
TYPE Original Research

PUBLISHED 25 May 2023

DOI 10.3389/fnbot.2023.1157957

OPEN ACCESS

EDITED BY

Federica Verdini,

Marche Polytechnic University, Italy

REVIEWED BY

Xianta Jiang,

Memorial University of Newfoundland, Canada

Matteo Filippini,

University of Bologna, Italy

*CORRESPONDENCE

Julius Pettersson

pjulius@chalmers.se

RECEIVED 03 February 2023

ACCEPTED 05 May 2023

PUBLISHED 25 May 2023

CITATION

Pettersson J and Falkman P (2023) Comparison

of LSTM, Transformers, and MLP-mixer neural

networks for gaze based human intention

prediction. Front. Neurorobot. 17:1157957.

doi: 10.3389/fnbot.2023.1157957

COPYRIGHT

© 2023 Pettersson and Falkman. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Comparison of LSTM,
Transformers, and MLP-mixer
neural networks for gaze based
human intention prediction

Julius Pettersson* and Petter Falkman

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Collaborative robots have gained popularity in industries, providing flexibility and

increased productivity for complex tasks. However, their ability to interact with

humans and adapt to their behavior is still limited. Prediction of humanmovement

intentions is one way to improve the robots adaptation. This paper investigates

the performance of using Transformers and MLP-Mixer based neural networks

to predict the intended human arm movement direction, based on gaze data

obtained in a virtual reality environment, and compares the results to using an

LSTM network. The comparison will evaluate the networks based on accuracy

on several metrics, time ahead of movement completion, and execution time.

It is shown in the paper that there exists several network configurations and

architectures that achieve comparable accuracy scores. The best performing

Transformers encoder presented in this paper achieved an accuracy of 82.74%,

for predictions with high certainty, on continuous data and correctly classifies

80.06% of the movements at least once. The movements are, in 99% of the cases,

correctly predicted the first time, before the hand reaches the target and more

than 19% ahead of movement completion in 75% of the cases. The results shows

that there are multiple ways to utilize neural networks to perform gaze based arm

movement intention prediction and it is a promising step toward enabling e�cient

human-robot collaboration.

KEYWORDS

Transformers, time series prediction, collaborative robots, human intention prediction,

eye tracking

1. Introduction

Collaborative robots are becoming increasingly popular in industries (El Makrini et al.,

2017). The advantages of having humans and robots in the same workspace interacting

with each other are many, such as improved flexibility (Krüger et al., 2009) and increased

productivity for complex tasks (Krüger et al., 2009). However, the robots are not interactive

enough since they cannot interpret humans and adapt to their swift changes in behavior in

a way that another human would. The main reason is that the collaborative robots today

are limited in their sensory input and awareness of their surrounding environment, which

makes the human responsible for avoiding collision.

Human intention prediction can be achieved using camera images and probabilistic state

machines (Awais and Henrich, 2010) with the goal of determining between explicit and

implicit intent. It can also be achieved using 3D-vision, speech recognition, and wearable

sensors with the objective of predicting intention in hand-over tasks (Wang et al., 2021).

It was proposed by Mainprice and Berenson (2013) to use a Gaussian Mixture Model and

data from a Kinect camera to predict human motion, reporting about 80% classification

accuracy, on 8 movement classes, after 60% of the trajectory has been observed. Other ways

are to monitor eye gaze to predict an upcoming decision (Huang and Mutlu, 2016) for

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1157957
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1157957&domain=pdf&date_stamp=2023-05-25
mailto:pjulius@chalmers.se
https://doi.org/10.3389/fnbot.2023.1157957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1157957/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

robot control or analyze bioelectric signals, such as

electromyography, to predict human motion (Bi et al., 2019).

In the paper by Haji Fathaliyan et al. (2018) it is shown that eye

gaze can be used to recognize actions related to pouring and

mixing a powder based drink. Shi et al. (2021) presents a way

of using Earth Mover’s Distance to calculate the similarity score

between the hypothetical gazes at objects and the actual gazes

to determine if the human visual intention is on the object or

not. It was shown by Chaandar Ravichandar et al. (2016) that is

is possible to use a Kinect camera to capture eye gaze and arm

movements, and use that to predict the goal location of a reaching

motion, reporting a success rate of above 80% after 40% of the

trajectory has been observed. The work by Gomez Cubero and

Rehm (2021) shows that it is possible to use an Long Short-Term

Memory (LSTM)-based neural network, together with a wearable

eye tracker, to predict intention regarding which object is about

to be picked out of three objects in a virtual reality environment.

They achieve an accuracy between 70 and 80% for test sequences

that are 3–14 s long using the gaze projected on the surface where

the objects are placed.

Other fields that have been rapidly expanding and could

make collaborative robots smarter through an understanding

of the operators behavior and intentions are: virtual reality,

eye tracking, gathering and management of large datasets, and

artificial intelligence.

Eye-tracking (ET) is an objective, painless, and non-

invasive (Gould et al., 2001) way to gather more insight into

how a person is reasoning from measurements and analysis of

where the person is directing their gaze (Karatekin, 2007). It is

possible to gain insight into the alternatives a person is considering

or what strategy is used while performing a task, based on what

a person is looking at. There are three types of interesting eye

movements when observing visual attention: fixation, saccades,

and smooth pursuits (Duchowski, 2017). ET has, for example,

been used in an industrial context with gaze as machine control

input (Jungwirth et al., 2018), to evaluate new ways to facilitate

human–robot communication (Tang et al., 2019), analyze the

navigational intent in humans and how they interact with

autonomous forklifts (Chadalavada et al., 2020), and investigate

pedestrians’ understanding of an autonomous vehicle’s intention to

stop at a simulated road crossing (Hochman et al., 2020).

Virtual Reality (VR) can be described as a technology through

which visual, audible, and haptic stimuli is able to give the user

a real-world experience in a virtual environment (Dahl et al.,

2017). Benefits such as being able to provide more relevant

content and present it in a suitable context (Rizzo et al., 2004)

are reasons to promote the use of VR. It can, for example,

be used when making prototypes (Abidi et al., 2016), to train

operators in assembly (Al-Ahmari et al., 2016), and improve remote

maintenance (Aschenbrenner et al., 2016).

VR makes it possible to have an all-in-one system for the

gathering of movement and interaction data where the developer

has full control over the data and has the ability to add or remove

visual and audible distractions. VR also removes the risk of injuries

when the user interacts with industrial equipment in the VR

environment (VRE).

Modern technologies such as ET and VR, therefore, makes

it possible to collect large amounts of data, with high precision,

and at a high pace (Pettersson et al., 2018). One way to process

this data is through the use of an area of artificial intelligence

called deep machine learning (Samek et al., 2017). The use of data

and artificial intelligence has been shown to be important tools to

improve industrial manufacturing (Nagorny et al., 2017; Morariu

et al., 2018; Wang et al., 2018).

One particular area of machine learning that has been

gaining momentum the past few years when it comes to

time-series analysis is self-attention and the Transformer

architecture (Vaswani et al., 2017). It has for example outperformed

previous solutions for translation (Vaswani et al., 2017) and image

classification (Dosovitskiy et al., 2020). The main advantages,

compared to recurrent neural networks, are that the Transformers

can be trained in parallel (Vaswani et al., 2017) and that they

more easily learn connections between points that are far apart

in time. Previously, both LSTM and Transformers have been

used successfully for gaze based prediction tasks (Koochaki

and Najafizadeh, 2019; Mazzeo et al., 2021; Tu et al., 2022).

Another interesting architecture with similar performance to the

Transformer and with less computational complexity, that does not

use attention, is the “Multi-Layer Perceptron”-Mixer (MLP-Mixer)

by Tolstikhin et al. (2021).

The goal of this paper is to evaluate the Transformer

architecture and the MLP-Mixer as alternative solutions to

intended human arm movement direction prediction instead of

the LSTM network that was used in Pettersson and Falkman

(2022) and compare the performance of the three approaches,

with respect to accuracy for a given uncertainty threshold, time

ahead of movement completion, and the execution time of a single

prediction, which are defined in Sections 4–5. The data that is used

to train the networks is the same as in Pettersson and Falkman

(2022) to make sure that the comparison is as fair as possible.

