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A directionally selective
collision-sensing visual neural
network based on
fractional-order di�erential
operator

Yusi Wang, Haiyang Li*, Yi Zheng and Jigen Peng

Machine Life and Intelligence Research Centre, School of Mathematics and Information Science,

Guangzhou University, Guangzhou, China

In this paper, we propose a directionally selective fractional-order lobular giant

motion detector (LGMD) visual neural network. Unlike most collision-sensing

network models based on LGMDs, our model can not only sense collision threats

but also obtain the motion direction of the collision object. Firstly, this paper

simulates the membrane potential response of neurons using the fractional-order

di�erential operator to generate reliable collision response spikes. Then, a new

correlation mechanism is proposed to obtain the motion direction of objects.

Specifically, this paper performs correlation operation on the signals extracted

from two pixels, utilizing the temporal delay of the signals to obtain their position

relationship. In this way, the response characteristics of direction-selective

neurons can be characterized. Finally, ON/OFF visual channels are introduced

to encode increases and decreases in brightness, respectively, thereby modeling

the bipolar response of special neurons. Extensive experimental results show that

the proposed visual neural system conforms to the response characteristics of

biological LGMD and direction-selective neurons, and that the performance of

the system is stable and reliable.

KEYWORDS

direction selectivity, fractional-order di�erential operator, neural modeling, collision
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1. Introduction

With the rapid development of science and technology, intelligent mobile machines have

come to have increasingly important roles in people’s lives. A variety of intelligent mobile

machines, including robots, unmanned aerial vehicles, ground vehicles, and automatic patrol

cars, make various aspects of our lives more technical, automatic, and intelligent. It is a great

challenge to endow such machines with the capacity to respond to the dynamic visual world

in real-time; however, this is of great significance in their development (Cizek and Faigl,

2019; Yulia et al., 2020). Among many visual functionalities, sensing the threat of collision

with external moving objects (collision sensing for short) is one of the most important

abilities for intelligent mobile machines and is an important guarantee of safe driving by

intelligent machines (Dietmueller et al., 2017; Hartbauer, 2017). Therefore, it is particularly

important to develop efficient, reliable, and fast collision-sensing vision systems.
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Spike neural networks are an important research topic in

the field of brain-inspired intelligence. These networks process

information by simulating the pulse signal transmission between

neurons, which results in higher energy efficiency and faster

response times, making them advantageous for applications such

as autonomous driving and robotics. In recent years, research on

Spike neural networks has rapidly developed and achieved fruitful

results (Samanwoy and Hojjat, 2009; Bing et al., 2018; Neftci

et al., 2019; Tavanaei et al., 2019; Fang et al., 2021a,b; Shalumov

et al., 2021; Yang et al., 2022). However, Spike neural networks

still have the following shortcomings: (1) The neuron model

is more complex. The neuron model of Spike neural networks

is more complex than traditional neuron models, requiring

more computing resources and higher computational accuracy.

(2) Network structure design is more difficult. The network

structure design of Spike neural networks requires more specialized

knowledge and experience, making it more challenging to design.

Therefore, we need to develop a network system that is structurally

simple and efficient.

Insects’ visual system has a relatively simple structure, with

fewer neurons inside the system. It perceive changes in information

on the retina and make a series of responses through neuron

transmission, serving as a bridge connecting the brain and the

visual world. However, even the simple vision systems of insects

can reliably guarantee several behaviors including collision sensing,

collision avoidance, fast target detection, and tracking during flight,

especially efficient motion adaptation in complex dynamic scenes

(Rind and Simmons, 1999; Rind et al., 2003; Santer et al., 2005;

Yue and Rind, 2006). For example, locusts rely on their advanced

vision systems to fly hundreds of miles during migration without

colliding with each other, and their collision avoidance rate in dense

forests during foraging is as high as 98% (Kennedy, 1951; Thorson,

1966). In this work, considering the cost, power consumption, and

reliability of intelligent systems, we take the insect vision system

as a starting point to study and simulate a working mechanism

with the aim of developing a simple, efficient, and reliable collision

sensing system.

The insect visual nervous system includes special neurons

called lobular giant motion detectors (LGMDs), which show strong

neural responses to the looming motion of objects, whereas they

hardly respond to objects far away (O’Shea and Williams, 1974;

Rind and Bramwell, 1996). More precisely, LGMDs’ dendritic

arborizations ramify in the third neuropil (lobula) of locust optic

lobes and consist of three dendritic subfields. The main subfield

is thought to receive an excitatory retinotopic projection that is

sensitive to motion (Rowell et al., 1977; Sztarker and Rind, 2014).

Neurophysiological studies have shown that LGMD form part of

the fast neural pathway in the early collision warning systems of

insects, and that their purpose is to trigger escape or avoidance

behaviors when an insect encounters danger from a looming object

(Rind and Simmons, 1992; Judge and Rind, 1997).

In the past few years, many advances have been made in

biological research on LGMD neurons and their afferent pathways,

and a series of collision-sensing neural networks based on these

advances have been proposed. Such models are based on two

main types of neural response of LGMDs to looming objects. (1)

During the looming process of objects, the rate at which spikes are

emitted by neurons increases continuously (O’Shea and Williams,

1974; Judge and Rind, 1997). (2) During the looming process of

objects, the spike rate of neurons reaches a peak at or before the

collision, which depends only on the image size of the looming

object on the retina (Hatsopoulos et al., 1995; Gabbiani et al., 1999).

