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multiple temporal scale 3D CNNs
for tactile object recognition
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College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou,

China

Tactile object recognition (TOR) is very important for the accurate perception of

robots. Most of the TOR methods usually adopt uniform sampling strategy to

randomly select tactile frames from a sequence of frames, which will lead to a

dilemma problem, i.e., acquiring the tactile frames with high sampling rate will get

lots of redundant data, while the low sampling ratewill miss important information.

In addition, the existing methods usually adopt single time scale to construct

TOR model, which will induce that the generalization capability is not enough for

processing the tactile data generated under di�erent grasping speeds. To address

the first problem, a novel gradient adaptive sampling (GAS) strategy is proposed,

which can adaptively determine the sampling interval according to the importance

of tactile data, therefore, the key information can be acquired as much as possible

when the number of tactile frames is limited. To handle the second problem, a

multiple temporal scale 3D convolutional neural networks (MTS-3DCNNs) model

is proposed, which downsamples the input tactile frames with multiple temporal

scales (MTSs) and extracts the MTS deep features, and the fused features have

better generalization capability for recognizing the object grasped with di�erent

speed. Furthermore, the existing lightweight network ResNet3D-18 is modified to

obtain a MR3D-18 network which can match the tactile data with smaller size

and prevent the overfitting problem. The ablation studies show the e�ectiveness

of GAS strategy, MTS-3DCNNs, and MR3D-18 networks. The comprehensive

comparisons with advanced methods demonstrate that our method is SOTA on

two benchmarks.
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1. Introduction

The visual and tactile perception are two main ways that the robots perceive the world.

The visual perception can only provide the appearance of an object to the robot, the physical

characteristics of an object such as hardness, roughness, and texture, etc., must be obtained

through the tactile perception. The tactile object recognition (TOR) is especially important

for robots when the imaging condition is terrible or the object is deformable, and has

important practical value in many robotic tasks, such as smart prosthetics (Wu et al., 2018),

medical treatment (Liu et al., 2020), food industry (Philippe et al., 2004), refuse classification

(Li et al., 2020), and post-disaster rescue (Gao et al., 2021), etc.

TOR can be roughly divided into two parts: acquiring tactile data and recognizing object

category based on tactile data. First of all, the tactile sensors attached on the manipulator are

used to acquire the tactile data (it is usually pressure data) of object. Afterwards, the CPU

equipped in robots is employed to recognize object category according to tactile data, which

is also the topic of this paper.
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Recently, the deep learning technique has successfully applied

in many fields (Qian et al., 2020, 2022; Ibrahim et al., 2022; Mao

et al., 2022; Shi et al., 2022), and the deep learning based TOR

methods can be classified into two classes according to whether

the temporal information is involved: (1) TOR methods without

temporal information, (2) spatiotemporal TOR methods.

Most of the traditional TOR methods belong to the first

category. Gandarias et al. used an array of high-resolution pressure

sensors to acquire tactile data, and then a convolutional neural

network (CNN) is employed to obtain the features of tactile data,

finally, the object categories are recognized by a trained support

vector machine (SVM) (Gandarias et al., 2017). Sundaram et al.

(2019) utilized a 32×32 pressure sensor array attached on a knitted

glove to acquire tactile data, and then the multiple frames of tactile

data were simultaneously imported into multiple CNNs for feature

extraction and fusion, the final classification results were given by a

softmax classifier. Other related works include: Liu et al. (2016) and

Yi et al. (2022), etc.

Recently, the second category methods are the mainstream. A

5×5 pressure sensor array attached on a two-finger manipulator

was used to acquire tactile frames (Zhang et al., 2018), each frame

was then resized to a 1×25 vector and fed into the LSTM for

feature extraction, afterwards, the extracted features at different

sampling moments were assigned different weights via a self-

attention module, finally, the weighted feature vectors were used

for TOR. The stacks of tactile frames and tactile flow of which

the computing scheme is similar to optical flow were used as dual

input (Cao et al., 2018), and were extracted initial features by

two residual orthogonal tiling convolutions (ROTConvs) branches,

afterwards, the initial features were further refined by orthogonal

tiling convolutions (OTConv), finally, the refined features were

used to identify the object category through softmax classifier. A

28×50 pressure sensor array attached on a two-finger manipulator

was used to acquire tactile data (Pastor et al., 2019), and then a

3D CNN was employed to acquire the time series features and

accomplish the object recognition. Other related works include Cao

et al. (2016), Funabashi et al. (2020), Bottcher et al. (2021), and Song

et al. (2022), etc.