The explanations regarding the experimental setup (Section 3)

and the evaluation procedure (Section 4.5) will, therefore, be the

same. This is followed by a description of the current paper’s two

novel solutions, that are based on the Transformers and MLP-

Mixer architectures, in Section 4. The prediction results and the

comparison, the discussion, and the conclusions are presented in

Sections 5, 6, and 7, respectively.

2. Preliminaries

This section provides brief descriptions of convolutional neural

networks, recurrent neural networks, Transformers, “Multi-Layer

Perceptron”-Mixer, and dropout as a Bayesian approximation, that

are used to perform the human intention prediction.

Convolutional neural networks (CNNs) are one type of artificial

neural networks (ANNs) that are more robust to shift, scale, and

distortion invariance (LeCun et al., 1998) than fully connected (FC)

networks, and are therefore better at detecting spatial and temporal

features. It is achieved by convolving or sub-sampling the input to

the layer with local receptive fields (LeCun et al., 1998) (filters) of a

given size [n×m]. Each filter has n ·m number of trainable weights

and a trainable bias and these are shared (LeCun et al., 1998) for all

outputs of the filter.

Recurrent neural networks (RNNs) are a subgroup of ANNs

that are used to process sequences of data (Goodfellow et al., 2016).

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

An RNN shares its weights across several timesteps (Goodfellow

et al., 2016) whereas a FC network would have separate weights

for each part of a sequence. In an RNN, the current step is

not only a function of its input but also depends on all the

output states previous in time (Goodfellow et al., 2016). Traditional

RNNs tend to suffer from problems with exploding or vanishing

error gradients (Hochreiter and Schmidhuber, 1997; Goodfellow

et al., 2016) that prohibits proper learning over longer time

instances. Long Short-TermMemory (LSTM) cells (Hochreiter and

Schmidhuber, 1997) are designed to solve this problem using a

constant error flow (Hochreiter and Schmidhuber, 1997) through

the network, together with three gates that open and close in order

to access it (Hochreiter and Schmidhuber, 1997). The input gate

determines when the internal state of the LSTM cell is affected

by the input to the cell, the forget gate handles when the cell’s

internal memory resets, and the output gate controls when the

current state of the cell influences the error flow (Hochreiter and

Schmidhuber, 1997). An LSTM network may contain multiple cells

and the network learns to control each individual gate (Hochreiter

and Schmidhuber, 1997) and cell.

The original Transformer by Vaswani et al. (2017) is an

attention-based neural network architecture with an encoder-

decoder structure, mapping one set to another, that solves natural

language processing tasks. Since then, the Transformer has been

adjusted in order to perform image classification with the Vision

Transformer (ViT) (Dosovitskiy et al., 2020), which only uses the

encoder part. This section will describe how the ViT works since

that is the basis for the network used for the classifications later

in this paper. The first part of the ViT splits the image into a

sequence of non-overlapping patches (Dosovitskiy et al., 2020) and

each patch is projected to a hidden dimension C that acts as the

linear trainable embedding. A learnable positional encoding is then

added to the embedding (Dosovitskiy et al., 2020) in order to learn

the ordering of patches since self-attention inherently lacks this

capability. This is then fed into the first encoder, the ViT is made

up of Nx number of encoder blocks that are identical in size, that

consists of a multi-head attention that performs self-attention in

H parallel tracks followed by two position-wise feed forward layers

separated by a non-linear activation. Self-attention is, according

to Vaswani et al. (2017), a function that maps a query and a set of

key-value pairs to an output, computed as a weighted sum of the

values. The particular attention function used in the Transformers

encoder is called Scaled Dot-Product Attention and it computes the

dot products of a set of queries Q with all keys K, divide this by the

square root of the dimension of the queries and keys,
√

dk, and then

apply a softmax function in order to get the weight for the values

V , which can be summarized as follows:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (1)

The network ends with a hidden fully connected layer and a

linear classifier (Dosovitskiy et al., 2020). The ViT also utilizes skip-

connections (He et al., 2016) and layer normalization (Ba et al.,

2016).

The “Multi-Layer Perceptron”-Mixer (MLP-Mixer)

by Tolstikhin et al. (2021) was proposed as an alternative to

using CNN:s or Transformers-based architectures for image

classification. Two selling points are that the Mixer network is

able to achieve mostly comparable prediction results while using

less memory and having less computational complexity. This gives

a faster training procedure and a higher throughput (number

of predictions per second) at inference. The main idea of the

MLP-Mixer is to provide a simple architecture that performs

two operations, mixing of features at a given spatial location

and mixing between different spatial locations, in a separated

way (Tolstikhin et al., 2021). These two types of mixing are

present in both CNN:s and attention-based networks but in a

way that is less distinct. The input to the Mixer is a sequence of

non-overlapping patches that represents one image and each patch

is projected to a hidden dimension C using the same projection

matrix. The Mixer is made up of Nx number of Mixer-blocks

that are identical in size, where each block consists of two MLP-

blocks (Tolstikhin et al., 2021). The first one performs mixing

between different spatial locations on the rows of the transposed

input X and the second one mixes features at row of the input X.

The weights of each MLP are shared for all rows and the MLPs

consists of two fully-connected layers with a non-linear activation

in between (Tolstikhin et al., 2021). The parameters DS and DC are

the hidden sizes for the two MLPs respectively. The network ends

with global average pooling and a linear classifier, a common way

of performing classification (Tolstikhin et al., 2021). The Mixer

network also utilizes skip-connections (He et al., 2016) and layer

normalization (Ba et al., 2016).

Dropout is a deep machine learning method that is used to

reduce overfitting (Hinton et al., 2012) by randomly ignoring, with

probability p, each neuron in a network layer every time a training

case is presented to the network. The dropout method can be

used to approximate Bayesian inference (Gal and Ghahramani,

2016). It is achieved by enabling dropout at all times, not only

during the training of the network, which means that the network

will also randomly omit some neurons when making predictions,

causing variation. The mean prediction and the model uncertainty

can, according to Gal and Ghahramani (2016), be obtained by

makingN number of predictions on the same data and they suggest

that N ∈ [10, 1000] should give reasonable results. This way of

using dropout provides a way to reason about model uncertainty

that is easy to implement and less computationally expensive than

alternative methods (Gal and Ghahramani, 2016). They suggest

using a probability p ∈ [0.1, 0.5] for dropping a neuron.

3. Experimental setup

This section will present the development of the VR

environment, the test execution, the gathered data, and the way

the data was processed, including selection of features and labels

to train the ANN with.

3.1. Development of the VR test
environment

The VR environment (VRE) will be visualized using the Head-

Mounted Display (HMD) and the two hand-held controllers that

are part of the “Tobii Eye Tracking VR Devkit” (Tobii AB, 2020),

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 1

A top-down view of the block placements in the VRE, a lit target box, and the test participant moving his hand toward the target. Note that the

human is not actually visible in the VRE.

which is an ET solution based on the HTC-Vive. The system is

capable of tracking the position and orientation of the HMD and

the hand held controllers. The eye gaze is tracked with Binocular

dark pupil tracking at a frequency of 120 Hz. This type of eye-

tracking is achieved by illuminating the eyes, off-axis compared

to the cameras that are used to capture images of the reflected

light as it bounces off the retina and exits the eye, causing the

pupil to appear darker than the rest of the eye. The images are

used to calculate a gaze direction vector based on the positional

relationship between the cornea and the pupil. The ET can be

performed in the entire 110◦ field of view of the HTC-Vive

HMD (Tobii AB, 2020), with an accuracy of ∼0.5◦ and a delay

of ∼10 ms from the illumination of the eye until the data is

available in the Software Development Kit (SDK). The eye tracker

is individually calibrated to each test participant using a 5-point

calibration strategy available in the SDK. The calibration is based

on that the user is instructed, visually and audibly, to focus her/his

gaze on 5 pre-defined points in the VRE and that gaze data is used

in the SDK to calculate a 3D-model of the eye.

The 3D components in the project are modeled in the software

Blender (Blender, 2023) and implemented in a VRE using Unity,

a game creation engine. Unity supports VR through Steam VR

SDK and custom written scripts in C# that makes it possible to

implement all the desired functionality from the SDK as well as the

intended test logic.