However, existing collision-sensing network models are only used

to detect the occurrence of a collision; they cannot obtain additional

motion information about the collision objects, such as the motion

direction, motion speed, or collision location. Therefore, further

study of the motion of collision objects is needed to enhance the

function of collision-sensing visual neural networks.

Neurophysiological studies have identified special visual

neurons in insects with a preference for specific directional motion

information, called directionally selective neurons (Barlow and

Hill, 1963; Stavenga and Hardie, 1989). They respond strongly to

motion oriented along a preferred direction but show weak or

no response, or even a fully opponent response, to null-direction

motion. The null direction is 180◦ from the preferred direction.

Directionally selective neurons can quickly and reliably extract

visual motion information in different directions and show a strong

response to the motion in the preferred direction. At present,

the postsynaptic pathways of directional selective neurons are

still under investigation, but it is obvious that identifying the

direction of a collision object’s movement enables insects to choose

the correct collision avoidance route, which is an indispensable

advantage in collision escape or avoidance tasks.

To date, there has been relatively little research systematically

modeling the motion direction of collision objects. In a pioneering

study based on the classic LGMD model, Yue and Rind (2013)

made the inhibitory waves of neurons propagate in a specific

direction through delaying the time step and weakened the

responses of neurons in a specific direction, thereby extracting

motion information in a specific direction. Zhang et al. (2015)

introduced the Reichardt detector model into an artificial network

system to determine the direction of moving objects. Fu and

Yue (2017) used a delay filter based on an ON-OFF visual

path to extract information in four directions in horizontal and

vertical positions in space. Huang et al. (2022) constructed a

directionally selective visual processing module based on a spatio-

temporal energy framework and extracted motion information

for eight directions in space through Gabor filtering. Although

some progress regarding directional selectivity was made in these

studies, existing models still have a number of shortcomings. (1)

The existing models all use the first response mode of LGMDs to

study directional selectivity; there has not yet been any attempt to

systematically model and analyze directionally selective neurons

based on the second response mode using strict mathematical

methods. Based on the first responsemode of LGMD, Yue and Rind

(2013), Zhang et al. (2015), and Fu and Yue (2017) used different

methods to depict the directional selectivity of neurons, but these

methods all relied on the use of a threshold to make judgments in

practical applications. However, it is often difficult to choose an

appropriate threshold in different scenarios. (2) The work of Fu

and Yue (2017) and Huang et al. (2022) mainly relied on the use of

filters to extract direction information; they did not systematically

study the selective response of neurons in the preferred direction.

In addition, the spatiotemporal energy basedmodel is considered to
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be mathematically equivalent to the Reichardt-type model. When

its temporal and spatial filter settings are the same, it can achieve

similar specific functional characteristics. (3) Existing models

use the first-order differential operator or difference network

framework to model directionally selective neurons. However, a

large number of biological studies have shown that the neural

dynamics followed by the neuron response should be of fractional

order, and a fractional-order differential operator is required to

accurately describe the biological logic of the brain neural response

process (Podlubny, 2013; Teka et al., 2013; Chen et al., 2018;

Wan and Jian, 2019). Therefore, further systematic studies using

strict mathematical methods are required to model the directional

selectivity in LGMD-based collision-sensing neural networks and

elucidate their internal computing principles.

In this paper, a directionally selective fractional-order LGMD

collision-sensing visual neural network, called DFLGMD, is

proposed. As well as sensing the looming motion of a collision

object, this model can obtain the direction of the looming object.

Moreover, DFLGMD is based on the second response mode of

LGMD neurons; it does not rely on a threshold to make judgments

in practical applications. In the proposed neural network model, a

new correlationmechanism is used to correlate the signals obtained

from two pixels with directional information, so as to characterize

the special selective response of directionally selective neurons to

movements in the preferred direction. Then, an ON-OFF visual

channel is introduced to act on the correlation output. The purpose

is to divide the motion signal into parallel channels, code the

increases and decreases in brightness, and thus model the bipolar

response of special neurons. Finally, a direction-selective neuron

is fused with the fractional-order collision-sensing visual neural

network, such that the system can obtain the motion direction of

the collision object while sensing the collision threat, and further

make the correct collision avoidance decision. The proposed visual

neural network is systematically studied and tested in different

environments. The results show that the DFLGMD visual neural

network not only produces reliable response spikes to looming

objects but can also accurately obtain the moving direction of

looming objects; moreover, its network reliability is better than

those of previous methods.

The main contributions of this paper can be summarized as

follows.

(1) We develop a new DFLGMD collision-sensing

visual neural network and provide a unified and rigorous

mathematical description.

(2) An ON-OFF visual channel is introduced into the

fractional-order LGMD visual neural network, enabling selectivity

of the system for looming bright and dark objects by encoding

increases and decreases in brightness, respectively.

(3) The proposed DFLGMD neural network produces a high-

fitness and reliable response spike to a looming object, and also

accurately identifies the direction of movement of the object.

The remainder of this paper is organized as follows. Section

2 reviews relevant previous work. In Section 3, the proposed

new DFLGMD collision-sensing visual neural network is described

in detail. In Section 4, the performance of the proposed neural

network is verified through experiments, and the results are

discussed. We give further discussions in Section 5. In the final

section, we conclude this paper.

2. Related work

In this section, we review some past work on relevant

topics including ON-OFF visual channels, LGMD neurons, and

directionally selective neurons. These entities are all found in

insects visual systems and have been extensively studied.

2.1. ON-OFF visual channel

In an insect’s visual system, the retina receives visual signals and

then encodes the visual information contained in the signals into

sequences of neural responses, which are transmitted to the brain.