Some researchers have concluded that the tactile data sampled

at different moment have a strong correlation and their changes

contain important information about the shape, hardness, and

roughness of object (Brayshaw et al., 2022; Li et al., 2022; Sun et al.,

2022), consequently, the aforementioned second category methods

are prominent, however, they still have two problems which are

elaborated as follows.

The first problem of state-of-the-art (SOTA) methods lies in

the sampling strategy. The SOTA methods usually adopt uniform

sampling strategy to randomly select tactile frames from a sequence

of frames, i.e., the time interval of neighbor frames is equal.

The precondition of this strategy is that the importance of each

tactile frame is equal, however, the opposite is true. As a matter

of fact, the tactile frames are similar to each other and contain

lots of redundant information in the untouching stage or stable

grasping stage, by contrast, the tactile frames are more diversified

and contain more useful information from the initial stage of

touching object until the stable grasping. Consequently, adopting

the uniform sampling strategy will face a dilemma, i.e., acquiring

the tactile frames with high sampling rate will get lots of redundant

data, while the low sampling rate will miss important information.

The second problem of SOTAmethods lies in the generalization

capability. The SOTA methods usually adopt single temporal scale

to construct TOR model, which will induce that the generalization

capability is not enough for processing the tactile data generated

under different grasping speeds. As a matter of fact, the grasping

speed of different robots is quite different, consequently, the time

interval of neighbor tactile frame is variable. A smaller time scale

is more suitable for the fast grasping, and vice versa. Therefore,

using single temporal scale will lead to the poor generalization of

TOR model.

To address the first problem, a gradient adaptive sampling

(GAS) strategy is proposed and used to select the input tactile

frames from all frames, which can adaptively determine the

sampling interval in terms of the importance of tactile data

to obtain the key information as much as possible under the

condition of same number of input frames. To handle the second

problem, a multiple temporal scale 3D CNNs (MTS-3DCNNs)

model is proposed, which can extract multi-level deep features

corresponding to different temporal scales for TOR, and the

proposed model will have a better generalization capability for

variable grasping speed in this way. Furthermore, the existing

lightweight network ResNet3D-18 (Hara et al., 2018) is modified

to prevent the overfitting problem and match the size of tactile data

which is usually smaller than image data. The modified ResNet3D-

18 network is denoted as MR3D-18 network and is used as the

backbone network in the proposed MTS-3DCNNs model.

The main contributions are as follows:

1. A GAS strategy is proposed to address the information

redundancy/loss problem induced by existing uniform sampling

strategy.

2. A MTS-3DCNNs model is proposed to handle the problem

that the generalization capability of existing TOR model is

insufficient for processing the tactile data generated under different

grasping speeds.

3. The lightweight network ResNet3D-18 is modified to obtain

a MR3D-18 network which can match the tactile data with smaller

size and prevent the overfitting problem.

2. Proposed methods

As shown in Figure 1, firstly, the input tactile frames are

adaptively selected from all frames by using the GAS strategy, and

are imported into the MTS-3DCNNs model. Secondly, the input

tactile frames are downsampled with different temporal scales, and

are fed into different network branches to extract the multiple

temporal scale (MTS) deep features, where the MR3D-18 network

is used as the backbone network. Finally, the fusing features of MTS

deep features are employed to recognize the grasping object.