The VRE designed to collect the data consists of four stages:

language selection where the test participant selects whether the

written instructions in the VRE should be given in Swedish or

English, ET calibration, an information form where the participant

enters age, gender, and whether they are right handed or not, and

the last stage is the test itself. The test stage, Figure 1, is an alteration

of the test in Pettersson and Falkman (2021), see below.

The test layout, shown as a top-down view in Figure 1, features

an even distribution of 9 cubes each, at two different heights (h1,

h2) and radii (r1, r2). One additional box, #0, is positioned 30 cm in

front of the participant at height h0 and acts as a neutral position

close to the body. The two arcs of cubes are generated using the

fixed starting position marked by the black X in the figure together

with individual measurements of the participant’s reach based on

a calibration procedure using the two controllers. The participant

is instructed to raise their hands forward in three steps and click

the touchpads at these locations to collect the different controller

positions. The first step is to stand still with the head pointing

forwards and the arms resting along the sides of the body, the

second step is to raise the forearms to a horizontal level, pointing

forwards, while keeping the elbows fixed against the sides of the

body, and the third one is to fully extend the arms and raise them

to a horizontal level, pointing forwards. The heights, h1 for the

inner cubes and h2 for the outer ones, are calculated as the average

distance to the floor from the controllers for the second and third

position whereas h0 was set to always be located 10 cm below h1.

The radii, r1 for the inner semicircle and r2 for the outer one, are

defined as the average distance between the controllers and the

HeadPosition.Note that the human is not actually visible in the VRE

and that the participant’s only point of reference to their own body is

the controller.

Each test starts with a set of warm-up movements in random

directions in order to make the participant accustomed to the

VRE. The warm-up is followed by a pre-defined sequence of 76

movements using the right hand and 76 movements using the

left hand. The sequence is randomized for everyone in a way that

ensures balanced data and that all combinations are used. The cubes

are lit up one at a time, marked as the target box in Figure 1,

and the task is to reach for the box that is lit and touch it while

simultaneously pressing the touchpad on the controller to make

the cube disappear. After a cube has disappeared, the next cube in

the pre-defined sequence is lit up after 0.2 s. The delay is used as a

way to force a slower pace throughout the test and data is collected

during this time. The alterations are motivated by:

• The previous test by Pettersson and Falkman (2021) was

considered too long and strenuous by the participants. The

current test was, therefore, halved in length, i.e., fewer number

of movements in total.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

TABLE 1 Table of data parameters collected during the test.

Type Parameter

Participant ID

Participant Age

Participant Gender

Participant Date and time

Participant LanguageIsEnglish

Participant IsRightHanded

Test specific BoxClicked

Test specific Timestamp

ET EyeDirection [x, y, z], (left/right eye)

ET EyeHitpoint [x, y, z], (left/right eye)

ET EyeHitObject (left/right eye)

ET PupilPosition (left/right eye)

ET PupilDiameter (left/right eye)

HMD HeadPosition [x, y, z]

HMD HeadRotation [θx , θy , θz]

Controllers ControllerPosition [x, y, z], (left/right controller)

Controllers ControllerRotation [θx , θy , θz], (left/right controller)

• The test sequence was randomized as suggested in future

improvements by Pettersson and Falkman (2021).

• Data is now collected during the short delays between the

cubes appearing, this is necessary in order to be able to use and

evaluate the developed network in a continuous manner that

imitates a real-world system where perfect segments of data

rarely are available.

• The sweeping motions across several lit boxes in a single

movement were excluded due to the fact that the eye-hand

movement connection is different from the search and click

behavior that the randomly lit single cubes induce.

The test is launched when the test participant presses the

start button in the environment. Data is then collected, in

the same manner as in Pettersson and Falkman (2020) and

Pettersson and Falkman (2021), i.e., the data between two

pressed cubes is saved as one data point, and using the

same parameters (Table 1). The data that is collected from

each test participant, each test, and at each timestamp, shown

in Table 1, are: the eye gaze direction vector for each eye

(EyeDirection), the coordinate in the virtual room where the gaze

hits (EyeHitpoint), which object is gazed upon (EyeHitObject)

as well as the size and position of the pupils (PupilDiameter,

Pupilposition). The head specific data that is collected are the

position (HeadPosition) and rotation (HeadRotation), and the

same data is also obtained from the two controllers that are

held one in each hand (ControllerPosition, ControllerRotation).

The general information about the user includes an anonymous

participant ID, age, gender, language used, whether the person is

right handed or not, as well as the date and time when the data

was gathered.

3.2. Description of the test execution

The data was collected in the VR-laboratory at Chalmers

University of Technology in Gothenburg. All test participants were

given the same instructions regarding putting on the headset,

calibrating the eye-tracker, entering the required information,

performing the height and reach calibration, starting the test,

and the test specific instructions. The full set of instructions are

as follows:

Calibration Instructions:

1. Put on the headset and adjust it such that the displays are

centered in front of the eyes.

2. Receive a controller in each hand. The controllers are used to

navigate the menus (using the laser pointer), touch the cubes

during the test, and acknowledge all actions using the click

function of the touchpad.

3. Now it is time to:

a. Choose the desired language, either Swedish or English by

clicking the corresponding flag using the laser pointer.

b. Calibrate the eye-tracker:

(1) Stand still with your head pointing forwards.

(2) Press “Calibrate” using the laser pointer.

(3) Focus your gaze on the red dots that appear on the

screen until they disappear, without moving your

head.

(4) Press “Done” when the calibration is complete.

c. Enter the required information using the laser pointer.

d. Calibrate the height and reach parameters:

(1) Stand still with the head pointing forwards and the

arms resting along the side of the body, then click

the touchpad on the right controller.

(2) Raise the right forearm to a horizontal level,

pointing forwards, while keeping the elbow fixed

against the side of the body then click the touchpad

on the right controller.

(3) Extend the right arm fully and raise it to a

horizontal level, pointing forwards, then click the

touchpad on the right controller.

(4) Repeat steps 3.d.i-3.d.iii for the left arm.

(5) Press “Done” when the calibration is complete

or “Re-calibrate” to start over if something went

wrong.

Test Instructions:

1. Press the “Start”-button on the screen by reaching toward it and

touching it.

2. Reach for the cube that is lit up and touch it, press the touchpad

while doing so to acknowledge the completion of the movement.

3. Wait for the next cube to light up.

4. Repeat steps 2 & 3 until the cubes stop emitting light.

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 2

Histogram of the number of samples for all data points.

TABLE 2 Distribution information for unfiltered and filtered data.

Type Mean Median σ Min Max N

Unfiltered 175 152 66 74 598 3192

β-filtered 171 151 62 74 371 3141

5. Press the “Done”-button and remove the headset.

3.3. The obtained dataset

The dataset consists of 3,192 data points obtained from 21

participants, collected at Chalmers University of Technology. The

data consists of a majority of younger adults with a higher level

of education. The gender distribution of the collected data is 24%

female, 76% male, and 0% other. The variations in age ranged from

the youngest participant being 23 and the oldest 30 years old with

an average age of 26.

3.4. Filtering of the data

The same procedure for filtering as in Pettersson and Falkman

(2020) was applied in this paper and starts with the data from

the tests being loaded into the computer memory from previous

storage in files on the harddrive. The warm-up sequences, described

in Section 3.1, were discarded before the visual inspection of the

histogram in Figure 2 that shows the length of all data points, i.e.,

the number of data samples that were collected from the time a

box was lit until it was touched. It can be seen that the dataset

contains a few outliers and the shape of the data in the histogram

can be approximated using a Beta distribution, indicated by the

black solid line in the figure. A threshold was set to the mean

(µ) plus three standard deviations (σ) of this distribution with the

values from Table 2, such that a maximum of µ + 3σ = 175 +

3 ∗ 66 = 373 data samples was allowed for the data point to be

used in the classification.

All samples, within each data point, that contained NaN values

were replaced with the gaze vector from the previous sample. NaN

values appear when the ET fails to read the eye properly, the most

common cause being due to the participant blinking.