Different signal transmission pathways process different types of

visual information: the cone pathway is involved in encoding

bright visual information with relatively high light intensity, and

the rod pathway is involved in encoding dark visual information

with relatively low light intensity. Under different light adaptation

conditions, light enhancement and light attenuation signals are

processed through different cone and rod signal transmission

pathways, respectively. We call the pathway that transmits light

enhancement signals the ON pathway and the pathway that

transmits light attenuation signals the OFF pathway.

ON-OFF pathways functioning as information-encoding

methods have been discovered in the preliminary visual systems

of many animal species (Borst and Euler, 2011; Borst and

Helmstaedter, 2015), including flies, mice, and rabbits. Such

pathways divide the received visual information into parallel ON

or OFF channels and then code the brightness increment (ON) and

brightness decrement (OFF) for parallel processing. The response

is not sensitive to the spatial change in brightness, but it is sensitive

to the temporal change; that is, when the brightness in the circular

area of the receptive field changes with time, the output of the

visual channel increases or decreases. This property of sensitivity

to the change in local brightness with time is the basis of object

motion analysis in computer vision.

2.2. LGMD neurons

LGMDs are collision-sensitive neurons found in insects’ vision

systems. They are extremely sensitive and respond strongly to

objects looming near the insect on a direct collision course, while

exhibiting little or no response to receding objects (O’Shea and

Williams, 1974; Rind and Bramwell, 1996). LGMDs are huge

neurons. Their dendritic arborizations ramify in the third neuropil

(lobula) of insect optic lobes and consist of three dendritic subfields;

the main subfield is thought to receive an excitatory retinotopic

projection, which is sensitive to motion. An LGMD and descending

contralateral motion detector (DCMD) together form a neural

circuit (Rowell et al., 1977; Schlotterer, 1977). The fast conducting

axon of the neuron is the largest axon in the contralateral nerve

cord, which maps to the chest motion center involved in generating

jumping and flying movements. The connections between LGMDs

and DCMDs are very strong and reliable. Each action potential

of an LGMD will trigger an action potential in the corresponding

DCMD. On the contrary, under visual stimulation, each action
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potential in the DCMD is caused by the LGMD (O’Shea et al.,

1974; Judge and Rind, 1997). In the whole neural circuit, the LGMD

sends out a strong response to the looming object motion and

transmits information to the post-synaptic target DCMD neuron,

thereby inducing escape behavior. Figure 1 shows the physiological

anatomy of an LGMD neuron structure.

The neuronal characteristics of LGMDs have attracted

considerable research attention. Building a response model for

LGMD neurons not only enables a deeper understanding of

biological vision processing but will also help us to develop an

efficient, stable, and reliable collision perception vision system for

intelligent mobile machines.

2.3. Directionally selective neurons

A special directionally selective interneuron is found in the

lobular plate of the optic lobe of diptera insects (Figure 1). As a

special visual neuron that has a preference for motion information

in a specific direction, it can extract motion and direction

information about the object from the visual scene projected onto

the retina, and quickly and reliably evokes a strong response to

information in the preferred direction, while responding weakly

or not at all to information in the zero direction (non-preferred

direction). Although it has been shown that the direction of object

motion is encoded in the two synapses of the lobular lamina

(DeSouza and Kak, 2002), because the visual system of insects has a

highly organized layered structure and is close to the inner surface

of the retina, the relationship between the directionally selective

neuron and the visual cortex is unclear (Franceschini, 2004).

Research has shown that directionally selective neurons can

be used to extract visual cues for translational motion (Rind and

Yue, 2006) and organized with a special structure for collision

detection (Yue and Rind, 2007). It is unclear whether these

directionally selective neurons can be combined only with this

special structure for collision detection. However, results suggest

that directionally selective neurons can be effectively and reliably

organized for collision sensing, which indicates that similar

organizational structures may exist in biological vision systems.

This provides strong support for research on collision sensing based

on biological vision.

3. Model of the directionally selective
fractional-order visual neural network

In this section, we introduce the neural network model and

structure of the proposed DFLGMD. Compared with existing

LGMD collision-sensing systems, a key function of DFLGMD is

that as well as perceiving collision threats involving moving objects,

it can determine the direction of movement of the objects, thereby

obtaining more collision information. The neural network is

composed of five neural layers, each of which has a special function

and cooperates with the others to obtain collision information

about moving objects quickly and accurately. Figure 2 shows a

schematic diagram of DFLGMD’s visual neural network structure.

In the following subsections, we introduce the composition and

functions of each layer in detail.

3.1. Photoreceptor layer

In the insect visual system, the retina can sense an external

light stimulus and provide the corresponding external perception

information. The retina contains many ommatidia, each of which is

composed of eight photoreceptors. Each photoreceptor can observe

a small area of the entire visual field. Such multiple-ommatidia

visual areas constitute the entire visual field of the retina.

In the DFLGMD neural network, a photoreceptor layer

composed of multiple photoreceptors is used as the input layer

for the whole network to obtain the brightness information of

the entire visual field L, that is, to capture the brightness values

of changes in the external visual field. The photoreceptor layer

directly processes the input original image sequence. Specifically,

we use the state variable Pij(t) to describe the membrane potential

of photoreceptors at position (i, j) and time t. The dynamics are

controlled by a fractional-order differential equation. The model is

as follows:

D
α1
t Pij(t) = gleak(Vrest − Pij(t))

+λexLij(t)(Eex − Pij(t))+ λinLij(t − 1)(Ein − Pij(t)),
(1)

where D
α1
t Pij(t) represents the α1-order differential of Pij with

respect to time t; gleak is the leakage conductance, which describes

the total passive ion flow through the cell membrane; Vrest is the

resting potential of the cell; Eex and Ein are the excitatory and

inhibitory synaptic batteries, respectively, which confine the cell’s

dynamic range to Ein ≤ Pij ≤ Eex; and λex and λin are gain factors

(or synaptic weights).