2.1. Gradient adaptive sampling strategy

As shown in Figure 2, a typical procedure of grasping object

can be roughly divided into three stages (Sundaram et al., 2019),
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FIGURE 1

Framework of our method.

which are denoted as “Reach”, “Load”, and “Grad and drop object”,

respectively. In the first stage, the hand is gradually close to the

object and the gesture is relatively fixed when the hand touch the

object, consequently, the variation of pressure value is small and

only the deformable pressure caused by the gesture can partially

reflect the shape of the object in this stage. In the second stage, the

contact area and pressure value between hand and object increase

rapidly, consequently, the tactile frames are dramatically changed

and contain lots of key characteristics, such as hardness, shape etc.

In the third stage, the object is successively picked up and put down,

and the average pressure value reaches its highest point and then

decreases. The change speed of tactile frames in the third stage is

between the first and second stages, and the tactile frames in third

stage also contain some important characteristics. In summary, the

order of three stages are stage 2, stage 3, and stage 1 in terms

of importance, which is in accord with the order of the average

gradient values of pressure values at each stage. Therefore, the

proposed GAS strategy adaptively determines the sampling interval

according to the gradient value of the tactile data. The details are

as follows.

As Illustrated in Figure 3A, the gradient representation of the

tactile frames FG = {FG1, . . . , FGt , . . . , FGT} ∈ R
H×W×T is

formulated as:

{

FGt = |Ft − Ft−1| , Ft ∈ D ∈ R
H×W×T , t ∈ Z, 2 ≤ t ≤ T

FG1 = 0

(1)

where D denotes the assemble of original tactile frames, H, W,

and T separately indicate the height, width and number of the

tactile frames, Ft denotes original tactile frame at moment t, and

FGt denotes the absolute value of gradient of two adjacent tactile

frames at moment t.

The accumulative gradient distribution with respect to time is

formulated as:



























NFGt =

H
∑

x=1

W
∑

y=1
FGt(x,y)

T
∑

t=1

H
∑

x=1

W
∑

y=1
FGt(x,y)

, t ∈ [1,T]

AFGt =
t

∑

a=1
NFGa, AFGt ∈ [0, 1]

(2)

where NFGt denotes the normalized version of FGt , FGt(x, y)

denotes the element in row x and column y of FGt , and AFGt ∈
[0, 1] denotes the accumulative gradient at moment t, i.e., AFG1 =
0, AFGT = 1.

As shown in Figure 3B, the horizontal and vertical axes indicate

t and AFGt , respectively, the red curve denotes the function curve

of AFGt . The value range of AFGt , i.e., [0,1] is divided into N

subintervals, i.e., {[0, 1/N] , . . . , [n− 1/N, n/N] , ..., [N − 1/N, 1]},
the N corresponding subintervals on the horizontal axis can

also be obtained according to the function curve of AFGt ,

i.e., {[0, si1] , . . . , [sin−1, sin] , . . . , [siN−1,T]}, the final N sampling

points are randomly selected from above N subintervals, i.e.,

TS = {ts1, ts2, . . . , tsN}, as shown in the black point in Figure 3B.

Thus, the input tactile frames of following TOR model can be

sampled from D according to TS, which are denoted as FTS =
[

Fts1 , Fts2 , . . . , FtsN
]

∈ R
H×W×N .

As shown in Figure 3B, following the GAS strategy, themajority

of FTS focus on the subintervals where the gradient changes quickly.

2.2. Multiple temporal scale 3D CNNs for
tactile object recognition

First of all, a MTS downsampling scheme is imposed on the

FTS, and then the deep features of downsampled frames with

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1159168
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Qian et al. 10.3389/fnbot.2023.1159168

FIGURE 2

A typical interaction sequence of grasping objects by hand.

A B

FIGURE 3

Illustration of GAS strategy. (A) Gradient representation of tactile frames, (B) Accumulative gradient distribution with respect to time.

different temporal scales are extracted through the MR3D-18

network, finally, the fused features of MTS deep features are used

to recognize the grasping object.