3.5. Description of hand movement data

Figure 3, created by Pettersson and Falkman (2022), shows

an aggregation of the distance left to target and velocity toward

target for all hand movements from the test set, in order to further

evaluate the performance of the network with regards to time. The

upper graph shows the normalized distance, di, that the controller

traveled from the moment the previous box was clicked until the

next one, calculated at each sample i for each movement as:

di = 1−
|pend − pi|

|pend − pstart|
(2)

where pstart is the coordinate (x, y, z)
T of the controller for the first

sample of the movement and pend is the last one. The normalized

distance was then plotted with a low opacity (alpha = 0.03 ∈ [0, 1])

and normalized time in order to show the characteristics of all

movements on the same scale. The lower graph shows the velocity,

vi, toward the target, pend, at each sample i for each movement,

calculated as:

vi = fs · (pi − pi−1)
T ·

pend − pi
|pend − pi|

(3)

where fs is the sample frequency of the eye tracker. The velocity

toward the target was then plotted with the same alpha and

the same normalized time as described above. The results from

the velocity calculations sometimes, due to positional tracking

errors, result in unreasonable values. The velocity vi was therefore

removed if it exceeded 2.5 m/s. From the figure it is clear that the

data is noisy and with some variation, however, a few trends are

clearly emerging as well. The figure shows that there is little to

no movement in the beginning of each time series followed by

a segment with varying amount of movement, both toward and

away from the target, up until about the halfway point. Around

the halfway point the combination of the distance and the velocity

graph shows a stationary segment followed by a new segment of

movement that slows down toward the end. However, during the

second movement segment almost all movements have positive

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 3

The figure shows an aggregation of all hand movements from the test set, with respect to distance left to target and velocity toward target, plotted

with normalized time (Pettersson and Falkman, 2022).

TABLE 3 Description of data used in the classification.

Type Feature

Input AvgRLEyeDirection [x, y, z]

Input AvgRLPupilDiameter

Input HeadPosition [y, z]

Label BoxClicked (0− 9)

Label IsUpperLevel (0, 1)

velocity toward the target the entire time. The normalized distance

data from Figure 3 was used to further investigate the time ahead of

movement completion (TAMC).

3.6. Selection of features and labels

The features, shown in Table 3, that were used as input to

the network are the combined eye gaze direction vector (x, y, z),

obtained as an average of the separate gaze vectors from each

eye, the y- and z-coordinates of the HeadPosition, and the pupil

diameter, averaged between left and right eye. The x-coordinate of

the HeadPosition was removed as it corresponds to the participant’s

height, which is constant during the entire duration of the test

due to the fact that they remain standing and does, therefore,

not provide much information to the network since the boxes are

individually calibrated to the participant’s height and reach. The

HeadRotations were removed since the focus point of the gaze is

more interesting and because of the fact that the head is often

rotated in conjunction with the eyes, therefore, providing limited

information to the network. The reason that information such as

EyeHitPoint and EyeHitObject are not used is because they require

specific knowledge of all objects in the environment, something

that is possible to know in a VRE but would limit the possibility

to implement the system in a real-world scenario.

The boxes from 10 to 18 were re-labeled as 1–9 and coupled

with a boolean, IsUpperLevel, that is set to one for these and zero

for all others in order to fit the primary and secondary classification

objectives defined by Pettersson and Falkman (2022) as:

• Primary - themain goal is to determine the discrete horizontal

direction corresponding to the box that was clicked,

• Secondary - the secondary objective is to distinguish between

whether the movement occurred on the upper or lower level

of boxes.

The ID, age, and gender was used to manage the dataset as well

as to provide some general information, these were however not

used to train the network.

3.7. Preprocessing of the data

The selected features mentioned in the previous section,

Table 3, were feature-wise normalized between [−1, 1] in order

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

to makes sure that different value of magnitude between features

does not bias the network to emphasize the importance of

one feature over another. The training data was augmented by

appending NT = 10 nr of additional copies of the training

data, without shuffling them nor adding noise, as determined

by Pettersson and Falkman (2022). After augmentation, the data

was transformed using a sliding window of size w=350 and

step Ns=70, where every window in turn was split into

Nw=35 nr of subwindows of size ws=10 samples. The authors

believe that the reason that the addition of copies works

is due to the fact that we use a large step size (Ns=70)

and that the length of the continuous sequence of training

data is not evenly divisible by the window size. Hence,

every copy (up to a point) will add some variety to the

windowed data.

The window size, w=350, i.e., the number of historical gaze

data samples used as network input, was set to two times the

mean length from Table 2 in order to have a window that most

likely spans across two differentmovements and thereby captures at

least one transition between movements. Two different subwindow

sizes, ws=10 and ws=25, where investigated by Pettersson and

Falkman (2022) based on the fact that the subwindow should

be able to capture saccadic eye movements that last, 10–100

ms (Duchowski, 2017), i.e., 1–10 samples. The best performing

network by Pettersson and Falkman (2022) used ws=10 and that

was used in this paper too.

The amount of data and its quality is also dependent on the

step size, Ns, that is used when sweeping over the training data.

This means the number of timesteps that are skipped before the

next time window is picked. The value for Ns should be large

in order to provide the network with as unique information as

possible, however, in order to not accidentally skip any movements

it should not exceed the shortest movement, i.e., 73 samples. It was,

therefore, set to the largest even multiple ofw=350 that satisfies this

criteria, namely Ns=70.

Every subwindow is coupled with a label corresponding

to the correct box/vertical position of the last sample of

the subwindow. This means that each window, w=350, is

divided into Nw=35 subwindows that each get their own

label and that the network makes Nw=35 separate predictions,

for each w=350, regarding the class that the subwindow

belongs to.

The data was split in order of appearance and the proportions

are: 45% of the data for training, 5% for validation, and

the remaining 50% was used for testing and evaluation of

the network.

4. Neural network design

This section will present what settings were used and

how the networks were trained, a description of how the

uncertainty of the networks have been estimated, the two

proposed solutions, and a brief summary of the LSTM

network by Pettersson and Falkman (2022) that was used to

compare against.

All layers, with activation, of the networks in this paper, unless

otherwise stated, uses the tanh activation function apart from the

final dense layers which uses asoftmax activation to enablemulti-

class classification (Ŷ1) and sigmoid activation to enable binary

classification (Ŷ2).

The networks have been trained using the adam optimizer

with a fixed learning rate of 3 × 10−3, sparse categorical

crossentropy as the loss function for Ŷ1 and binary

crossentropy as the loss function for Ŷ2. The training was

performed until the validation loss stopped decreasing, terminating

using early stopping. Different hyperparameter configurations

were evaluated using Bayesian Optimization Tuner

from the Keras Tuner library with the following custom

setting: max_trials=100—the maximum number of times

the algorithm runs before returning the tuned parameters

and beta=5.2—the balance between exploration/exploitation,

larger means more exploration. In order to evaluate the three

different architectures on equal terms, a maximum number

of trainable parameters allowed was set to ∼7k during the

tuning and initial trials, which corresponds to roughly the

same size as the LSTM network (Pettersson and Falkman,

2022). The variable parts of the networks, before the UE,

were selected as hyperparameters since these parts are what

differ from the LSTM network and the range of values were

selected such that they cover a wide range of settings without

largely exceeding the maximum allowed size of the network,

described above. The specific hyperparameters and their

respective ranges are presented along with each network

description.

4.1. Uncertainty estimation

The last parts of all three networks are the TimeDistributed

uncertainty estimation (UE) (Gal and Ghahramani, 2016)

implemented according to how its done in Pettersson and Falkman

(2020). TimeDistributed refers to the fact that these parts of the

network are applied to each timestep of the network (in this

paper to each subwindow). The UE is constructed using dense

layers (yellow squares, corresponding to FC layers) and dropout

layers (green diamonds, training=True means that it is used

also when making predictions). The UE is then followed by two

TimeDistributed final dense layers, one with as many neurons

as there are output classes (10) that gives the output Ŷ1 and

one with a single neuron that gives the binary output for Ŷ2.

The outputs Ŷ1 and Ŷ2 are obtained once for each subwindow.

This way of estimating the uncertainty of the network will

be used for both of the two alternative solutions presented in

this paper.

