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Collaborative robots, or cobots, are designed to work alongside humans and to
alleviate their physical burdens, such as lifting heavy objects or performing tedious
tasks. Ensuring the safety of human–robot interaction (HRI) is paramount for
e�ective collaboration. To achieve this, it is essential to have a reliable dynamic
model of the cobot that enables the implementation of torque control strategies.
These strategies aim to achieve accurate motion while minimizing the amount of
torque exerted by the robot. However,modeling the complex non-linear dynamics
of cobots with elastic actuators poses a challenge for traditional analytical
modeling techniques. Instead, cobot dynamic modeling needs to be learned
through data-driven approaches, rather than analytical equation-drivenmodeling.
In this study, we propose and evaluate three machine learning (ML) approaches
based on bidirectional recurrent neural networks (BRNNs) for learning the inverse
dynamic model of a cobot equipped with elastic actuators. We also provide
our ML approaches with a representative training dataset of the cobot’s joint
positions, velocities, and corresponding torque values. The first ML approach uses
a non-parametric configuration, while the other two implement semi-parametric
configurations. All three ML approaches outperform the rigid-bodied dynamic
model provided by the cobot’s manufacturer in terms of torque precision while
maintaining their generalization capabilities and real-time operation due to the
optimized sample dataset size and network dimensions. Despite the similarity in
torque estimation of these three configurations, the non-parametric configuration
was specifically designed for worst-case scenarios where the robot dynamics are
completely unknown. Finally, we validate the applicability of ourML approaches by
integrating the worst-case non-parametric configuration as a controller within a
feedforward loop. We verify the accuracy of the learned inverse dynamicmodel by
comparing it to the actual cobot performance. Our non-parametric architecture
outperforms the robot’s default factory position controller in terms of accuracy.
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1. Introduction

The presence of robots among us is becoming increasingly

common as technology provides them with new capabilities

needed for performing diverse tasks in unstructured, scenarios,

i.e., healthcare centers, homes, etc. In fact, the International

Federation of Robotics (IFR) reported∼3 million robots operating

in 2020, a 10% increase compared to the previous year (IFR,

2021). This ubiquitous presence entails an increasing human–

robot interaction (HRI) in a collaborative manner. Interacting

with a human can be regarded as an unstructured task because

it is ambiguous, and it is not based on rigid rules. Rather,

HRI tasks require general policies incorporating high rates of

exception and complexity, in which adaptability and flexibility

are mandatory (Bicchi et al., 2008). It is precisely the need for

this HRI to be safe that motivates the emergence and design

criteria for collaborative robots, also called cobots (Giuliani et al.,

2010).

The latest cobot generation integrates elastic actuators that

offer passive compliance and minimizes execution forces to comply

with safe HRI while performing unstructured tasks (Giuliani et al.,

2010). These elastic joints reduce the risk of damage due to

the dampening effect over the contact forces between the cobot

and a stiff environment, i.e., cobot–cobot, cobot–operator, or

cobot–environment contact. However, the integration of the elastic

components entails a trade-off: an increase in the complexity

of the cobot dynamics and modeling, which, in turn, presents

challenges in control (Lee et al., 2017). The dynamic model of any

robot relates joint torque values to their resultant joint motion,

which implies that position and velocities could be estimated

from the applied torque commands (direct dynamic model) and

vice versa (inverse dynamic model). The classical methods for

identifying a robot dynamic model are based on either the

Lagrange equations (analytical dynamic model) or the Newton–

Euler equations (numerical dynamic model; Swevers et al., 2007).

Although flexible joint robot dynamic identification is a viable

option for modeling compliant cobots, this method has limitations

in accurately capturing the model’s parameters and the non-linear

and time-varying dynamics (Pratt and Williamson, 1995). Simple

analytical dynamic models often do not consider joint stiffness

and elasticity or, if they do, they approximate linear behavior

with coefficients that have a high degree of uncertainty (Kwon

and Book, 1994; Ata et al., 1996; Calanca et al., 2011; Lee et al.,

2017). Additionally, other non-linear effects such as backlash and

frictional torque are often overlooked (Madsen et al., 2020). The

dynamics of these effects pose a challenge to the accuracy of the

model as they are affected by environmental conditions and the

level of maintenance of the robot. Therefore, data-driven dynamic

modeling using Machine Learning (ML) approaches, specifically

artificial neural networks (ANNs), has gained popularity. ANNs

are capable of capturing complex and non-linear dynamics, making

them well-suited for this purpose (Xu et al., 2014; Li and Li, 2021;

Liu et al., 2021). This is particularly important in tasks that involve

close human-robot interaction, where ensuring the safety of human

operators is critical. It is worth noting, however, that modeling

flexible joints in robot dynamic identification may still be useful

in certain scenarios. Nevertheless, the limitations of this approach

have motivated the exploration of alternative methods such as

data-driven dynamic modeling using ML techniques.