In the insect vision system, an ON-OFF channel divides motion

information into parallel ON and OFF channels, encoding the

brightness increment (ON) and decrement (OFF), respectively. In

DFLGMD, an ON-OFF mechanism is realized using half wave

rectification and a threshold membrane potential to separate visual

processing from the photoreceptor layer for parallel computing:

PONij (t) = γ1[Pij(t)− Vth1]
+ (2)

and

POFFij (t) = −γ2[Pij(t)− Vth2]
−, (3)

where [.]+ ≡ max(., 0), [.]− ≡ min(., 0); γ1 and γ2 are gain

factors of ON and OFF, respectively; Vth1 is the threshold of the

ON channel; and Vth2 is the threshold of the OFF channel.

3.2. Excitatory/inhibition layer

The second layer of the DFLGMD network corresponds to

the excitatory and inhibitory neurons in the insect visual system.

Excitatory and inhibitory neurons are parallel groups of neurons

that can enhance or inhibit the intensity of signals. There is

a critical competition between them. If the excitatory neurons

“win” the competition, the postsynaptic neurons are successfully

activated, causing the corresponding neuronal response. Otherwise,

the corresponding postsynaptic neurons cannot respond.

In the proposed neural network, the excitatory neuron E is

located between the P layer and the S layer, receives the output
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FIGURE 1

The insect neural system. (A) Neural network of LGMD neurons. The neural network is composed of four retinotopically organized layers. (B) The

biological vision system of insects [modified from Haag and Borst (2002) and Borst et al. (2020)]. The directionally selective neurons are located on

the lobular plate, and sense the direction information of movement.

signal of the ON-OFF channel, and then directly transmits it to the

corresponding postsynaptic neuron, i.e.,

EONij (t) = PONij (t) (4)

and

EOFFij (t) = POFFij (t). (5)

In the visual nervous system, excitatory neurons directly

transmit signals, and inhibitory neurons mainly rely on lateral

inhibitory waves to inhibit peripheral neurons. As the inhibition

wave produces an information residue in the transmission process

that does not disappear immediately, the time at which the signal

is received by the postsynaptic neuron is often delayed. Therefore,

after passing through a delay unit, the signal produces lateral

inhibition of the peripheral neurons.

In DFLGMD, inhibitory neuron I is parallel to excitatory

neuron E, and there is no interaction between signals. The

inhibitory neuron I first receives the output signal from the ON-

OFF channel. The specific model is as follows:

D
α1
t IONij (t) = gleak(Vrest − IONij (t))+ δexP

ON
ij (t)(Eex − IONij (t)),

(6)

where gleak is the leakage conductance of inhibitory cells; Vrestis

the resting potential of inhibitory cells; Eex indicates the excitatory

synaptic battery; and δex is the adjustment coefficient.

In a similar way,

D
α1
t IOFFij (t) = gleak(Vrest − IOFFij (t))+ δexP

OFF
ij (t)(Eex − IOFFij (t)).

(7)

Then,

ÎONij (t) = [IONij (t)]+ (8)

ÎOFFij (t) = [IOFFij (t)]+. (9)

Next, after a time delay, neuron I produces a lateral inhibition

of the peripheral neurons at different spatial positions. In this work,

a suitable spatial inhibition function is selected to describe the

inhibition by neurons of the surrounding neurons; this is then

convolved with the signal in the delay time to achieve the lateral

inhibition function of the DFLGMD network. The specific model is

as follows:

ĪONij (t) = ÎONij (t)⊗ G1 + βon[Î
ON
ij (t − 1)⊗ G2]. (10)

Similarly, we have

ĪOFFij (t) = ÎOFFij (t)⊗ G1 + βoff [Î
OFF
ij (t − 1)⊗ G2], (11)

where βon and βoff are regulatory factors. G1 and G2 are the

Gaussian kernels, defined as

G(x, y) =
F

2πσ 2
exp(

−(x2 + y2)

2σ
). (12)

The schematic diagram of inhibition kernels G1 and G2 is

shown in Figure 3. The inhibitory kernels G1 and G2 each contain

two components, namely, the inhibitory and excitatory regions.

The inhibition area of G1 is small and strong, only inhibiting

the adjacent neurons. The inhibition area of G2 is large, and

the surrounding inhibition gradually weakens. G2 exerts different

degrees of inhibition on adjacent neurons according to their

spatial positions.

Note that the strength of the inhibition wave decays over time

during propagation. Therefore, the proposed neural network has

two delay units, and the inhibition strength under different delay

units decreases with increasing delay time.

3.3. Summing layer

In the visual system of insects, summing neurons are used to

express results after critical competition between excitatory and
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FIGURE 2

Schematic illustration of the proposed DFLGMD neural network. DFLGMD neural network is composed of photoreceptor, ON/OFF channel,

excitability, inhibition, summing cells, directionally selective neuron, and single-cell LGMD cells. For clear illustration, only two photoreceptors at

di�erent positions and corresponding downstream processing are described.

inhibitory neurons. This is closely related to whether or not the

membrane potential response of postsynaptic neurons occurs.