4.2. Encoder network
description—Transformer

The attention encoder, based on the ViT (Dosovitskiy et al.,

2020), used in this paper can be seen in Figure 4 and works

as follows: it starts with a Conv1D-layer (blue rectangles) with

a fixed kernel size of 10 and a stride of 10, corresponding to

the size of a subwindow (ws=10), and C nr of filters that is

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 4

A flowchart that describes the adaptation of the Transformers Encoder architecture used in this paper.

responsible for formatting the input data into the subwindows

explained in Section 3.7. It simplifies the preprocessing, by moving

the subwindowing of the data into the network, and enables the

network to learn from this stage, compared to Pettersson and

Falkman (2022), where the subwindows were formatted during

the preprocessing. The positional encoding is a layer of trainable

parameters that are responsible for learning the order of the

data since that information is otherwise lost in the following

attention layers. The first encoder block that starts with a multi-

head attention layer (MHA, large turquoise square) that performs

self-attention with key size dk = C
H in H parallel heads/tracks

followed by two Conv1D layers with ff and C filters respectively.

Both of these Conv1D-layers apply a Gaussian Error Linear Unit

(GELU) (Hendrycks and Gimpel, 2016) activation. The encoder

also contains two skip connections as seen in the figure. A skip

connection is a summation of the output from a layer and the

output from a previous layer. The encoder layer is repeated Nx

number of times (including the first block) before the network

ends with the TimeDistributed UE described in the section above

and two TimeDistributed final dense layers, one with as many

neurons as there are output classes (10) that gives the output Ŷ1

and one with a single neuron that gives the binary output for Ŷ2.

The outputs Ŷ1 and Ŷ2 are obtained once for each subwindow. The

hyperparameters, for the encoder network, that were tuned in the

training phase and their respective value ranges are as follows:

• C ∈ {2, 4, 6, . . . 24},

• H ∈ {1, 2, 3, 4},

• ff ∈ {2, 4, 6, . . . 24},

• Nx ∈ {1, 2, . . . , 10}.

4.3. Mixer network description

The Mixer network, based on the MLP-Mixer by Tolstikhin

et al. (2021), used in this paper can be seen in Figure 5 and

works as follows: it starts with a Conv1D-layer (blue rectangles)

with a fixed kernel size of 10 and a stride of 10, corresponding

to the size of a subwindow (ws=10), and C nr of filters that is

responsible of formatting the input data into the subwindows

explained in Section 3.7. It simplifies the preprocessing, by moving

the subwindowing of the data into the network, and enables the

network to learn from this stage, compared to Pettersson and

Falkman (2022), where the subwindows were formatted during the

preprocessing. The output from this layer is fed to the first Mixer-

block that consists of two MLP-blocks and two T-blocks (white

triangles) that transposes their respective inputs. The first MLP-

block performs mixing between different spatial locations on the

rows of the transposed input X and the second one mixes features

at row of the input X. The MLPs consists of two fully-connected

layers (yellow squares), with dropout (p = 0.5, green diamonds),

and a non-linear activation (white hexagon), tanh, in between.

The parameters DS and DC are the hidden sizes for the two MLPs

respectively. Each mixer block also features two skip connections,

Figure 5, followed by a layer normalization (Ba et al., 2016) - not

illustrated in the figure. A skip connection is a summation of the

output from a layer and the output from a previous layer. Themixer

block is repeated Nx number of times (including the first block)

before the network ends with the TimeDistributed UE described

earlier and two TimeDistributed final dense layers, one with as

many neurons as there are output classes (10) that gives the output

Ŷ1 and one with a single neuron that gives the binary output for

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 5

A flowchart that describes the adaptation of the MLP-Mixer architecture used in this paper.

Ŷ2. The outputs Ŷ1 and Ŷ2 are obtained once for each subwindow.

The hyperparameters, for the mixer network, that were tuned in the

training phase and their respective value ranges are as follows:

• C ∈ {2, 4, 6, . . . 24},

• DS ∈ {2, 4, 6, . . . 24},

• DC ∈ {2, 4, 6, . . . 24},

• Nx ∈ {1, 2, . . . , 10}.

4.4. LSTM network summary

The LSTM network by Pettersson and Falkman (2022) that will

be used in the comparison can be briefly summarized as follows.

The network takes the windowed and subwindowed input, feeds

it to a TimeDistributed block of operations that they call ”Feature

Extraction”, similar to the one found in Pettersson and Falkman

(2020), that processes each subwindow separately using pooling

layers and convolutions, with 4 filters per layer and a filter size

of either size 1 or 3. This is then sent to the LSTM-layer, with

30 hidden units and recurrent dropout of p = 0.5, that learns

the time dependencies of the data, and the network ends with

the TimeDistributed UE explained earlier and the same two final

output layers.

4.5. Evaluation procedure

This section provides a description of how predictions are

made with uncertainty estimation (UE) (Gal and Ghahramani,

2016), what metrics that were used to evaluate the networks

and how these should be interpreted, and a brief description

of how to make predictions that simulates a continuous flow

of data.

The difference whenmaking a prediction withUE is that several

predictions are made on the same data in order to obtain a mean

value and a standard deviation of the prediction. The pseudo code

for this is shown in Algorithm 1 (Pettersson and Falkman, 2020).

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

Input: X, nrOfPredictions

Output: Ŷ, ŶSTD

1: predictions = []

2: for i = 0 to nrOfPredictions do

3: predictions[i] = network.predict(X)

4: end for

5: Ŷ, ŶSTD = mean(predictions), std(predictions)

6: return Ŷ, ŶSTD

Algorithm1. Pseudo code for predictingwithUE (Pettersson and Falkman,

2020).

Input: Ŷ, ŶSTD, lowerLimit

Output: Ŷ

1: if Ŷ − 2 ∗ ŶSTD > lowerLimit then

2: Accept Ŷ as the prediction for this sample.

3: else

4: Discard Ŷ, the network is not confident enough.

5: end if

Algorithm 2. Pseudo code that accepts or discards a

prediction (Pettersson and Falkman, 2020).

Once the means and standard deviations have been obtained

from the network, these can be used to determine the network’s

confidence, high mean and low standard deviation, to make

an accurate prediction. The implementation is shown in

Algorithm 2 (Pettersson and Falkman, 2020), where a prediction is

accepted if the mean minus two standard deviations is larger than

a chosen threshold.

The performance of the networks has been evaluated using the

following custom metrics:

• AP = Accuracy of predictions that are above UE threshold,

• AM = Accuracy of how many movements are correctly

classified at least once,

• AVP = Vertical accuracy, evaluated whenever there is a box

prediction.

These are more suitable to use to evaluate the network on how well

it is able to utilize its notion of UE in order to predict the intended

movement direction, compared to a standard accuracy metric that

does not capture the aspect of UE. The reason to consider these

metrics can be described as follows: AP is the metric that keeps

track of the accuracy of predictions that are being made, however,

it is possible to achieve an accuracy of AP = 100% for a very

high threshold with just a single correct prediction. A result of

this kind is not considered valuable since such a network would

not sufficiently solve the primary objective. AM on the other hand

keeps track of how many movements that were correctly classified

at least once. However, one way to achieve AM = 100% is through

a network that makes predictions all the time, without regard

for the accuracy of each prediction, eventually one will through

randomness be correct. This type of result is, on its own, not useful

either for the same reason. Through the combination of the two

metrics, AP and AM , it is possible to evaluate how well the network

is able to handle this contradictory task of being both fast to predict

and correct in its prediction. AVP is the accuracy score for the

secondary classification objective. One way to select the threshold,

ThL (called lowerLimit in Algorithm 2), where a network gives

the best compromise between a high accuracy and covering all

movements (high AP and high AM) is to calculate the intersection

of these, referred to as combined accuracy (AI), on the validation

set using thresholds varied between [0, 1] with a step size of 0.01.

The evaluations have been performed in a way that imitates

the continuous flow of data in a real world system. This is done

by making a prediction for every timestep of the test set, starting

with all zeros as the input and then shifting the input data by one

at a time in order to “obtain” new information. The last of the Nw

predictions (the last subwindow) at each timestep is the one that is

evaluated since that subwindow contains the most recent data.

4.6. Hardware and additional metrics

In addition to the metrics described above, the comparison

will also include the number of parameters, P, that make up the

networks and the execution time (T) of each network, defined as the

time in milliseconds that it takes to perform a single prediction. All

networks were trained and evaluated on the same hardware in order

to ensure that the execution times are comparable. The experiments

were performed on a laptop with an Intel(R) Core(TM) i7-8650U

CPU and 16GB of RAM.

5. Results

This section will provide an overview of the training results

evaluated on the validation set, the selection of networks to examine

further, the performance on the test set, and the comparison against

the LSTM network by Pettersson and Falkman (2022).