Several research studies (Graves et al., 2005; Rueckert et al.,

2017; Liu et al., 2019) have consistently reported better

performance of Recurrent Neural Networks (RNNs), specifically

bidirectional RNNs (BRNNs), over non-recurrent ANNs in time-

series problems (of a moderate number of inputs), such as the

one we are dealing with. RNNs are extensively used to model

different dynamic systems (Jin et al., 2022). Particularly, in robotics,

unidirectional RNNs have been trained to learn the inverse or direct

dynamics of rigid robots (Mukhopadhyay et al., 2019; Wang et al.,

2020). Hybrid solutions combining an analytical description of the

rigid robot dynamics with a data-driven deep learning (DL) model

(semi-parametric model) has also been proposed (Liu et al., 2020;

Çallar and Böttger, 2023). Conversely, in cobotics, unidirectional

and BRNNs have been trained to learn cobot models only relating

desired joint positions to actual joint positions, without taking into

account the actual torque values that are required to achieve these

positions (Chen and Wen, 2019). This limitation can restrict the

application of these models to torque control, where knowledge

of the actual torque values is crucial. Note that the majority of

these studies were focused on the modeling of rigid robots and

never on the application of ML to robots with elastic joints that are

inherently safer, but difficult to be commanded in torque accurately

due to their complex dynamics, i.e., passively compliant cobots.

Importantly, these studies do not account for the future states

of the joints of the robot, which provide relevant information

for appropriate learning of an inverse dynamics model (Jordan

and Rumelhart, 1992). Therefore, there is a need for research

on (ML)-based inverse dynamic models that can account for the

complex dynamics of passively compliant cobots and physical

force interactions, ultimately facilitating model-free torque control.

We propose and evaluate three machine learning algorithm

configurations based on recurrent neural networks (RNNs).

Three approaches can be found in dynamic systems modeling

depending on whether the physical parameters of the system are

incorporated or not, i.e., parametric, non-parametric, and semi-

parametric models. We proposed a configuration that builds a

non-parametric model (NID) and two configurations that build

semi-parametric models (SID and ESID) incorporating the robot’s

rigid body parametric model (RBD). Specifically, we wanted to

determine whether combining the RBD model with learning

models (BRNN) could provide greater robustness in prediction

and generalization than when the RBD model was not taken

into account. We also wanted to investigate whether the way in

which information from the RBD model was incorporated into

the semi-parametric models influenced their performance. In the

SID configuration, the output of the RBD model is an input to the

BRNN, whereas, in the ESID configuration, the BRNN is trained to

estimate the torque corresponding to the dynamics not modeled in

RBD so that the outputs of the BRNN and RBD can be combined.

Considering all the implications above, we can enumerate the

main contributions of this work as follows:

• First, this study proposes an efficient dynamic data robot

acquisition method. Using statistical analysis over the dataset,

we identify the subset of trajectories that provided the highest
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dynamic cobot information, i.e., good data vs. extensive big

data paradigm. The resulting training dataset is made publicly

available for replication and comparison purposes.

• Second, we introduce an ML approach to the inverse

dynamic modeling of cobots based on three different BRNN

configurations: a non-parametric BRNN, i.e., data-driven

model and two semi-parametric BRNNs, i.e., data-driven

model + analytical rigid-dynamic model. We compare these

data-driven models to the analytical rigid-dynamic model

provided by the manufacturer and find that the BRNN-based

models systematically outperform the analytical model.

• Finally, we demonstrate that implementing a BRNN-based

controller that has learned the inverse dynamics of the

robot can improve the performance of a cobot, even

under persistent collisions or lack of active feedback. Our

approach carries high accuracy while maintaining the cobot’s

compliance. This was illustrated as a proof-of-concept within

the Supplementary video.

2. Materials and methods

2.1. Passive compliant robot

The Baxter robotr was used as our robotic demonstrator.

Baxter is a collaborative and compliant robot (cobot) consisting

of two arms with seven degrees of freedom (DoF) each, equipped

with serial elastic actuators (SEAs) (Fitzgerald, 2013). Unlike rigid

actuators, these SEAs incorporate a spring between the motor gear

and the actuator end (Pratt and Williamson, 1995), which allows

absorbing, to some extent, contact forces, that is, providing passive

compliance. In addition to the SEAs, Baxter also holds a passive

spring at the S1 joint (see Section 3), which further increases the

dynamic complexity of the robot arm.

2.2. Cobot dynamic modeling and the
parametric issue

Any robot dynamic model describes the relationship between

the torque values applied on the robot joints and the resulting

motion. This relationship is mathematically expressed using the

analytic Lagrange formulation as follows:

τ = M(q)q̈+H(q, q̇)+ G(q)+ ξ (q, q̇, q̈), (1)

where q, q̇, and q̈, are joint positions, velocities, and

accelerations, respectively. τ stands for the vector containing the

joint torque values. M(q) ∈ Rnxn defines the robot inertia matrix.

TheH(q, q̇) ∈ Rn computes the inertia and Coriolis effects, whereas

G(q) ∈ Rn computes the gravitational effects onto the robot.

Finally, ξ (q, q̇, q̈) ∈ Rn stands for the torque/force effects of those

robot elements that were not considered elsewhere in the dynamic

model, i.e., viscous friction, or the non-linear effects of the SEA

springs.