In the proposed neural network, a summing layer integrates

signals from both excitation and inhibition neurons. First, after

the excitation and inhibition of local ON/OFF, both ON and OFF

channels have local S-ON and S-OFF summing units, i.e.,

D
α1
t SONij (t) = gleak(Vrest − SONij (t))+ εexE

ON
ij (t)(Eex − SONij (t))

+ εin Ī
ON
ij (t)(Eex − SONij (t)) (13)
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FIGURE 3

Schematic illustration of cell inhibition. On the left is the nearest neighbors convolution kernel, and on the right is the next-nearest neighbors

convolution kernel. (A) σ1 = 0.3, F1 = 5, (B) σ2 = 0.4, F2 = 1.

and

D
α1
t SOFFij (t) = gleak(Vrest − SOFFij (t))+ εexE

OFF
ij (t)(Eex − SOFFij (t))

+ εin Ī
OFF
ij (t)(Ein − SOFFij (t)), (14)

where gleak is the leakage conductance of S cells; Vrest indicates

the resting potential of S cells; Eex and Ein indicate excitatory

and inhibitory synaptic cells, respectively; and εex and εin are the

weights of excitatory and inhibitory synapses, respectively.

Then,

ŜONij (t) = [SONij (t)]+ (15)

ŜOFFij (t) = [SOFFij (t)]+. (16)

The local signals from the ON-OFF channel interact with

each other. After a superlinear operation, the S summing neuron

integrates local signals to obtain the final global signal response.

The calculation obeys a superlinear rule, as follows:

Sij(t) = µ1 · Ŝ
ON
ij (t)+ µ2 · Ŝ

OFF
ij (t)+ µ3 · Ŝ

ON
ij (t) · ŜOFFij (t), (17)

where {µ1,µ2,µ3} denotes the combination of term coefficients

that allows the S unit to represent different “balances” between

local polarity excitations and mediate influences via ON and

OFF contrast.

3.4. Direction layer

In the insect visual system, there is a special visual neuron

that has a preference for specific directional motion information,

called the directionally selective neuron. It can quickly and reliably

extract visual motion information in different directions and shows

a strong response to object motion in the preferred direction. This

is helpful in identifying the direction of an object’s motion and is

very important for sensing the collision threat of moving objects.

In the DFLGMD neural network, we introduce a directional

selectivity mechanism to extract the directional information

of moving objects. This mechanism simulates the directionally

selective neurons of insects, in that it also shows strong responses to

signals in the preferred direction but weak or no response tomotion

signals in the zero direction (non-preferred direction).

In the fourth layer of the DFLGMD network, directionally

selective neurons receive motion information after S-layer

integration. Given a preferred direction θ , the direction

information of position (i, j) on the θ is defined as:

Dij(t, θ) = Sij(t)× Sx(i,θ)y(j,θ)(t − 2)− Sij(t − 1)× Sx(i,θ)y(j,θ)(t − 1),

(18)

where

x(i, θ) = i+mcosθ ,

y(j, θ) = j+msinθ ,
(19)

andm is a constant, θ ∈ {0, π
4 ,

π
2 ,

3π
4 ,π , 5π4 , 3π2 , 7π4 }.

A schematic illustration of the relative position between (i, j)

and (x, y) is presented in Figure 4. For a given position (i, j), we

can choose a series of (x, y) corresponding to different directions

θ . Thus, a series of correlation outputs Dij(t, θ) with different

preferred motion directions θ can be defined. For a given direction

θ0,Dij(t, θ0) gives the strongest output in response to object motion

oriented along direction θ0, with weak or no output in response

to motion oriented along other directions. That is, Dij(t, θ0) shows

directional selectivity.

3.5. LGMD layer

In the insect visual system, LGMDs, a class of collision-sensitive

neurons, are very sensitive to the movement of looming objects but

show little response to the movement of distant objects.

In the proposed neural network, after a series of presynaptic

steps to process visual information, the LGMD neuron receives

local information from the D layer and integrates it as follows:

R1(t, θ) =

n∑

i,j

Dij(t, θ), (20)

where n is the number of rows or columns of the neuron layer.
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FIGURE 4

Schematic illustration of relative position between (i, j) and (x, y). m is

the distance between (i, j) and (x, y) while θ is the angle between the

directions.

Further, the response activity of LGMD neurons with

directional selectivity in direction θ is

D
α1
t L1(t, θ) = gleak(Vrest − L1(t, θ))+ ξexR1(t, θ)(Eex − L1(t, θ)),

(21)

where ξex = 5 × 1282/n2 is a gain factor, and n is the number of

rows or columns of the neuronal layer. Finally,

L̂1(t, θ) = [L1(t, θ)]
+. (22)

Here, L̂1(t, θ) has the strongest response to objects moving in

the θ direction and weak or no response to objects moving in other

directions. That is, L̂1(t, θ) represents the directionally selective

response activity of the neural network.

3.6. Motion direction estimation

In this subsection, we introduce a method for estimating the

motion direction of objects based on the direction information

obtained by the DFLGMD visual neural network. This method

utilizes the model’s output to estimate the direction of moving

objects along both the horizontal and vertical axes.

First, we used directionally selective neurons to obtain

local directional information moving in horizontal and vertical

directions, that is,

Dij(t, 0) = Sij(t)× Sx(i,0)y(j,0)(t − 2)− Sij(t − 1)× Sx(i,0)y(j,0)(t − 1)

(23)

and

Dij(t,
π

2
) = Sij(t)× Sx(i, π2 )y(j,

π
2 )
(t − 2)− Sij(t − 1)

×Sx(i, π2 )y(j,
π
2 )
(t − 1).