2.2.1. Multiple temporal scale downsampling
The MTS downsampling data DF = {DF1, ...,DFm, . . . ,DFM}

of input data FTS can be obtained through following equation:

DFm = DS(FTS, rm) ∈ R
H×W×Nm , m ∈ Z, 1 ≤ m ≤ M,

Nm = ⌈N × rm⌉
(3)

where M denotes the number of temporal scales and is

quantitatively analyzed in Table 3, rm = (0.5)m−1 denotes the

downsampling ratio of m-th temporal scale, DS(·, ·) denotes the

downsamling operation which is quantitatively analyzed in Table 3,

DFm denotes the downsampling data of FTS atm-th temporal scale,

Nm denotes the number of tactile frames contained in DFm.

2.2.2. Feature extraction based on MR3D-18
network

As shown in Figure 1, the {DFm}Mm=1 are fed into the MR3D-

18 network to obtain the MTS features {SF1, ..., SFm, . . . , SFM}.
The MR3D-18 network is obtained by modifying the lightweight

model ResNet3D-18. The motivation behind the modification

includes two aspects: the size of tactile frame is usually smaller

than the nature scene image which is the input of ResNet3D-

18, and prevents the overfitting problem. Consequently, as shown

in Table 1, the differences between MR3D-18 and ResNet3D-18

networks correspond to above two aspects and are given as follows.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1159168
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Qian et al. 10.3389/fnbot.2023.1159168

1: MR3D-18 network removes a pooling layer from ResNet3D-

18 network. As a matter of fact, the size of tactile frame usually

does not exceed 32×32, consequently, the convolution operations

in the top layers will require lots of zero filling if the size of features

is reduced too much by pooling operation in the bottom layer.

Therefore, removing a pooling layer can reduce the error caused

by lots of zero filling.

2: MR3D-18 network adds a dropout layer to ResNet3D-18

network. The appearances of some objects with same category are

quietly different with each other, and the grasping position of same

object is different for each grasping moment, which leads to a

high diversity of tactile data with same category. Consequently, the

training of the 3D CNN is easily overfitting unless the manually

labeled samples are enormous. Therefore, adding a dropout layer

is necessary to enhance the generalization capability of MR3D-18

network. The layers in which the dropout layer is inserted and the

deactivation rate are quantitatively analyzed in Table 2.

2.2.3. Object category recognition
The MTS features {SF1, ..., SFm, . . . , SFM} are firstly fused, and

then the fused features successively pass through a FC layer and a

softmax classifier to obtain the score vector, above procedure can

be formulated as:

S = Softmax (FC (FUSION (SF1, . . . , SFm, . . . , SFM))) (4)

where FUSION (·) denotes feature fusion operation which

is quantitatively analyzed in Table 3, FC (·) denotes the fully

connected convolution operation, Softmax (·) denotes the softmax

classification operation, S ∈ R
C denotes the score vector of FTS,

and C denotes the number of object categories. The category

corresponding to the highest score in S is considered as the

predicted object category.

Aforementioned MTS-3DCNNs model is trained by the

traditional cross entropy loss in an end-to-end manner.

In inference stage, the GAS is implemented when T = αN, α ∈
Z, i.e., GAS can be done even the sequence is not over. In other

words, the object recognition result is updated when T = α N.

3. Experiment

3.1. Experiment setting

3.1.1. Datasets
The MIT-STAG (Sundaram et al., 2019) and iCub (Soh et al.,

2012) datasets are employed to verify the effectiveness of our

method. The MIT-STAG dataset includes 88269 valid tactile frames

with 27 categories, and the size of each frame is 32×32. The tactile

data are acquired by a 32×32 pressure sensor array attached on a

knitted glove, and the 27 categories include 26 common objects and

empty hand. To balance the number of frames of each category,

36531 frames (1353 frames per category) are selected as the training

set, and 16,119 frames (597 frames per category) are selected

as the testing set. The MIT-STAG is a large scale dataset, and

lots of tactile frames belonging to different category have similar

appearance characteristics, obviously, it brings great challenge for

TOR methods.