Most rigid robots, i.e., equipped with high ratio gearboxes,

conveniently assume ξ = 0 in dynamic modeling sinceM(q)q̈ and

H(q, q̇) torque contributions to the final τ are significantly larger

than ξ (q, q̇, q̈). In these cases, the torques governed by rigid body

dynamics (τRBD) can be defined as follows:

τRBD = M(q)q̈+ H(q, q̇)+ G(q). (2)

However, this is no longer the case for non-rigid robots

(cobots), such as Baxter. Modeling ξ (q, q̇, q̈) becomes key in

associating accurately the applied cobot torque values and the

subsequent motion. ξ related cobot parameter demands for

accurate identification methods, which are usually mathematically

intractable (Lee et al., 2017). Mathematically intractability

motivates the employment of non-parametric methods for

cobot dynamic modeling (Polydoros et al., 2015). Consequently,

modeling an elastic robot is a challenging task that requires not only

understanding or learning the dynamics of the rigid components

(Equation 2) but also the additional complex dynamics inherent in

its elastic joints [ξ (q, q̇, q̈)]. Accurately capturing these additional

dynamics requires sophisticated techniques and algorithms,

as they involve frictional and elastic behavior that cannot be

captured just by rigid body dynamics. Dynamic modeling that

performs well for rigid robots may not be suitable for elastic

ones due to the increased complexity involved in modeling their

additional complex dynamics. Therefore, modeling elastic robots

requires careful consideration of their specific requirements and

characteristics (Madsen et al., 2020).

Note that the Baxter rigid analytical dynamic model was

used for comparative purposes and the proposed semi-parametric

model. We use the Unified Robot Description Format (URDF) file

provided by the manufacturer of the Baxter robot. This file contains

physical parameters of the robot links such as masses, inertia

tensors, and relative centers of masses. Pybullet library (Coumans

and Bai, 2016-2021) was used to build a model of the Baxter robot

with these parameters. Pybullet uses the method of Newton–Euler

formulation proposed by Luh et al. (1980) for the calculation of the

inverse dynamics.

2.3. Cobot dynamics learning: the recurrent
neural network

Inverse dynamic modeling estimates those torque values

needed to generate a certain cobot movement. This problem

is identified in ML terms as a regression problem (Nguyen-

Tuong and Peters, 2008). To solve this regression problem,

i.e., estimating the relationship between a dependent variable

(torque) and independent variables (joint positions, velocities, and

accelerations), we used an RNN. Note that Equation (1) describes

the relationship between the robot’s joint torque values and its

kinematic state variables [x = (q, q̇, q̈)]. The recursive Newton–

Euler formulation is often used to calculate the torque values based

on the robot’s state at a specific instant (Luh et al., 1980). To

determine the torque sequence [Y = (y1, ..., yT)] along a given

trajectory, a possible approach is to first discretize the trajectory,

then determine the kinematic state at each discrete instant [X =

(x1, ..., xT)], and finally solve Equation (1) for each kinematic state.

This approach enables us to treat the inverse dynamic problem as a

time-series regression problem. By predicting the output Y based

on the input sequence X [Y = F(X), where F is a non-linear
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function], we can determine the torque sequence along a given

trajectory (Rueckert et al., 2017). Interestingly, recent research has

shown a relationship between the state space of a model and the

hidden states of RNNs (Schüssler et al., 2019; Ljung et al., 2020;

Uribarri and Mindlin, 2022), leading to investigations into the

potential of RNNs to predict time series of complex non-linear

dynamical systems in robotics (Mohajerin and Waslander, 2019;

Çallar and Böttger, 2023).

The neural network was only fed with position and velocity

values as inputs, whereas the acceleration values were inferred

from those position and velocity data. When velocity sensors

are available, incorporating this information directly into the

network is generally preferable to estimating it from joint positions.

However, in cases where velocity sensors are not available or

are unreliable, estimating velocity from position data can be an

alternative approach, although it may introduce errors due to

noise, drift over time or, more importantly, the discretization error

or truncation error (Brown et al., 1992). Regarding acceleration,

our robot’s sensors do not provide for acceleration. Therefore, we

chose to infer acceleration internally through the RNN. Specifically,

the RNN can use the time-serial information from position and

velocity data to estimate acceleration.While this approachmay also

introduce some errors, it has been shown to work well in previous

studies (Liu et al., 2019).

Recurrent neural networks are traditionally implemented using

cell solutions, themost notable being the Long Short TermMemory

(LSTM) cell and the Gated Recurrent Unit (GRU) cell (Chung et al.,

2014). LSTM cell consists of two recurrent inputs called forged gate

(ct−1) and the input gate (ht−1), and the output ht is defined as

follows:

it = σ (Wixt + Uiht−1 + bi),

ft = σ (Wf xt + Uf ht−1 + bf ),

rt = σ (Wrxt + Urht−1 + br),

ot = σ (Woxt + Uoht−1 + bo), (3)

c̃t = tanh(Wc̃xt + Ũcht−1 + b̃c),

ct = σ (ft ∗ ct−1 + it ∗ c̃t), and

ht = ot ∗ tanh(ct).

Conversely, GRU is defined by one only gate, the update

gate, which reduces mathematical complexity and, therefore,

computational cost (Yang et al., 2020). The equations governing the

GRU behavior are as follows:

zt = σ (Wzxt + Uzht−1 + bz), (4)

rt = σ (Wrxt + Urht−1 + br), (5)

h̃t = tanh(Wh̃xt + Uh̃(ht−1 ∗ rt)+ b̃h), and (6)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t . (7)

The operator ∗ stands for the Handamard (i.e., element-wise)

product of two vectors. σ (·) and tanh(·) represent the sigmoid and

the hyperbolic tangent activation functions, respectively. Wz , Wr ,

and Wh̃ are the weight matrices of the input (xt), whereas Uz , Ur ,

and Uh̃ are the weight matrices of the recurrent input gate (ht−1)

within the cell. bz , br , and b̃h refer to the bias vectors. r and z are

A

B

FIGURE 1

Structure of the proposed neural network. (A) Bidirectional recurrent
neural network (BRNN) consisting of a backward (red) and a forward
(green) recurrent neural network (RNN). (B) RNN cell solution; the
gated recurrent unit (GRU).

the reset and update gates, respectively. h̃t is the candidate output,

whereas ht is the output of the cell unit at time t. ht also stores the

information of the previous state. Note that we selected the GRU

cells for the RNN due to their lower computing cost (Yang et al.,

2020; see Section 3.3).