(24)

Then, the arc tangent function is used to obtain the localmotion

direction angle of the object at time t:

Eij(t) = arctan(Dij(t,
π

2
),Dij(t, 0)). (25)

TABLE 1 Setting parameters of the proposed DFLGMDmodel.

Parameter Description Value

α1 The order of fractional-order differential

operators

0.4

gleak The leakage conductance which the cell [25, 50]

Vrest The resting potential which the cell [−0.001, 0]

Vth1 A threshold membrane potential 0.0005

Vth2 A threshold membrane potential 0.0005

Ein The inhibitory synaptic batteries [−1,−0.3]

Eex The excitatory synaptic batteries 1.0

λex A gain factors 1.2

λin A gain factors 1.2

γ 1 A gain factors 150

γ 2 A gain factors 150

εex The weights of excitatory synapses 1.0

εin The weights of inhibitory synapses 100

δex The adjustment coefficient 1.5

βon A regulatory factors [1.0, 1.2]

βoff A regulatory factors [1.0, 1.2]

m A distance constant 1.0

F1 The coefficient of Gaussian kernel G1 5

F2 The coefficient of Gaussian kernel G2 1

σ1 The variance of Gaussian kernel G1 0.3

σ2 The variance of Gaussian kernel G2 0.4

ξex A gain factors 5× 1282/n2

{µ1 ,µ2 ,µ3} The term coefficients {1, 1, 0}

Finally, themotion direction angle of the object can be obtained

by integrating all local direction information; that is,

MD(t) = 2(Eij(t), i = 1, 2, .....n; j = 1, 2, .....n), (26)

where MD(t) denotes the motion direction of the object at time t,

2 is the mode operation, and n is the number of rows or columns

of matrix E.

4. Experiments and discussion

In this section, we test the performance of the proposed

DFLGMD visual neural network. The experiments presented here

include three experimental scenes, simulated scenarios, real-world

scenarios, and real complex scenarios. In the following subsections,

we introduce the system parameters and experimental methods

used for various scenarios and present the experimental results with

some discussion.
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FIGURE 5

Example frames of videos. The video includes two groups (A, H) of object movements in the depth direction (including looming motion and faraway

motion) and six groups (B–G) of object movements in other directions ( left, right, up, down, left upper corner, and right lower corner).

FIGURE 6

Simulation results for the directionally selective fractional-order LGMD collision sensing visual neural network. (A) Object looming motion, (B) object

translating leftwards, (C) object translating rightwards, (D) object translating upwards, (E) object translating upwards, (F) object left upper corner

motion, (G) object right lower corner motion, and (H) object faraway motion.

4.1. Parameters of the system

Parameters of the proposed DFLGMD are given in Table 1.

The proposed neural network has a large number of parameters,

and there is no learning method for parameter setting at present.

Therefore, these parameters were tuned manually based on

empirical experience. When the neural network system is applied

to cluttered and dynamic scenes, some parameters need to be

fine tuned. Therefore, ranges for some parameters are given in

Table 1. Without special emphasis, the parameters do not exceed

the given range.

The proposed neural network was written in MATLAB 2020a

(MathWorks, Inc., Natick, MA). The experimental environment

was Microsoft Windows 10 operating system, with an Inter(R)

Core(TM) i5-3470S CPU @2.90 GHz processor and 8 G memory.

4.2. Simulated scenarios

In order to test the basic performance of the algorithm

proposed in this paper, we selected eight groups of simulation

videos showing objects moving in different directions for testing

purposes. The videos included two groups of object movements

in the depth direction (including looming motion and faraway

motion) and six groups of object movements in other directions

(left, right, up, down, left upper corner, and right lower corner).
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FIGURE 7

The output direction of directionally selective fractional-order LGMD collision sensing visual neural network. (A) Object looming motion, (B) object

translating leftwards, (C) object translating rightwards, (D) object translating upwards, (E) object translating upwards, (F) object left upper corner

motion, (G) object right lower corner motion, and (H) object faraway motion.

To simulate the movement of objects in the depth direction,

we used the diffusion movement of small black blocks to represent

objects moving forward at a constant speed in the depth direction.

During the movement, the positions of the small black blocks

remained unchanged, and their size gradually increased. When

the small black blocks filled the entire field of vision, their size

did not change again; that is, the field of vision did not change.

This moment was defined as the collision time. Video A simulates

the looming motion of an object, and video H simulates the far

motion of the object. The motion direction in video H was exactly

opposite to that of video A. We used the contraction of the small

black blocks to simulate uniform motion toward the rear in the

depth direction. The smaller the size of the small black block, the

farther away the simulated object. In the other six groups of videos

(B–G), we used the movements of bars and small black blocks in

different directions to simulate the movements of objects. During

movement, the sizes of the grid bar and the small black blocks

remained unchanged; only the direction of movement changed,

and no collision occurred. The motion directions in videos B–

G were from right to left, from left to right, from bottom to

top, from top to bottom, from 135 degrees up, and from 315

degrees down. The experimental sampling frequency was 33.3 ms,

and the pixel size was 128×128. Some frames from videos A–H

are shown in Figures 5A–H. The corresponding results are shown

in Figures 6, 7, where Figure 6 shows the output activity of the

fractional-order collision perception visual neural network with

direction selectivity, referred to as the direction-selective network,

and Figure 7 shows the object motion direction perceived by

the network.