The iCub dataset includes 2,200 tactile frames with 10

categories, and each category includes 220 tactile frames of which

the size is 5×12. The tactile frames are acquired through an iCub

humanoid robot platform. The platform has two anthropomorphic

dexterous hands with 5 fingers (20 joints, 9 freedom degrees), and

each fingertip is equipped with 12 capacitive pressure sensors. The

training set and testing set include 1,320 frames (132 frames per

category) and 880 frames (88 frames per category), respectively.

3.1.2. Evaluation metrics
The top 1 score, kappa coefficient (KC) and confusion matrix

are utilized to evaluate the effectiveness of our method, which are

commonly used metrics for the TOR task.

3.1.3. Implementation details
All of the input data are resized to 32 × 32. The ResNet3D-

18 pre-trained on Kinetics400 (Carreira and Zisserman, 2017) is

adopted as the backbone network of MTS-3DCNNs. The stochastic

gradient descent (SGD) is adopted as the optimization algorithm,

where the weight decay and momentum are set to 0.0001 and 0.9,

respectively. The batchsize is set to 32 and 8 for the MIT-STAG

and iCub datasets, respectively. The number of epochs is set to 50.

The initial learning rate is set to 0.001, and it becomes 10% of last

stage after every 10 epochs. The experiments are implemented in

the PyTorch framework, and runs on single NVIDIA GeForce RTX

2080Ti@11GB GPU.

3.2. Ablation study

3.2.1. Ablation study of MR3D-18 network
To verify the effectiveness of MR3D-18 network, the MR3D-18

network is compared with original ResNet3D-18 network (baseline

method), furthermore, the MR3D-18 networks with different

dropout configuration are also compared with each other. The

MR3D-18 (Res2), MR3D-18 (Res3), and MR3D-18 (Res4) denote

the dropout layer is added after Res2, Res3 and Res4 layers,

respectively. The dropout (0∼0.5) denotes the deactivation rate of

dropout layer. It is worth noting that the MR3D-18 (dropout = 0)

denotes that only a pooling layer is removed from the ResNet3D-

18 network.

As shown in Table 2, the comparison between MR3D-18

(dropout = 0) and ResNet3D-18 shows that the top 1 score is

increased by 5.81% via removing a pooling layer. The comparisons

between MR3D-18 networks with different dropout configuration

show that the MR3D-18 network achieves the best performance

when the dropout layer is added after Res2 and the deactivation

rate is set to 0.3, and the top 1 score is increased by 7.05% compared

with ResNet3D-18 network.

In a word, the MR3D-18 network is superior to the ResNet3D-

18 network for the TOR, i.e., the proposed modification scheme of

ResNet3D-18 network is effectiveness. The MR3D-18 (Res2) with

deactivation rate equals 0.3 is adopted in the following experiments.
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TABLE 1 Comparison between ResNet3D-18 and MR3D-18 networks with a 32×32 input tactile frame.

Layers
ResNet3D-18 MR3D-18

Filters Output size Filters Output size

Conv1
7×7×7, 64

stride 1, 22
32× 162

7×7×7, 64

stride 1, 22
32× 162

Pool
3×3×3 max

stride 1, 22
16× 82 — 32× 162

Res2







3× 3× 3 , 64

3× 3× 3 , 64






× 2

stride 1, 12

16× 82







3× 3× 3 , 64

3× 3× 3 , 64






× 2

stride 1, 12

32× 162

Dropout — 16× 82 dropout rate=0.3 32× 162

Res3







3× 3× 3 , 128

3× 3× 3 , 128






× 2

stride 2, 22

8× 42







3× 3× 3 , 128

3× 3× 3 , 128






× 2

stride 2, 22

16× 82

Res4







3× 3× 3 , 256

3× 3× 3 , 256






× 2

stride 2, 22

4× 22







3× 3× 3 , 256

3× 3× 3 , 256






× 2

stride 2, 22

8× 42

Res5







3× 3× 3 , 512

3× 3× 3 , 512






× 2

stride 2, 22

2× 12







3× 3× 3 , 512

3× 3× 3 , 512






× 2

stride 2, 22

4× 22

Global average pooling

TABLE 2 Ablation study of MR3D-18 network in terms of top 1 score (%)

on the MIT-STAG dataset.