We also incorporated an ANN readout layer to each GRU cell

since cell and hidden states are the same (Figure 1). We assembled

these GRU cells following a BRNN model (Graves et al., 2005).

In our BRNN implementation, we used two independent RNNs

to process the input sequence in both forward and backward

directions. This approach allowed us to take into account both

past and future contexts when predicting the output values. By

using two separate RNNs, we could achieve improved performance

compared to a unidirectional RNN. One RNN handled positive

time direction (GRUf ), i.e., information from the past toward

the current state, whereas the other RNN handled negative time

direction (GRUb), i.e., information from the future toward the

current state (Schuster and Paliwal, 1997). We fed the model with

target future states of the robot, i.e., following desired joint position

and velocity values.

This BRNN model was later incorporated into three different

configurations (Figure 2). (i) A non-parametric inverse dynamic

configuration (NID) in which the BRNN received joint positions

and velocities (seven positions and seven velocity values) as inputs,

and it predicted the torque values for each joint. (ii) A semi-

parametric inverse dynamic configuration (SID) in which the
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A

B

C

FIGURE 2

Three proposed inverse dynamic modeling configurations using a BRNN network. (A) Non-parametric configuration (NID). (B) Semi-parametric
configuration (SID) receiving joint positions, velocities, and estimated torques from the inverse RBD model. (C) Error compensator inverse dynamic
(ESID) configuration compensates for the dynamics that are not modeled by the inverse RBD model.

BRNN received joint positions, velocities, and the torque estimated

by the rigid body dynamic (RBD) model (described by Equation 2)

as inputs, and it predicted the torque values for each joint. (iii) An

error compensator semi-parametric inverse dynamic configuration

(ESID) in which the BRNN received joint positions and velocities

as inputs and whose outputs [ξESID(q, q̇)] were added to the rigid-

body dynamic model to calculate the total torque values of each

joint (τtotal), as defined in

τtotal = τRBD + ξESID(q, q̇). (8)

In Equation (8), τRBD represents the estimated rigid body

dynamics of the robot, as described in Equation (2). The BRNN

is trained to approximate the ξESID term, which is equivalent to the

ξ term in Equation (1) and encompasses all unmodeled dynamics

not captured by Equation (2). The difference between the torque

commanded and the torque estimated by the τRBD model is used as

the ground truth for ξESID.

The BRNNwas implemented in Python using the Kerasmodule

running on TensorFlow. BRNN consisted of 64 hidden units that

were trained with 32 batch sizes during 200 epochs. Adam Solver

(Kingma and Ba, 2014) configured with a learning rate of 0.001 did

optimize the loss function. The mean square error (MSE) metric

was used as loss function for the actual and predicted torque values.

The MSE metric is suitable for quantifying the difference between

two sets of values when a small range of values is considered.

Conversely, the mean absolute error (MAE) metric was used to

compare the torque value predictions made by each proposed

configuration at each joint. The MAE metric computes the average

of the absolute difference between the actual and the predicted

torque values (the actual values being those obtained from the

dataset control loop, see Sections 2.4, 2.5 and Figure 3). The MAE

and MSE metrics are described by

MSE =
1

N

N∑

i=1

(τi − τ̂i)
2 and (9)

MAE =
1

N

N∑

i=1

|τi − τ̂i|. (10)

In which, τi and τ̂i are the actual torque value and predicted

torque value, respectively. N is the total number of data.

We also used the coefficient of determination, r2, which is

defined as

r2 = 1−

∑N
i=1(τi − τ̂i)

2

∑N
i=1(τi − τ )2

(11)

where

τ =
1

N

N∑

i=1

τi. (12)

r2 is a single value ranging from 0 to 1. This metric was

used to evaluate and compare the overall performance of the
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FIGURE 3

Schematic of the control system to obtain the dataset. (A) The
general control system and (B) detailed PID controller plus gravity
compensator.

three proposed configurations in predicting torque values for the

seven joints.

2.4. Building the dataset: the torque control
loop

Our BRNN demanded related torque vs. position/velocity data

to be trained/tested. To that aim, we implemented a Baxter torque

control scheme that allowed obtaining the joint commanded torque

values. The torque-sensed values (τs) represent the measured

torque values in the joints, while the torque-commanded values

(τc) represent the desired torque values that the motors should

exert on the joints. In the absence of collisions, τs and τc are

correlated, but not identical. Since the robot’s internal controller

affects the actual torque applied to the joint, a dynamic behavior

occurs between the commanded torque and the actual torque

applied to the joint. This dynamic behavior is even more significant

in cobots with a series of actuators (SEAs). Incorporating τc

into the dynamic cobot model allows us to account for the

dynamics of the cobot’s internal controller, resulting in a more

accurate representation of the cobot’s behavior. In contrast, many

data-based studies derive the dynamic cobot model from τs

when they lack access to τc or only have position control,

which may not capture the full dynamic behavior of the cobot.