Considering the robustness of the proposed neural network

to noise, this paper added Gaussian noise with different signal-

to-noise ratios (SNRs) to the simulated videos during the testing

process. The Gaussian noise follows the normal distribution

N(0, 1), and the SNRs are set to 5, 10, 30, and 50. During the

experiment, the motion direction was fixed, and the network

outputs under different SNRs were compared. The frames and

results corresponding to the videos are shown in Figure 8.

As shown in Figures 6A–H, DFLGMD accurately perceived the

collision threat but did not respond to translation movement in

any direction. Specifically, the network output corresponding to

looming video A reached its peak at frame 37, consistent with

the real collision time in video A. Videos B–G show translational

motions in different directions. As shown in Figures 6B–G, the

neural activity output by the network tended to be flat, with

no obvious peak. DFLGMD accurately perceived the looming

motion in the video and showed good collision perception ability.

Figures 7A–H shows the object motion direction perceived by the

DFLGMD neural network. The motion direction of the object

corresponding to videos B–G was consistent with the experimental

results. The neuron showed high response activity to the motion

in the preferred direction but no or little response to motions in

other directions. In videos A and H, small black blocks diffused or

contracted evenly in all directions when objects were looming or far

away, and motion could be perceived in each direction; as shown

in Figures 7A, H, neurons had responses in each direction with

similar response activity. Figure 8 shows the network outputs of

DFLGMD under different signal-to-noise ratios. It can be observed

that as the SNR decreases, the output activity of the algorithm

decreases, but the overall change is not significant, indicating that

the algorithm has good robustness. In summary, these results

show that DFLGMD achieves the two basic functions of sensing

a collision and recognizing object motion direction, owing to the

basic characteristics of LGMDs and directionally selective neurons,

and the network performance was good.
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FIGURE 8

The output of proposed visual neural networks in real motion directions under di�erent signal-to-noise ratios. (A) Object translating leftwards. (B)

Object translating rightwards. (C) θ = π . (D) θ = 0. (E) Object translating upwards. (F) Object right lower corner motion. (G) θ = π/2. (H) θ=7π/4.

FIGURE 9

Example frames of ball motion videos. (A) The ball moves to the left. (B) The ball moves to the right. (C) The ball moves downwards to the left. (D)

The ball moves downwards to the right. (E) The ball is looming moving toward the center.

4.3. Real-world scenarios

Next, in order to better test the performance of the DFLGMD

neural network, we used real physical scenes for experiments.

First, we built a simple experimental platform in the laboratory.

During the experiments, we specified the direction of motion in

advance. The ball moved in the specified direction. The closer the

ball to the camera during the movement, the larger it appeared

in the field of vision. There were five videos in total, and the

ball moved in five different directions, as shown in Figures 9A–

E. The experimental sampling frequency was 33.3 ms, and the

pixel size was 128×128. The experimental results are shown in
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FIGURE 10

The output activity of the directionally selective fractional-order LGMD collision sensing visual neural network. (A) The ball moves to the left. (B) The

ball moves to the right. (C) The ball moves downwards to the left. (D) The ball moves downwards to the right. (E) The ball is looming moving toward

the center.

FIGURE 11

The output direction of the directionally selective fractional-order LGMD collision sensing visual neural network. (A) The ball moves to the left. (B)

The ball moves to the right. (C) The ball moves downwards to the left. (D) The ball moves downwards to the right. (E) The ball is looming moving

toward the center.

Figures 10, 11. Figure 10 shows the network output of the LGMD

neural network with direction selectivity for the five videos in

turn, and Figure 11 shows the motion direction perceived by the

network model proposed in this paper. Then, to verify the network
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FIGURE 12

The neural network output of di�erent models in ball motion video. (A) The ball moves to the left. (B) The ball moves to the right. (C) The ball moves

downwards to the left. (D) The ball moves downwards to the right. (E) The ball is looming moving towards the center.

performance of DFLGMD, we designed comparative experiments.

In the experiment, we compared the neural network proposed in

this paper with the integer-order LGMD neural network and the

representative DLGMD neural network (Yue and Rind, 2013). The

structure of the integer-order LGMD network is the same as the

neural network proposed in this paper, with a differential operator

order of 1. The experimental results are shown in Figure 12.

As shown in Figures 10A, 11A, the output activity of the

network was relatively flat during the whole movement process

of the small ball, with no prominent peak. The network output

activity was highest when θ = π , indicating that the small ball

moved from right to left without collision threat. Similarly, in

Figure 11B, the network output activity was highest when θ = 0;

that is, the ball moved from left to right, again without collision

threat. Figures 11C, D shows the case where the small ball was

looming in the video. In Figure 10C, the peak was reached in

frame 43, whereas in Figure 10D it was reached in frame 39,

consistent with the real collision time. Figures 11C, D show the

motion direction of the small ball in the looming process. In

Figure 11E, the up-down inclination angle of the wooden strip was

set to be small, and the ball approached almost uniformly from

the right center. As shown in Figure 10E, the peak was reached at

50 frames, and the collision occurred. This uniform approaching

from the right center can be seen as a diffusion movement to

the surroundings. As shown in Figure 11E, the response was the

same in all directions. From Figure 12, it can be seen that the

detection of direction and collision by the DLGMD neural network

depends on the size of the threshold. When the output is higher

than the threshold, the neuron responds, otherwise it does not

respond. The time when the collision occurred in the looming

video is also marked in Figure 12. It can be seen that the DFLGMD

can accurately detect the occurrence of collisions compared to the

DLGMD, which is due to the two different response modes of the

neurons mentioned earlier. At the same time, it can be seen that

the output of the fractional-order model is significantly higher than

that of the integer-order model, that is, the fractional-order model

characterizes the neuron response more closely and reliably.