Model

Dropout 0 0.1 0.2 0.3 0.4 0.5

MR3D-18 (Res2) 80.30 80.70 81.27 81.54 79.25 76.73

MR3D-18 (Res3) 80.30 81.10 80.14 74.34 72.09 67.35

MR3D-18 (Res4) 80.30 81.29 78.34 78.97 78.23 75.28

ResNet3D-18 (Baseline) 74.49

The bold font denotes the highest score.

3.2.2. Ablation study of GAS and MTS-3DCNNs
To verify the effectiveness of GAS strategy and MTS-3DCNNs,

18 methods with different configurations are compared with each

other, which are denoted as A∼JP, respectively. The method F∼J

and GP∼JP adopt the GAS, the rest is not. The downsamping

strategy adopted by method BP∼JP is average pooling operation,

the rest methods adopt subsampling operation except method A

and F. The method A and F do not use the MTS scheme, i.e.,

M = 1. The method B, BP, C, CP, G, GP, H, and HP use two

temporal scales (M = 2), and the method D, DP, E, EP, I, IP,

J, and JP use three temporal scales (M = 3). The feature fusion

strategy, i.e., FUSION(·), adopted by method C, CP, E, EP, H, HP,

J, and JP is summation operation, the rest methods adopt the

concatenation operation except method A and F. The method A

does not adopt the GAS and MTS scheme, therefore, it is denoted

as the baseline method.

As shown in Table 3, the comparisons between A∼E and F∼J

(or BP∼EP and GP∼JP) demonstrate that using the GAS can

apparently improve the performance of TOR. The comparisons

between A and B∼E, BP∼EP (or F and G∼J, GP∼JP) show that

the MTS scheme is superior to the single temporal scale scheme.

The comparisons between B, C and D, E (or G, H and I, J, or BP,

CP and DP, EP, or GP, HP and IP, JP) show that the performance is

better whenM = 3. The comparisons between B and C (or D and E,

or G and H, or I and J, etc.) show that the summation operation is a

more appropriate feature fusion strategy. The comparison between

B and BP (or C and CP, or D and DP, or E and EP, etc.) shows that

average pooling is a more appropriate downsampling operation.

The comparison between A and JP demonstrates that the top 1

score of baseline method can be increased by 7.27% via using both

GAS and MTS scheme.

In a word, the proposed GAS and MTS scheme are effective.

3.3. Comparisons with state-of-the-art
methods

To further evaluate the effectiveness of our method, it is

compared with some state-of-the-art methods in terms of top 1

score, KC and confusionmatrix. As shown in Tables 4, 5, Sundaram

et al. (2019) provided the source codes, the rest comparison

methods only provided the experimental results on one dataset. The

comparison results on the MIT-STAG and iCub datasets are shown

in Tables 4, 5, respectively.
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TABLE 3 Ablation study of the proposed GAS and MTS-3DCNNs in terms of top 1 score (%) on the MTS-STAG dataset.

Method GAS
Downsampling M FUSION(·)

Top 1 score
SubS AvgP 1 2 3 Sum Cat

A (baseline)
√

81.54

B
√ √ √

83.03

C
√ √ √

83.51

D
√ √ √

84.46

E
√ √ √

85.13

F
√ √

84.98

G
√ √ √ √

85.44

H
√ √ √ √

86.84

I
√ √ √ √

87.15

J
√ √ √ √

87.40

BP
√ √ √

83.60

CP
√ √ √

84.53

DP
√ √ √

85.64

EP
√ √ √

86.69

GP
√ √ √ √

87.05

HP
√ √ √ √

87.69

IP
√ √ √ √

87.95

JP (ours)
√ √ √ √

88.81

TheM and FUSION(·) are defined in Equation (3) and (4), respectively. SubS and AvgP denote subsampling and average pooling operations, respectively. Sum and Cat denote summation and

concatenation operations, respectively. The bold font denotes the highest score.