Torque-commanded values vs. robot state data provided more

comprehensive robot information than the torque-sensed values

used in other approaches (Liu et al., 2019). A more comprehensive

robot dynamic dataset ultimately helps implement a more realistic

inverse dynamic model.

The Robot Operating System (ROS) middleware was used

to implement the torque control loop. A classical PID torque

control plus gravity compensation was at the core of the

control loop for trajectory tracking (Figure 3), thus obtaining

actual positions, velocities, and commanded torque values per

each desired trajectory (see Supplementary material). A 500-

Hz sampling frequency was used for controlling, sensing, and

data storing.

2.5. Building the dataset: trajectories
tracked

The Baxter trajectory benchmark consisted of a set of random

point-to-point movements for 1 min together with a set of closed

periodic trajectories described by

x = r sin

(
2π

T
t

)
+ 0.56,

y = r cos

(
2π

T
t

)
+ 0.06, and

z = −0.22 cos

(
2π

Tz
t

)
+ 0.18,

for 0 s ≤ t ≤ 60 s (13)

and

x =

(
r −

0.01

Tz
t

)
sin

(
2π

T
t

)
+ 0.56,

y =

(
r −

0.01

Tz
t

)
cos

(
2π

T
t

)
+ 0.06, and

z = −0.22 cos

(
2π

Tz
t

)
+ 0.18,

for 0 s ≤ t ≤ 8Tz s, (14)

instead of exclusively using a single periodic trajectory (Liu et al.,

2019; Wang et al., 2020). These trajectories were selected to provide

the greatest variety of information to the neural network (Kappler

et al., 2017), i.e., covering asmuch workspace as possible at different

speeds. To that aim, parameters r, T, and Tz varied accordingly

(see Table 1). Each trajectory defined by (13) was executed for 1

min, whereas the three trajectories defined by (14) were executed

during 80, 100, and 120 s, respectively, depending on the Tz

value (see Table 1). The desired Cartesian space trajectories were

converted to joint space using inverse kinematics (Coumans and

Bai, 2016-2021); desired joint position and velocities were then fed

to the PID controller, which generated the joint torque commands

that resulted in actual joint positions and velocities (Figure 3).

A continuous benchmark execution lasted 18 min (at a 500-Hz

sampling frequency), which provided 540,000 data samples. Each

data sample comprised position, velocity, and torque values per

each Baxter joint. Note that the joint collisions, positions, and

velocities constraints were accounted for.

Joint positions, velocities, and torque-commanded values were

sampled at a frequency of 500 Hz and then stored for analysis.

To create the learning sets, a cross-validation technique known as

shuffle-split was used. This involved partitioning the total dataset

into sub-sequences and shuffling them to create a training set (80%

of samples) and a validation set (20% of samples). Normalization

was performed on both the training and validation sets using the

mean and standard deviation computed from the training set.

To facilitate the result replication and comparisons without

needing to access the cobot, we made the dataset available at
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TABLE 1 Trajectories tracked.

Trajectory T (s) r (m) Tz (s)

15.0

0.18 12.5

2.5 10.0

15.0

0.15 12.5

Helical (13) 10

12.0

0.10 10.0

2.0 8.0

12.0

0.05 10.0

8.0

10.0

Spiral (14) 2.5 0.18 12.5

15.0

T is the period on the x and y axes; 2r is the motion amplitude in the xy plane; Tz is the period

on the z axis.

(see Supplementary material) https://github.com/EduardoRosLab/

Baxter_Dynamic_Model.git.

2.6. Analyzing the GRU stability

Evaluating the stability of a system is crucial in any control

problem. Input-State Stability (ISS) property of a GRU network

(i.e., bounded inputs result in bounded NN states regardless of

the initial condition; Limon et al., 2009) can be evaluated using

a mathematical method proposed by Bonassi et al. (2021). For a

GRU network to comply with ISS, the following condition must be

satisfied:

vsb < 1, (15)

where

vsb : =
1

4

(
||Ur||∞(||Uh̃||∞ + σ̃̃h)+

1+ φ̃r

1− σ̃z
||Uz||∞

)
, (16)

and

σ̃̃h = σ (||Wh̃ Uh̃ b̃h||∞),

σ̃z = σ (||Wz Uz bz||∞), and

φ̃r = tanh(||Wr Ur br||∞).

We apply (15) as a constraint during the training procedure

to make our BRNN with GRU cells comply with the ISS property.

The learning stability imposition to our BRNN shall decrease the

torque command precision but ensure learning stability during the

BRNN learning descent curve (Bonassi et al., 2021). By imposing

learning stability during the BRNN learning descent curve, the

analysis shall result in more robust weight values that could

mitigate online learning problems, such as improper updating of

network weights or/and instability in the learning process, that

could negatively impact the performance of the BRNN and cause

damage to the robot.

3. Results

3.1. Optimal temporal window and network
size for the BRNN

The BRNN required selecting the number of forward and

backward steps used to make the torque value predictions, i.e.,

temporal window size. To find the optimal trade-off between

computational cost (time-window size) and BRNN resolution, we

run the NID configuration with different time periods ranging

from 6 to 70 ms. We performed the learning three times per time-

window size. Cross-validation (shuffle-split) was used to create each

learning set: 80% of the samples for the training set and 20% of

samples for the validation set.