The evaluation, on the validation set, of all trained networks is

shown in Figure 6. The figure shows a scatter plot of all network

configurations that were tested for both proposed networks. The x-

axis shows the best performing threshold, ThL, and the y-axis the

corresponding combined accuracy (AI), i.e., intersection between

AP and AM . It is clear that there exists many configurations that

provide above 70% AI whereas some fails to learn the objective, i.e.,

achieve low scores. The Mixer architecture seems to perform at a

high level more consistently than the Encoder architecture with a

large group of configurations around AI = 80%. The three best

network configurations, i.e., highest AI , of each network type from

Figure 6 are shown in Table 4 along with the sizes of the networks

and the thresholds, ThL. The Mixer architecture performs better on

the validation set and utilizes a lower optimal threshold than the

Encoder version.

These networks were further evaluated on the test set, at theThL
obtained from the validation, and the results are shown in Table 5

along with the prediction results for LSTM by Pettersson and

Falkman (2022). The results shows, somewhat surprisingly since

the Mixers were better during validation, that the Enc1 network

is the best performing one overall with a prediction accuracy

AP = 82.74%, movement accuracy AM = 80.06%, and vertical

accuracy AV = 89.10%. A good alternative to Enc1 is Mix3

with balanced and slightly lower accuracy scores, both of them

outperformed LSTM in terms of accuracy. The execution time

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 6

A scatter plot that shows all the intersection (AI) points between AP and AM for all network types and for each parameter configuration determined by

the hyperparameter tuning described in Section 4.

TABLE 4 Table showing the three best configurations for each network type including their ThL and AI on the validation set.

Encoder C dk H ff Nx P ThL AI

Top 3 network configurations—Validation set

Enc1 16 4 4 18 2 7.02k 0.53 84.98

Enc2 12 4 3 10 3 5.79k 0.63 80.56

Enc3 12 4 3 18 2 5.25k 0.48 79.53

Mixer C DS DC Nx − P ThL AI

Top 3 network configurations—Validation set

Mix1 24 24 24 1 6.77k 0.43 86.41

Mix2 24 24 20 1 6.57k 0.42 85.38

Mix3 20 20 2 1 4.99k 0.25 84.33

TABLE 5 Table showing a performance comparison between the top performing networks from each network type, evaluated on the test set, along with

the best performing LSTM network from Pettersson and Falkman (2022).

Network ThL AP (%) AM (%) AVP (%) P T[ms]

Best networks from each architecture—Test set

Enc1 0.53 82.74 80.06 89.10 7.02k 31.43± 4.05

Enc2 0.63 79.12 65.77 87.73 5.79k 30.26± 3.89

Enc3 0.48 69.78 71.29 82.56 5.25k 29.96± 3.91

Mix1 0.43 79.09 70.51 86.90 6.77k 29.30± 3.89

Mix2 0.42 80.19 72.28 87.53 6.57k 29.37± 3.88

Mix3 0.25 76.97 77.86 87.61 4.99k 29.42± 3.88

LSTM 0.38 70.70 67.89 81.29 6.99k 30.39± 4.10

The bold values indicate the best (largest) and most interesting value for three accuracy metrics.

for a single prediction was measured using the python function

time.perf_counter() and the measurement was repeated

n = 105 times to obtain a fair estimate. The results are presented

as a mean and a standard deviation in Table 5 for each network. It

is clear that the difference is negligible since the variance is larger

than the difference between the fastest and the slowest network.

The behavior of Enc1 and Mix3 will be further analyzed below,

including comparisons with the behavior of LSTM using Figures 9,

12 from Pettersson and Falkman (2022).

A segment of predictions on the test set for Enc1, Mix3, and

LSTM are shown in Figures 7–9, respectively. The black lines with

squares correspond to the true label for an entire movement, the

blue dots is the unfiltered predicted label at each timestep, the green

X’s are the predicted labels when the certainty is above ThL, and

finally the black line with the dotted black lines in the bottom graph

corresponds to the mean softmax output plus/minus two standard

deviations. It can be seen that all of the networks, after filtering

on certainty, makes few mistakes and manages to correctly classify

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 7

A figure that shows a prediction segment from Enc1 obtained on the test set.

FIGURE 8

A figure that shows a prediction segment from Mix3 obtained on the test set.

most of the movements. The bottom part of the figure displays the

certainty fluctuating over time and it shows that Enc1 often rapidly

rises and falls in certainty for each movement, which indicates that

the network is swift to update its certainty once it receives a new

data sample. The certainty of Mix3 fluctuates more aggressively

than the other two networks and there is no clear pattern in the

unfiltered predictions, however, once filtered it still predicts most

movements correctly. The LSTM has the smoothest certainty plot

but larger confidence bounds than the Enc1. The comparison of

this segment indicates that the behavior of the certainty is not that

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 9

A figure that shows a prediction segment from LSTM (Pettersson and Falkman, 2022) obtained on the test set.

FIGURE 10

A figure that shows the first correct prediction for all hand movements from Enc1 on the test set, plotted with normalized time and distance to target.

important as long as the predictions are filtered. The fact that both

theMix3 and the LSTM have larger confidence bounds is likely the

reason that they have lower thresholds that gives the highest AI .

The time ahead of movement completion, TAMC, is analyzed

for all three networks in Figures 10–12. The figures show the first

correct prediction from each of the movements that were correctly

classified at least once together with the hand movement data

described in Section 3.5. The 5th, 25th, 50th, 75th, 95th, and 99th

percentiles, with respect to time, were added to the plots and their

values are summarized in Table 6. The histograms, top and right,

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

FIGURE 11

A figure that shows the first correct prediction for all hand movements from Mix3 on the test set, plotted with normalized time and distance to target.

FIGURE 12

A figure that shows the first correct prediction for all hand movements from LSTM (Pettersson and Falkman, 2022) on the test set, plotted with

normalized time and distance to target.

shows the distributions of correct predictions with regards to the

normalized time and normalized distance respectively.

The distributions of LSTM are more spread out, for both time

and distance, compared to the other two networks. The network is

slightly faster than the other two since the concentration of points

are shifted lower to the left. Enc1 has the most compact distribution

of points, concentrated to the upper right. This means that the

network is slightly slower at detectingmovements.Mix3 looks like a

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

TABLE 6 A table that summarizes the normalized time values for the

percentiles of all the evaluated networks.

Percentile 5 25 50 75 95 99

Enc1 - Normalized time [0, 1] 0.45 0.66 0.74 0.81 0.91 0.97

Mix3 - Normalized time [0, 1] 0.31 0.6 0.72 0.8 0.92 0.98

LSTM - Normalized time [0, 1] 0.03 0.55 0.66 0.76 0.88 0.96

combination of the other two networks since its time distribution is

similar to LSTM and the distance distribution is more concentrated

to the upper half as in Enc1.

Pettersson and Falkman (2022) argued that the first 5% of the

correct predictions for the LSTM are most likely “lucky-shots”.

These network predictions occur as the network sticks to the same

prediction for the next movement, which due to the random box

sequence sometimes was the same target twice in a row. They are

called lucky since the test person, and therefore the network, can

not know the next target for the first 0.2 s, i.e., first 5.4 to 27.0% of

the movements for the max/min duration, due to the delay that was

inserted between each task in the VRE. These “lucky-shots” are less

prominent in both Enc1 andMix3.

The results in Table 6 shows that LSTM is the fastest at detecting

movements for the lower percentiles, followed by Mix3, and then

Enc1. However, the differences between the three networks decrease

toward the end of the movement durations.

6. Discussion

This paper builds upon the work presented in Pettersson and

Falkman (2022) where eye gaze and movement data was gathered,

and used to train an LSTM network to perform gaze based

arm movement prediction. Using the same data, this paper has

provided two additional solutions to the classification objectives,

presented in Section 3.6: Primary - determine the discrete horizontal

direction corresponding to the box that was clicked and Secondary -

distinguish between whether the movement occurred on the upper or

lower level of boxes. A comparison with respect to accuracy for a

given uncertainty threshold, time ahead of movement completion,

and the execution time of a single prediction using the three

methods is also presented. It is clear from the results on the test

set that the LSTM network is outperformed by the two proposed

alternative solutions in terms of accuracy. However, the search for

network configurations is not exhaustive and there may therefore

exist more accurate configurations of each of the three networks.