Furthermore, in a real-life scenario, the road conditions are

changeable and the video background is complex and can change

at any time. Therefore, we tested our model using a complex road

scene in a real physical environment. We selected six real road

videos in which the target vehicle moved in different directions.

The vehicle in video 1 was approaching from the front, and the

vehicle in video 2 was approaching from the front on a downhill

road. The vehicles in videos 3, 4, and 5 were approaching from the

left and right, respectively. The vehicle in video 6 was moving away

from the road and gradually disappeared from the field of vision.

The experimental sampling frequency was 33.3 milliseconds, and

the pixel size was 128×128. The partial frames extracted from each

video and the corresponding experimental results are shown in

Figures 13, 14.

As shown in Figures 13D, G, the video reached its peak at

frame 80, so there was a collision. The collision event was at the

moment when the peak occurred, and the car was approaching

from the center. As shown in Figures 13E, H, the vehicle moved

downward as it was approaching, and there was a collision. In

the three groups of figures (Figures 13C, 14A, B), the vehicle is

shown to be approaching, and the motion direction is shown in

Figures 14I, G, H. In Figure 14C, the vehicle is driving far away,

and its motion direction is shown in Figure 14I.
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FIGURE 13

Simulation results for the directionally selective fractional-order LGMD collision sensing visual neural network in real complex videos. (A–C) Are the

example frames of videos. (D–F) Are the output activity of the neural network. (G–I) Are the output direction of the neural network.

The above results demonstrate that DFLGMD can not only

perceive a collision threat but also obtain the direction of motion

of the collision object, leading to more comprehensive network

awareness performance compared with other methods.

5. Further discussions

In general, the proposed neural network model has successfully

achieved its main objective, which is to generate LGMD and

direction-selective neurons that respond to approaching objects

and their motion direction. The system can sensing the collision

threat of looming objects in real-world scenarios while capturing

the motion direction of the objects. This means that it can provide

reliable guidance for various collision avoidance path planning,

which will play a positive role in future work.

In the visual system of insects, many neurons work together.

An interesting possibility in our model is the role of feed forward

inhibition (FFI) neurons and their incoming information. FFI

neurons provide forward inhibition to LGMD by selectively

inhibiting high-speed or suddenly appearing looming objects,

allowing the early small signals produced during the object

approaching process to be distinguished. Since the deep

representation of FFI neurons is relatively new and the exact

nature of their incoming fibers is not clear, they were not modeled

in this paper. Currently, physiological research on FFI is only at a

preliminary stage. Recently, Olson et al. (2021) modeled FFI based

on its anatomical structure and electrophysiological characteristics,

but this model was only used to perceive the collision threat of

looming objects. Integrating the information of FFI with LGMD

and direction-selective neurons may help improve the network

performance of DFLGMD. In the future, we need to consider the

collaborative work of these neurons.

We also noticed another interesting possibility regarding the

propagation of lateral inhibition. Lateral inhibition has two modes

of propagation: the first is delayed propagation, which is due to the

inherent characteristics of synaptic communication and results in

the information being delayed. The second is diffusive propagation,

which occurs due to the difference in dynamics between excitatory

and inhibitory receptors, causing lateral inhibition to spread to

adjacent principal cells. Due to the motion of particles and complex

dynamics involved in diffusion-based propagation, most current

models are based on delayed propagation for simplicity’s sake.

However, given the unique nature of diffusive inhibition, we note

that the diffusive propagation of inhibition may have interesting

computational properties, which could be a potential improvement

in modeling.
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FIGURE 14

Simulation results for the directionally selective fractional-order LGMD collision sensing visual neural network in real complex videos. (A–C) Are the

example frames of videos. (D–F) Are the output activity of the neural network. (G–I) Are the output direction of the neural network.

A significant limitation of the model proposed in this

paper is the parameter setting of the system. The DFLGMD

system contains many parameters that are crucial to the system.

However, determining accurate parameters is often difficult. In

the experiments conducted in this article, most parameters were

manually adjusted based on experience, which may result in

differences in accuracy compared to real biological neurons. In

addition, due to the complexity and uncertainty of real-time

road experiment, the model proposed in this paper has not

completed the test of real-time road system. However, these

limitations have not changed the basic functionality of the model.

On the contrary, they have provided us with directions for

further work. We will consider introducing deep learning to

adjust system parameters and designing high-performance real-

time systems to improve the system’s robustness in complex

dynamic scenarios.

6. Conclusion

In this paper, we propose a DFLGMD collision-sensing

visual neural network. In the proposed neural network, a new

association mechanism is used to obtain direction information

for a moving object. Then, an ON/OFF visual channel is used

to encode the increase or decrease in brightness, respectively,

resulting in selectivity of the system for looming bright or dark

objects. Finally, a directionally selective neuron is fused with

the fractional-order collision-perception visual neural network,

enabling the system to obtain the motion direction of the

collision object while sensing the collision threat, as well

as making the correct collision avoidance decision. In this

work, the DFLGMD visual neural network was systematically

studied and tested in different environments. Experimental

results show that the DFLGMD visual neural network produces

reliable response spikes in response to looming objects and can

also accurately obtain the movement direction of approaching

objects, with more comprehensive network performance compared

with other methods. In future work, we plan to investigate

the computational properties of diffusion propagation and

model it using an inhibitory diffusion propagation method.

Additionally, we will attempt to introduce FFI neurons and

study the collaborative relationship between FFI, LGMD, and

direction-selective neurons to optimize the performance of the

neural network.
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