The results (Figure 4) depicted a precision (MSE) vs. time-

window length (ms) exponential behavior. We found that the MSE

average and variance did not substantially differ from time-window

sizes larger than 46 ms. Accordingly, we used a 50-ms time-window

size to maintain MSE values low at a minimum computational cost.

To determine the optimal GRU number of the BRNN, we

explored values of 32, 64, and 128 cells. TheMSE values achieved in

training, validation, and prediction for non-trained circular (Test

1) and a square (Test 2) trajectory were taken into account (see

Figure 4). According to these results a dimension of 64 GRU units

was selected, as it provides a higher generalization of the data.

3.2. Trajectory benchmark analysis

We trained the NID configuration using five different data

subsets of trajectories defined within the benchmark (see Table 1)

to quantify their capability of learning the inverse dynamic model

from a minimum amount of data. We independently trained NID

with (i) random trajectories only, (ii) helical trajectories only, (iii)

helical and random trajectories, (iv) spiral trajectories only, and (v)

spiral and random trajectories (Figure 5A).

We then used a non-trained circular and a square trajectory

to test performance after training with each different subsets (i–v),

and we also ran a one-way ANOVA with post-hoc Tukey analysis to

compare the obtained results, i.e., the amount of information that

each trajectory data subset brings to the inverse dynamic model.

Interestingly, we found non-significant statistical differences

when performing the circular test trajectory for subsets (iii), (iv),

and (v) compared to the full dataset. However, when performing

the square test trajectory, whose shape substantially differed from

any trajectory used during training, only subsets (iii) and (v)

carried non-significant statistical differences compared to the full

dataset (Figure 5B). We found that the random trajectories were

instrumental in providing NID with generalization abilities for

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1166911
https://github.com/EduardoRosLab/Baxter_Dynamic_Model.git
https://github.com/EduardoRosLab/Baxter_Dynamic_Model.git
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Valencia-Vidal et al. 10.3389/fnbot.2023.1166911

32

64

128

Cells
Training Val. Test 1 Test 2

x10-6 x10-6 x10-5 x10-5

1,12

7,07 1,03

5,83 0,66 1,24

8,73 2,81

(ms)

6 14 22 30 38 46 54 62 70

A B

FIGURE 4

(A) Mean Squared Error (MSE) evolution after the NID configuration underwent training using di�erent BRNN time-window sizes. (B) Network
dimensionality analysis; the number of GRUs within the BRNN. The MSE indicates that for a number of 64 GRUs, our BRNN reaches lesser MSE values
during the test phase; Test 1 was a circle trajectory whereas Test 2 was a squared trajectory. This dimensionality analysis indicates that a higher
number of GRUs (128) leads to a lack of generalization, while a lower number (32) leads to a lack of precision in learning.

obtaining a precise inverse dynamic model, i.e., MAE significantly

decreased (Figure 5B). The trajectory data subset (v) was chosen

as the training dataset since it matched performance with the full

dataset but using a lesser amount of data (180,000 vs. 540,000; see

red bars in Figure 5B).

3.3. Precision of NID, SID, and ESID
configurations

Each configuration, namely NID, SID, and ESID (as described

in Section 2), underwent independent training for three runs.

Cross-validation was employed to generate training/validation sets

for each run. The data set used for this purpose was obtained

from the trajectory subset (v) mentioned earlier (Figure 6). We

found that, in terms of error accuracy, these three configurations

behaved similarly during the training phase. SID and ESID started

the training from lower MSE values than NID due to the inverse

RBD model information provided to the BRNN. However, they

all converged to the same MSE value in 50 iterations (Figure 6).

We stopped learning after 200 epochs to prevent the three

configurations from overfitting the training dataset, thus preserving

the configuration capacity for generalization.

We then used the MAE metric to compare the performance

per cobot joint of the aforementioned configurations, i.e., NID

(see Supplementary Figure 1), SID, and ESID, compared to the

performance of the rigid body dynamic model of the cobot

described (2). We found that any of the three configurations

(Figure 7) largely outperformed the manufacturer RBD model

(MAE values: NID 0.15± 0.02 Nm, SID 0.12± 0.02 Nm, and ESID

0.12 ± 0.02 Nm, RBD 3.83 Nm). The performance improvement

was particularly remarkable at the S1 joint (shoulder). Baxter holds

an external spring (elastic passive component) that facilitates the

shoulder to fix position (Fitzgerald, 2013). This external spring is

not even considered within the RBD model, which would explain

much of this significant difference.

Importantly, we found no statistical difference among the

three configurations (NID, SID, and ESID) when comparing

performance (MAE) by ANOVA tests. We must, however, also

highlight that the NID configuration did not use prior information

provided by the RBDmodel, which is often not available (Smith and

Mistry, 2020; Huang et al., 2021).

For comparative purposes, our NID configuration was also

implemented using LSTM cell units. We found similar validation

errors for LSTM and GRU cell implementations (i.e., MSE = 6.40 ∗

10−6 vs. MSE = 6.27 ∗ 10−6, respectively), but a faster processing

speed using the GRU cell implementation (i.e., 5,600 sample set

computation time takes 640 ms LSTM vs. 230 ms GRU). In light

of these results, and being RT computing a limiting factor in

robotics, we finally chose to use the GRU cell implementation. To

compare the performance of our BRNN architecture, we also tested

two other architectures: a multilayer perceptron (MLP) with three

hidden layers and 64-128-64 neurons and a unidirectional RNN

with 64 GRU cells. Both RNNs performed better than MLP. This

suggests that using information from both past and future time

steps is important for learning the inverse cobot dynamics. The

results are summarized in Table 2.