The best network, Enc1, reached an accuracy of 82.74% for the

primary objective, correctly classifies 80.06% of the movements at

least once, and an accuracy of 89.10% for the secondary objective.

The validation results, somewhat surprisingly, indicated that

the Mixer architecture outperformed the Encoder whereas the

results by Tolstikhin et al. (2021) showed the opposite. However,

this changed for the evaluation on the test set where the prediction

results came out as expected, i.e., the Encoder had higher accuracy

while the Mixer runs faster. The dissonance between results on

the validation set and the test set may indicate that the Encoder

generalizes better to new data and/or that theMixer were somewhat

over-trained toward the quite small validation set. It is also

important to acknowledge that the dataset that is used in this

paper is relatively small, however, with the results in mind it is

deemed sufficient as a proof of concept. The fact that the use

of data augmentation improves the results could be seen as an

indicator that the developed network could benefit from training

on a larger dataset.

It was observed, during the initial experiments with the

networks, that the Encoders were highly sensitive to the learning

rate (lr) of the optimization algorithm. A lr close to 10−3 seem to

perform well whereas values approaching either 10−2 or 10−4 gave

poor results.

The results in Table 6 shows that LSTM is the fastest at detecting

movements for the lower percentiles, followed by Mix3, and

then Enc1. However, the differences between the three networks

decrease toward the end of the movement durations. One possible

explanation to the fact that LSTM achieved the highest TAMC

with the lowest accuracy, and that the other two networks showed

decreasing TAMC with increased accuracy, may be that a network

with a more aggressive prediction strategy, i.e., making predictions

without necessarily being right, leads to early, correct answers more

often than waiting for a high enough certainty that the prediction

is correct.

One source of error is that the networks’ sometimes continues

to make the same prediction, without changing certainty, even

though a new movement sequence has started. An explanation

could be that the networks have not fully learnt how to determine

when a new movement sequence starts. However, another possible

explanation may be that the test person lingers with his/her gaze at

the box after clicking it while waiting for the next light cue, which

in turn would give the networks’ no reason to believe that the target

has changed.

The slower shift in certainty of the LSTM network, compared to

the other two, may be explained by the way the three architectures

handles historical data. An RNN takes the cumulative information

of all previous data samples into account together with the

contribution of the current timestep, whereas the attention module

of Enc1 and the mixer block ofMix3 recalculates the importance of

all historical points at each timestep, which could make them faster

to adapt to new information.

The execution times presented in the Section 5 shows

negligible differences between the three networks. However, more

importantly it can be observed that all networks runs slower than

the sampling frequency of the eye tracker (120 Hz). This means that

the current solutions are not able to make predictions for every

new incoming data sample in a real-time application. However,

the results are still useful since the long execution times could

potentially be adapted to bymaking predictions only after a few new

data samples instead of every new gaze input. Making predictions

every np:th sample was suggested by Pettersson and Falkman (2022)

as a way of reducing computational requirements. A suitable np for

the presented solutions should be chosen based on the lower limit

of the execution time in relationship with the sampling frequency.

7. Conclusions and future work

This paper has shown that both Transformers andMLP-Mixers

are viable neural network architectures to use for the gaze based

prediction of the intended human arm movement direction. It

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

was also shown that both the proposed methods are able to

outperform the previous LSTM network on all accuracy metrics.

The best Transformers encoder achieved the highest accuracy for

all metrics and another good alternative is the smallest Mixer

network with slightly lower accuracies. All networks had similar

execution times, suggesting that the choice of architecture may in

the end depend on other factors related to the application. The

best developed encoder network achieved an accuracy of 82.74%,

for predictions with high certainty, on continuously incoming

data and correctly classifies 80.06% of the movements at least

once. The movements are, in 99% of the cases, correctly predicted

the first time, before the hand reaches the target and more

than 19% ahead of movement completion in 75% of the cases,

which corresponds to about 239 ms for the median movement

duration. The results shows that there are multiple ways to utilize

neural networks to perform gaze based arm movement intention

prediction and it is a promising step toward enabling efficient

human-robot collaboration.

Future work could revolve around applying the presented

methodology to new gaze based prediction objectives, investigate

how the different architectures compare for longer series of

gaze data, or analyze if the performance is affected by the

proximity between boxes or the height placements. It could

also be the implementation of a similar and more industrial

task, like a kitting station, were predictions could be evaluated

in real-time.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent for

participation was not required for this study in accordance with the

national legislation and the institutional requirements.

Author contributions

JP and PF contributed to conception and design of the study.

JP developed the VRE, implemented the artificial neural networks,

and wrote the first draft of the manuscript. All authors contributed

to manuscript revision, read, and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abidi, M., Al-Ahmari, A., El-Tamimi, A., Darwish, S., and Ahmad, A. (2016).
Development and evaluation of the virtual prototype of the first saudi Arabian-
designed car. Computers 5, 26. doi: 10.3390/computers5040026

Al-Ahmari, A. M., Abidi, M. H., Ahmad, A., and Darmoul, S. (2016). Development
of a virtual manufacturing assembly simulation system. Adv. Mech. Eng. 8.
doi: 10.1177/1687814016639824

Aschenbrenner, D., Maltry, N., Kimmel, J., Albert, M., Scharnagl, J., and
Schilling, K. (2016). Artab-using virtual and augmented reality methods for an
improved situation awareness for telemaintenance. IFAC Pap. Online 49, 204–209.
doi: 10.1016/j.ifacol.2016.11.168

Awais, M., and Henrich, D. (2010). “Human-robot collaboration by intention
recognition using probabilistic state machines,” in 19th International Workshop on
Robotics in Alpe-Adria-Danube Region (RAAD 2010) (Budapest: IEEE), 75–80.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450. doi: 10.48550/arXiv.1607.06450

Bi, L., Feleke, A., and Guan, C. (2019). A review on EMG-based motor intention
prediction of continuous human upper limb motion for human-robot collaboration.
Biomed. Signal Process. Control 51, 113–127. doi: 10.1016/j.bspc.2019.02.011

Blender (2023). Blender. Blender Foundation. Available online at: https://www.
blender.org/ (accessed March 27, 2023).

Chaandar Ravichandar, H., Kumar, A., and Dani, A. (2016). “Bayesian human
intention inference through multiple model filtering with gaze-based priors,” in 2016
19th International Conference on Information Fusion (FUSION) (Heidelberg: IEEE),
2296–2302.

Chadalavada, R. T., Andreasson, H., Schindler, M., Palm, R., and Lilienthal,
A. J. (2020). Bi-directional navigation intent communication using spatial augmented

reality and eye-tracking glasses for improved safety in human-robot interaction. Robot.
Comput. Integr. Manufact. 61. doi: 10.1016/j.rcim.2019.101830

Dahl, M., Albo, A., Eriksson, J., Pettersson, J., and Falkman, P. (2017). “Virtual
reality commissioning in production systems preparation,” in 22nd IEEE International
Conference on Emerging Technologies And Factory Automation (ETFA) (Limassol:
IEEE), 1–7.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An image is worth 16x16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929. doi: 10.48550/arXiv.2010.
11929

Duchowski, A. T. (2017). Eye Tracking Methodology: Theory and Practice. Springer.

El Makrini, I., Merckaert, K., Lefeber, D., and Vanderborght,
B. (2017). “Design of a collaborative architecture for human-
robot assembly tasks,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Vancouver, BC: IEEE),
1624–1629.

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a Bayesian approximation:
representing model uncertainty in deep learning,” in International Conference on
Machine Learning (New York, NY), 1050–1059.

Gomez Cubero, C., and Rehm, M. (2021). “Intention recognition in human robot
interaction based on eye tracking,” in IFIP Conference on Human-Computer Interaction
(Springer), 428–437.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cumberland,
MD: MIT Press.

