithm proposed in the previous section.

5.2. Model-in-the-loop simulation testing

CARSIM-SIMULINK co-simulation platform is used for model

in-loop simulation test. We configured the vehicle dynamics model

and operation scenario in CARSIM, and designed the controller

and algorithm in SIMULINK (Cong et al., 2022). The scenario set in

CARSIM selects a road with different adhesion coefficients between

the left and right wheel surfaces: 1.0 on the left and 0.2 on the right.

Under such bad road conditions, the stability controller proposed

in this paper will work to avoid the instability of vehicle. However,

the braking force distribution will lead to the underutilization of

the road adhesion coefficient, which will lead to the deterioration
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FIGURE 14

Stable transition area.

of the vehicle braking performance. Therefore, it is necessary to

set up a decision module to determine the current stability state

of the vehicle and decide whether to apply stability control (Guo

et al., 2018). The stability decision module is given by the dynamic

stable region regression model proposed in this paper, as shown in

Figure 13. According to the vehicle state input, the stable region

regression model gives the vehicle driving stable region on the

phase diagram of the sideslip angle—sideslip angular velocity, as

the criterion of vehicle stability.

Since the artificial division of stable region is strict, so in

the stable region, we regard that the vehicle is in the absolute

stability state. At the same time, in order to prevent the controller

from switching frequently and repeatedly, we set a relaxation

factor Fa which is greater than 1. Multiply each boundary

of the stable region by Fa to obtain the unstable boundary.

The vehicle state outside the unstable boundary is regarded as

unstable, and the middle of the unstable boundary and the stable

boundary is regarded as the transition region. As shown in

Figure 14.

On this basis, the test process of stability decision and

control algorithm is proposed. The following is a model-in-

the-loop simulation test method to compare the traditional

AEB, the equipment of stability control (SC) without stability

judgment decision (SVR) and the equipment of SC and SVR,

we use the vehicle sideslip angle and the obstacle distance

to measure the stability safety performance and braking safety

performance of each scheme, which can verify the feasibility of

the vehicle stability control strategy (Zhang et al., 2016; Wu et al.,

2022).

By adjusting and calibrating the Fa, the simulation results were

obtained as shown in Figure 15.

From the simulation test results, for emergency braking under

bad road conditions, the traditional AEB scheme has a serious

instability and side slip (Wu, 2007), resulting in the sensor not being

able to recognize the obstacle in front, which obviously does not

meet the requirements of stability safety. The scheme of adding SC

FIGURE 15

Simulation results. (A) The sideslip angle of three working

conditions. (B) The obstacle distance of three working conditions.

without SVR can ensure the stability safety of the vehicle, but due

to the excessive intervention of the stability controller, the braking

safety of the vehicle cannot meet the requirements. The scheme

of adding SC and SVR can not only ensure that the vehicle stops

at a safe distance in front of the obstacle, but also ensure that

the sideslip angle is within the acceptable range. In summary, the

rationality of using the stable region regression model proposed in

this paper for stability judgment is verified, and the efficiency of

the LTV-MPC stability control algorithm proposed in this paper

is illustrated.

6. Conclusions & outlooks

The algorithm proposed by this paper is mainly

applied to scenarios where lateral instability of the vehicle

may occur. In another word, the algorithm is used to

determine the stability state of the vehicle, and avoid
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the occurrence of vehicle instability. The conclusions are

as follows:

(1) Based on the traditional double-line method, this paper

proposes an improved double-line method for quadrilateral

stable region, and carries out a large amount of work on stable

region dividing to establish a sample data set for supervised

learning training and testing.

(2) In this paper, an SVR-based dynamic stable region regression

model is proposed based on the vehicle β − β̇ phase plane to

provide a criterion for the real-time stability of vehicle driving.

The result of the test set indicates that this dynamic stable

region regression model has a strong generalization ability.

(3) In this paper, we extend the regressionmodel of dynamic stable

region, consider the real-time input of vehicle state, and the

causal analysis of important factors and vehicle driving stable

region is performed and summarized.

(4) In this paper, based on LTV-MPC, a DYC stability controller

is carried out, and the algorithm verification process is

designed. Compared with the traditional AEB scheme and

the SC-equipped scheme, the SC&SVR can coordinate the

braking safety and stability safety of the vehicle. The result

verifies the rationality of using the stable region regression

model proposed in this paper for stability evaluation, as well

as the efficiency of the stability control algorithm of the DYC

stability controller.

However, there are still many limitations of the algorithm.

(1) Due to the use of pre-calibrated data sets, when vehicle

parameters change a lot, the accuracy of the model will

be reduced.

(2) The test vehicle needs to have four-wheel differential

braking capability.

(3) The adaptive MPC algorithm consumes a lot of arithmetic

power and requires high accuracy of the model, so it needs to

be used with a better performance observer for actual testing.
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