3.4. Evaluating NID, SID, and ESID
configurations: generalization of the
inverse dynamic model

To assess the generalization capabilities of the NID, SID,

and ESID configurations, their inverse dynamics models faced

a series of trajectories (test set) neither used during training

nor validation: (i) circular trajectories on the XY and XZ

plane, (ii) a helical trajectory, and (iii) a square trajectory (see

Supplementary material). An inverse dynamic model, which can

generalize, shall predict precise torque values for any trajectory

regardless the training/validation trajectory used.
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FIGURE 5

Selecting the training data subset. (A) Illustration of the trajectory set to be used (B). A trade-o� between precision and data subset size using the NID
configuration following either circular or square non-trained trajectories. A di�erent letter represents statistically significant di�erences found (ρ
<0.05) among the performance of the trajectory data subsets.

To analyze and quantify how good each inverse dynamic

model was at learning from the given dataset and applying

the learned information to new trajectories neither used during

training nor validation, we obtained their MAE values per joint

and their r2 values. MAE allowed us to compare individual joint

precision (see Supplementary material), whereas r2 provided for

the correlation between the predicted and actual torque values in

a single value measurement.

We found that the generalization ability for the NID, SID,

and ESID configurations remained similar. Importantly, the more

alike the new non-trained trajectories (test set) were to the trained

trajectories, the higher r2 is obtained (0.92 and 0.90, see Table 2)

and vice versa (0.82 and 0.76, see Table 2). Despite NID, SID, and

ESID comparable performance, no prior knowledge of analytical

dynamics for NID configuration is needed.

3.5. Case study: real-time, real-world,
feed-forward control

Using the inverse dynamic robot model as a controller is

of common use (Jordan and Rumelhart, 1992; Stogiannos et al.,

2018). Here, we propose our NID configuration as a feedforward
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FIGURE 6

Evolution of the loss function for NID, SID, and ESID configurations. (A) Training and (B) test datasets. (A, B) Zoom-in depicts how overfitting is
prevented.
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FIGURE 7

Comparison among the NID, SID, and ESID proposed configurations and the analytical rigid body dynamics model.

TABLE 2 Inverse dynamic model torque prediction over di�erent test trajectories.

MAE r2

Path RBD MLP RNN NID SID ESID NID SID ESID

Circular XY 3.83 1.73 0.48 0.15 0.15 0.15 0.92 0.92 0.92

Helical 3.27 1.62 0.43 0.22 0.19 0.22 0.89 0.87 0.90

Circular XZ 3.17 1.91 0.32 0.17 0.15 0.16 0.82 0.79 0.80

Square 4.37 2.25 0.51 0.27 0.21 0.23 0.72 0.76 0.76

The bold values indicate the best results.
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controller working conjointly with a feedback PD controller

(Figure 8). We developed this case study under the assumption that

a better dynamic cobot model shall require less action from the

feedback control loop (PD). With this implementation, we could

indirectly verify how closely the learned inverse dynamic model

matched the real robot. It is important to note that this case study’s

main aim was not outperforming a PD control but to demonstrate

one of the many potential applications of the inverse dynamic

model of a collaborative robot. NID configuration is based on a

worst-case control scenario compared to SID and ESID since the

RBD model is unknown and thus the entire robot dynamics shall

be learned. The NID configuration represents not just a theoretical

RNN implementation but rather it aims at a robotic real-world

RNN control application. Once we trained our NID configuration,

we used it as a real feedforward controller (Figure 8). NID estimated

the torque values to be provided per joint to follow a desired

trajectory (circular trajectory used as reference). The input data

to the NID were actual and desired robot states (positions and

velocities) of the robot joints.

Four scenarios were proposed to test the capability of our

control system to track a circular trajectory as reference:

1. Stability analysis: Our NID configuration was trained

excluding/including the ISS constraint (15) within the loss

function as described by Bonassi et al. (2021). Predictably, the

NID accuracy performance decreased when imposing the ISS

stability criteria (see Table 3, NID vs. NIDsb). In this case study

example, we prioritized NID accuracy and accompanied the

NID controller in a feedforward loop with a PD in a feedback

loop to compensate for small NID torque value estimation

errors and to ensure closed-loop system stability (Hu et al.,

2021). Note that the stability depends on the PD closed-loop

characteristics rather than on the feedforward GRU term that

only provides for precomputed torque values.

2. Torque estimation accuracy: We performed a circular trajectory

of radius 0.15 m in the XY plane using our proposed controller

(NID + PD), as shown in Figures 9A, B. The resulting mean

[X ,Y ,Z ]d d d Inverse
Kinematics

[ d, d]θ θ'

[ , ]θ θ'
Trajectory

PD

NID

+
TcmdTPD

TNID

FIGURE 8

NID implemented as a feedforward controller together with a PD
feedback controller.

absolute error (MAE) of the end-effector position for NID + PD

(7.0 ∗ 10−3 m) was significantly lower than the MAE of the end-

effector position achieved by the robot’s default factory position

controller (79.0∗10−3m; see Table 4). Our analysis revealed that

the NID controller executed the majority of the control action,

while the contribution of the PD controller remained residual

(see Figure 9C). This suggests that the torque estimated by the

NID was closely aligned with the torque required to track the

reference trajectory (see Supplementary material).

