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Editorial on the Research Topic

Novel methods in embodied and enactive AI and cognition

1. Introduction

Many people still identify AI with GOFAI (Good Old Fashioned Artificial Intelligence),

broadly speaking “functionalist” and “symbolic” AI, or Machine Learning or Deep Learning

(DL) (Hinton and Salakhutdinov, 2006), mainly due to recent successes in object and speech

recognition and other tasks. DL methods, and recently transformers and generative AI, text-

to-image generation tools (such as MidJourney, StableDiffusion, and Dall-E), and Large

Language Models (LLMs) (such as ChatGPT) have proven to be very powerful in a wide

range of applications. However, they usually need to be trained on vast datasets (hence

the phrase “Big Data”); they work less well and with lower effectiveness when available

training data are less abundant, or when intelligent behaviors of physical agents in a physical

environment require real-time reactions to a sensorimotor flow affected by agent behavior.

When humans are involved, the “explainability” of AI reasoning is of great importance and is

often weak. This is in part due to the fact that Deep Learning has been initially applied for the

indexing of large data sets of images and sound samples, and for profiling of online customers

of marketplace platforms and users of social networks. There might be deeper reasons for

that. In nature, cognition and intelligence follow a completely different paradigm than in

current mainstream AI and robotics. They are embedded in a physical system (a body)

(Pfeifer and Bongard, 2006), emerging bottom-up from the interaction of large numbers of

loosely coupled components (Bonsignorio, 2007), and they are usually associated with life.

In contrast, the “mechatronics + machine learning” paradigm, which is still used to build

mainstream robots, implements top-down controls and keeps the body well divided from

the mind (following the views of seventeenth-century European philosopher Descartes).

Frame of Reference (F-O-R) issues in AI (Dennett, 1987) also affect Deep Learning models;

human “tagging” in model training or in LLM tuning via Reinforcement Learning by

Human Feedback (RLHF) are clear examples of this. Several different approaches have

been tried in order to frame the problem of designing physical agents acting in the real

world in a way directly inspired by natural intelligence. Many researchers have seen in

soft robotics a way to pursue approaches more closely related to what we observe in

nature without questioning the widely accepted paradigms. In many cases, the models

of robots make precise assumptions about the body and the environment, such as that
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the body is made up of a known number of rigid objects

connected to one another via joints of a known type, like those

in the skeleton (Bongard et al., 2006; Hersch et al., 2009; Sturm

et al., 2009; Koos and Mouret, 2011). Some bolder research

has employed other approaches, including self-organizing maps

or Kohonen-type unsupervised machine learning (Asada et al.,

2009; Mori and Kuniyoshi, 2010). Probabilistic measures like

Crutchfield information metrics have been used to determine

topological relationships between sensors and actuators (Olsson

et al., 2004; Kaplan and Hafner, 2005; Schatz and Oudeyer,

2009). New measures (Zenil et al., 2013) have been developed

to help detect life (whether artificial or natural); see Terrazas

et al. (2013). Kohonen’s Self-Organizing Maps have been used to

learn visuomotor coordination (Ritter et al., 1989). Kuiper’s Spatial

Semantic Hierarchy shows that intrinsic knowledge alone may be

used to reconstruct an instructive and demanding sensorimotor

contingency. Pierces and Kuipers concepts have been extended

with even weaker assumptions through analysis of sensorimotor

variable distances using statistically based information-theoretic

metrics (Crutchfield, 1990; Olsson et al., 2004). Tanev et al. (2005)

and Prokopenko (2013, 2014) propose to exploit information-

driven self-organization. In this context, Bonsignorio (2013)

recommends leveraging Lie Groups to reduce the computational

load of information-driven self-organization, building on work

by Chirikjian and Burdick (1994) and Chirikjian (2010). One

of main missions of the Human Brain Project, a flagship EU

project, is dedicated to neurorobotics, a new field aiming to

merge neurosciences, AI, and robotics. Emergentist approaches

to embodied/enactive AI are in principle capable of escaping the

limitations of “symbolic” and “functionalist” AI andML/DL (above

all, the F-O-R issue). However, the problem of anchoring “pseudo?-

symbolic” concise “pseudo?-representations” to the sensorimotor

flow has still to be solved. The line between what is “pre-

programmed” and “learned” in natural intelligent agents and where

this should be in artificial ones has yet to be fully grasped; see

Cangelosi and Asada (2022). Promising approaches leveraging

system dynamics have been proposed, recently by Billard et al.

(2022).

2. Contributed articles

The contributed papers cover some of the more challenging

open questions in the area of Embodied and Enactive AI and

propose some original approaches. Scarinzi and Cañamero argue

that “artificial emotions” are a necessary tool for an agent

interacting with the environment. Hernandez-Ochoa point out

the potential importance and usefulness of the evo-devo approach

for artificial emotional systems. The problem of anchoring a

symbolic description to a neural encoding is discussed by Katz

et al., who propose a “neurocomputational controller” for robotic

manipulation based on a “neural virtual machine” (NVM). The

NVM encodes the knowledge of a symbolic stacking system, but

can then be further improved and fine-tuned by a Reinforcement

Learning procedure. This is an approach attempting to bridge

“symbolic descriptions” with data-driven approaches. In Hinrichs

et al., the authors show via a thorough data analysis how “meaning,”

as it is understood by us humans in natural language, is actually

an unstable ground for symbolic representations, as it shifts from

language to language. An early stage controller inspired by Piaget’s

schemas is proposed by Lagriffoul. The relevance of Piaget’s work,

which provides an insightful analysis of cognitive development in

human children, has been recognized for example in Bonsignorio

(2007).

We should not underestimate the importance of establishing

suitable, cheap, and easily customizable testing platforms for real-

world testing of scientific ideas in embodied and enactive AI and

cognition. This is addressed by Stoelen et al..

3. Discussion

Despite some successes, much work still remains to be

done (Ackerman and Guizzo, 2015; Yanco et al., 2015). In

particular, “tabula rasa” (“blank slate”) methods have shown serious

limitations in terms of moving beyond “shallow understanding”

to the deeper understanding that is required to achieve adaptive,

resilient, and trustworthy behaviors in physical agents (Marcus and

Davis, 2019). Deep Learning (DL) algorithms cannot infer high-

level representations or causal links, or make strong anticipatory

actions. Might more abstract approaches, reproposing hard

(symbolic) modeling approaches from a system theory point of

view, such as that of the Coresense project, be merged with

“emergentist” data-driven pipelines? To overcome their current

limitations, the fields of AI and robotics need to move from a

“Cartesian” and “clock-like” mechatronic-plus-machine- learning

paradigm to a radically new one, based on the reverse-engineering

of animal intelligence and cognition. The new approach will need to

be strongly interdisciplinary, as it will have to borrow principles and

methods from—to name a few fields—AI, neuroscience, artificial

life, and synthetic biology.
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