Gould, T. D., Bastain, T. M., Israel, M. E., Hommer, D. W., and
Castellanos, F. X. (2001). Altered performance on an ocular fixation task

Frontiers inNeurorobotics 17 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://doi.org/10.3390/computers5040026
https://doi.org/10.1177/1687814016639824
https://doi.org/10.1016/j.ifacol.2016.11.168
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1016/j.bspc.2019.02.011
https://www.blender.org/
https://www.blender.org/
https://doi.org/10.1016/j.rcim.2019.101830
https://doi.org/10.48550/arXiv.2010.11929
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pettersson and Falkman 10.3389/fnbot.2023.1157957

in attention-deficit/hyperactivity disorder. Biol. Psychiatry 50, 633–635.
doi: 10.1016/S0006-3223(01)01095-2

Haji Fathaliyan, A.,Wang, X., and Santos, V. J. (2018). Exploiting three-dimensional
gaze tracking for action recognition during bimanual manipulation to enhance
human–robot collaboration. Front. Robot. AI 5, 25. doi: 10.3389/frobt.2018.00025

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Las Vegas, NV: IEEE), 770–778.

Hendrycks, D., and Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv
preprint arXiv:1606.08415. doi: 10.48550/arXiv.1606.08415

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580. doi: 10.48550/arXiv.1207.0580

Hochman, M., Parmet, Y., and Oron-Gilad, T. (2020). Pedestrians’ understanding
of a fully autonomous vehicle’s intent to stop: a learning effect over time. Front. Psychol.
11, 585280. doi: 10.3389/fpsyg.2020.585280

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Huang, C.-M., and Mutlu, B. (2016). “Anticipatory robot control for efficient
human-robot collaboration,” in 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI) (Christchurch: IEEE), 83–90.

Jungwirth, F., Murauer, M., Haslgrübler, M., and Ferscha, A. (2018). “Eyes are
different than hands: an analysis of gaze as input modality for industrial man-machine
interactions,” in Proceedings of the 11th Pervasive Technologies Related to Assistive
Environments Conference (Corfu: ACM), 303–310.

Karatekin, C. (2007). Eye tracking studies of normative and atypical development.
Dev. Rev. 27, 283–348. doi: 10.1016/j.dr.2007.06.006

Koochaki, F., and Najafizadeh, L. (2019). “Eye gaze-based early intent prediction
utilizing CNN-LSTM,” in 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (Berlin: IEEE), 1310–1313.

Krüger, J., Lien, T. K., and Verl, A. (2009). Cooperation of human and machines in
assembly lines. CIRP Ann. 58, 628–646. doi: 10.1016/j.cirp.2009.09.009

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Mainprice, J., and Berenson, D. (2013). “Human-robot collaborative manipulation
planning using early prediction of human motion,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (Tokyo: IEEE), 299–306.

Mazzeo, P. L., D’Amico, D., Spagnolo, P., and Distante, C. (2021). “Deep learning
based eye gaze estimation and prediction,” in 2021 6th International Conference on
Smart and Sustainable Technologies (SpliTech) (Bol; Split: IEEE), 1–6.

Morariu, O., Morariu, C., Borangiu, T., and Răileanu, S. (2018). “Manufacturing
systems at scale with big data streaming and online machine learning,” in Service
Orientation in Holonic and Multi-Agent Manufacturing. Studies in Computational
Intelligence, vol 762, eds T. Borangiu, D. Trentesaux, A. Thomas, and O. Cardin
(Cham: Springer), 253–264. doi: 10.1007/978-3-319-73751-5_19

Nagorny, K., Lima-Monteiro, P., Barata, J., and Colombo, A. W. (2017). Big data
analysis in smart manufacturing: a review. Int. J. Commun. Netw. Syst. Sci. 10, 31–58.
doi: 10.4236/ijcns.2017.103003

Pettersson, J., Albo, A., Eriksson, J., Larsson, P., Falkman, K., and Falkman, P.
(2018). “Cognitive ability evaluation using virtual reality and eye tracking,” in 2018
IEEE International Conference on Computational Intelligence and Virtual Environments
for Measurement Systems and Applications (CIVEMSA) (Ottawa, ON: IEEE), 1–6.

Pettersson, J., and Falkman, P. (2020). “Human movement direction classification
using virtual reality and eye tracking,” in 30th International Conference on Flexible
Automation and Intelligent Manufacturing (FAIM) (Athens).

Pettersson, J., and Falkman, P. (2021). “Human movement direction prediction
using virtual reality and eye tracking,” in 2021 22nd IEEE International Conference
on Industrial Technology (ICIT) (Valencia: IEEE). doi: 10.1109/ICIT46573.2021.9
453581

Pettersson, J., and Falkman, P. (2022). Intended human arm movement direction
prediction using eye tracking. Int. J. Comput. Integr. Manufact.

Rizzo, A. A., Schultheis, M., Kerns, K. A., and Mateer, C. (2004). Analysis of assets
for virtual reality applications in neuropsychology.Neuropsychol. Rehabil. 14, 207–239.
doi: 10.1080/09602010343000183

Samek,W.,Wiegand, T., andMüller, K.-R. (2017). Explainable artificial intelligence:
understanding, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296. doi: 10.48550/arXiv.1708.08296

Shi, L., Copot, C., and Vanlanduit, S. (2021). Gazeemd: detecting visual intention in
gaze-based human-robot interaction. Robotics 10, 68. doi: 10.3390/robotics10020068

Tang, G., Webb, P., and Thrower, J. (2019). The development and evaluation
of robot light skin: a novel robot signalling system to improve communication in
industrial human-robot collaboration. Robot. Comput. Integr. Manufact. 56, 85–94.
doi: 10.1016/j.rcim.2018.08.005

Tobii AB (2020). Tobii Pro VR Integration-Based on HTC Vive Development Kit
Description. Tobii AB. Available online at: https://www.tobiipro.com/siteassets/tobii-
pro/product-descriptions/tobii-pro-vr-integration-product-description.pdf/?v=1.7
(accessed February 13, 2020).

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner,
T., et al. (2021). “MLP-mixer: an all-MLP architecture for vision,” in Advances
in Neural Information Processing Systems 34, eds M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Curran Associates),
24261–24272.

Tu, D., Min, X., Duan, H., Guo, G., Zhai, G., and Shen, W. (2022). “End-to-
end human-gaze-target detection with transformers,” in 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA: IEEE),
2192–2200.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., et al. (2017). “Attention is all you need,” in Advances in Neural
Information Processing Systems, eds I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates),
5998–6008.

Wang, J., Ma, Y., Zhang, L., Gao, R. X., and Wu, D. (2018). Deep learning
for smart manufacturing: methods and applications. J. Manufact. Syst. 48, 144–156.
doi: 10.1016/j.jmsy.2018.01.003

Wang, W., Li, R., Chen, Y., Sun, Y., and Jia, Y. (2021). Predicting human intentions
in human-robot hand-over tasks through multimodal learning. IEEE Trans. Automat.
Sci. Eng. 19, 2339–2353. doi: 10.1109/TASE.2021.3074873

Frontiers inNeurorobotics 18 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1157957
https://doi.org/10.1016/S0006-3223(01)01095-2
https://doi.org/10.3389/frobt.2018.00025
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.3389/fpsyg.2020.585280
https://doi.org/10.1016/j.dr.2007.06.006
https://doi.org/10.1016/j.cirp.2009.09.009
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/978-3-319-73751-5_19
https://doi.org/10.4236/ijcns.2017.103003
https://doi.org/10.1109/ICIT46573.2021.9453581
https://doi.org/10.1080/09602010343000183
https://doi.org/10.48550/arXiv.1708.08296
https://doi.org/10.3390/robotics10020068
https://doi.org/10.1016/j.rcim.2018.08.005
https://www.tobiipro.com/siteassets/tobii-pro/product-descriptions/tobii-pro-vr-integration-product-description.pdf/?v=1.7
https://www.tobiipro.com/siteassets/tobii-pro/product-descriptions/tobii-pro-vr-integration-product-description.pdf/?v=1.7
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1109/TASE.2021.3074873
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Comparison of LSTM, Transformers, and MLP-mixer neural networks for gaze based human intention prediction
	1. Introduction
	2. Preliminaries
	3. Experimental setup
	3.1. Development of the VR test environment
	3.2. Description of the test execution
	3.3. The obtained dataset
	3.4. Filtering of the data
	3.5. Description of hand movement data
	3.6. Selection of features and labels
	3.7. Preprocessing of the data

	4. Neural network design
	4.1. Uncertainty estimation
	4.2. Encoder network description—Transformer
	4.3. Mixer network description
	4.4. LSTM network summary
	4.5. Evaluation procedure
	4.6. Hardware and additional metrics

	5. Results
	6. Discussion
	7. Conclusions and future work
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References