As shown in Table 4, the top 1 score of the proposed

method surpasses the Sundaram et al. (2019), Wang et al. (2021),

Zhang et al. (2021), and Sharma (2022) by 16.43, 16.81, 8.72,

and 6.99%, which indicates that our method has the highest

classification accuracy on the MIT-STAG dataset. Meanwhile, the

proposed method of KC surpasses the Sundaram et al. (2019),

Wang et al. (2021), Zhang et al. (2021), and Sharma (2022) by

17.18, 17.57, 9.22, and 7.4%, which indicates that our method

has the lowest degree of confusion which can also be seen

in Figure 4.

As shown in Table 5, the top 1 score of the proposed method

surpasses the DS (Soh and Demiris, 2014), GS (Soh and Demiris,

2014), Soh et al. (2012), and Sundaram et al. (2019) by 1.5,

1.1, 0.7, and 0.5%, which indicates that our method has the

highest classification accuracy on the iCub dataset. Meanwhile,

the proposed method of KC surpasses the DS (Soh and Demiris,

2014), GS (Soh and Demiris, 2014), Soh et al. (2012) and Sundaram

et al. (2019) by 1.6, 1.2, 0.8, and 0.6%, which indicates that our

method has the lowest degree of confusion which can also be seen

in Figure 5.

In summary, our method has the best performance on the

two datasets, and the relative superiority is more obvious on the

more challenging MIT-STAG dataset, which further validate the

effectiveness of our method.

TABLE 4 Comparisons with the state-of-the-art methods in terms of top

1 score (%) and KC (%) on the MIT-STAG dataset.

Method Top 1 score KC

Sundaram et al., 2019 72.38 71.35

Wang et al., 2021 72.00 70.96

Zhang et al., 2021 80.09 79.31

Sharma, 2022 81.82 81.13

Ours 88.81 88.53

The bold font denotes the highest score.

TABLE 5 Comparisons with the state-of-the-art methods in terms of top

1 score (%) and KC (%) on the iCub dataset.

Method Top 1 score KC

DS (Soh and Demiris, 2014) 98.5 98.4

GS (Soh and Demiris, 2014) 98.9 98.8

Soh et al., 2012 99.3 99.2

Sundaram et al., 2019 99.5 99.4

Ours 100 1

The bold font denotes the highest score.
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A B

C D

E

FIGURE 4

Comparisons with state-of-the-art models in terms of confusion matrix on the MIT-STAG dataset. (A) Sundaram et al., 2019, (B) Wang et al., 2021, (C)

Zhang et al., 2021, (D) Sharma, 2022, (E) Ours.
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A B

C D

E

FIGURE 5

Comparisons with state-of-the-art models in terms of confusion matrix on the iCub dataset. (A) DS (Soh and Demiris, 2014), (B) GS (Soh and Demiris,

2014), (C) Soh et al., 2012, (D) Sundaram et al., 2019, (E) Ours.
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4. Conclusion

A novel GAS strategy was proposed to address the problem that

the uniform sampling strategy lead to the information redundancy

or loss, which could adaptively determine the sampling interval

according to the gradient value of the tactile frames, consequently,

the key information of tactile frames could be acquired as much as

possible under the condition of same number of input frames. A

novel MTS-3DCNNs model was proposed to handle the problem

that the generalization capability of existing TOR model was

insufficient for processing the tactile frames generated under

different grasping speeds. TheMTS-3DCNNsmodel downsampled

the input tactile frames with different time scale and extracted

the MTS deep features, and the fused features were employed to

recognize the grasping object. Consequently, the generalization

capability of TORmodel could be improved in this way for variable

grasping speed. Furthermore, the lightweight network ResNet3D-

18 is modified to obtain a MR3D-18 network which can match the

tactile data with smaller size and prevent the overfitting problem.

The ablation studies of MR3D-18 network, GAS strategy and

MTS-3DCNNs model demonstrated that MR3D-18 network could

give better performance than original ResNet3D-18 network and

using the GAS strategy and MTS-3DCNNs model could effectively

improve the performance of TOR model. The comparisons with

advanced methods on the MIT-STAG and iCub datasets show that

the overall performance of our method was SOTA.
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