3. Compliance and response to disturbances: We programmed a

total locking of all joints during 250 ms at time 1t1 (Figure 9D).

During the locking period, the NID + PD control did not

execute high torque values to compensate for the error, as a

PD controller without the feedforward component would do.

Thus, compliance was improved due to the lower energy at

stake (Figure 9D). We also found the NID + PD control to

better deal with the disturbances. After the locking period,

NID + PD control almost instantaneously resumed tracking the

reference trajectory without a significant transient converging

stage (Figure 9D; see Supplementary material).

4. NID Resilience in feedforward control: We also tested the

capability of the NID to track the trajectory in open-loop torque

control. To do so, we switched off the PD feedback control action

(τPD = 0) during 500 ms (1t2) and confirmed that NID could

seamlessly track the trajectory (see Figure 9E) in the absence of

active feedback control (see Supplementary Figure 2).

4. Discussion

The presented ML approach identified the inverse dynamic

model of a cobot (Baxter) using a BRNN with GRUs at the core.

These BRNNs, in turn, were adapted and integrated into NID,

SID, and ESID configurations. It is noteworthy that, the GRUs

TABLE 4 Performance on a circular trajectory of the default factory

controller and the NID + PD controller.

Default factory NID + PD

s0 0.112 0.033

s1 0.034 0.005

Jo
in
t
M
A
E
(r
ad
)

e0 0.027 0.007

e1 0.151 0. 024

w0 0.014 0.021

w1 0.042 0.035

w2 0.023 0.034

End-effector MAE (m) 0.079 0.007

The bold values indicate the best results.

TABLE 3 Comparison of performance between NID trained with and without considering the ISS property.

vsb [GRUb, GRUf ] (16) ISS condition (15) MSE training MSE validation

NID [inf, inf] No 6.17 ∗ 10−6 6.27 ∗ 10−6

NIDsd [0.15, 0.17] Yes 1.83 ∗ 10−5 2.26 ∗ 10−5
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FIGURE 9

Testing the NID + PD control performance using a circular trajectory as reference. Default factory control vs. feedforward NID + PD torque control
(A, B). Testing torque value estimation accuracy and PD control contribution are negligible (C). Testing compliance and response to disturbances (D),
NID + PD torque response during a 250-ms total locking of all robot joints 1t1 = 250 ms. Testing NID resilience (E), feedforward control temporally
without feedback control during 1t2 = 500 ms.

eliminated the vanishing gradient problem in the temporal input

values by keeping the relevant temporal information and passing

it down to the next time steps of the BRNN network (Yang et al.,

2020). We found that the larger the sliding time window, which

was partially containing and feeding the GRUs with temporal input

values, the better the performance of Baxter’s inverse dynamic

model. However, the computational load also increased with the

size of the time window, which ultimately jeopardized Baxter’s Real

Time (RT) operation. The temporal window size trade-off found

at 50 ms ensured Baxter’s RT operation with no significant loss

of accuracy with respect to longer time windows (Francis, 1995).

This is remarkable, in contrast to other studies with large temporal

windows (Liu et al., 2019; Wang et al., 2020) accounting for

precision only and sidestepping RT robot operation. The proposed

BRNN algorithms are designed to identify the inverse dynamics of a

robot, treating the robot as a time-invariant system. To account for

real-time performance effects, such as backlash or non-linearities

from friction or elastic components, offline learning of the inverse

dynamics is performed using data recorded during the execution

of trajectories on a real robot. This incorporation of real-time

effects leads to more accurate learned dynamics. Selecting the

BRNN sliding time window length was essential, but also the data

contained in it. We considered the question of selecting those

representative trajectory data that would contributemost effectively

to the BRNN’s generalization capabilities.

Needless to say, there are endless possibilities to explore Baxter’s

workspace, hence selecting those trajectories that better reveal

its non-linear dynamics was pivotal. We found that combining

random trajectories together with cyclic ones (modulating their

magnitude and frequency, see Section 2) while exploring Baxter’s
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workspace revealed better its non-linear dynamics rather than

using cyclic or random exploration only, i.e., data diversity vs. data

quantity. The use of this representative training/validation dataset

endowed the NID, SID, and ESID configurations with similar

generalization capabilities when predicting torque values from their

corresponding Baxter’s inverse dynamic models. As assumed by

Kappler et al. (2017), we verified the superior performance of

those configurations using rigid-bodied analytic dynamic modeling

supporting BRNN (SID and ESID) when predicting torque values

under dissimilar trajectories to the original training set. However,

the differences found were not statistically significant among the

three configurations during validation. Importantly, NID, unlike

SID and ESID configurations, operated with no prior knowledge

of Baxter’s dynamics, which makes the NID configuration more

suitable for robotic applications in which the analytic dynamic

model of the robotic agent is either mathematically intractable or

not available, i.e., soft robots and elastic robots. Conversely, SID

and ESID could benefit from employing the analytical dynamic

model when a cobot faces an unexplored working space. Finally,

we tested NID configuration as a proof of concept in a real-time,

real-control scenario, i.e., NID as a feedforward controller together

with a PD controller that helped compensate for small torque

estimation errors. Interestingly, model-free control approaches can

also be used to control robots with complex modeling dynamics

(Bian et al., 2020). These approaches can provide a controller

with excellent performance for a specific task, even without an

accurate model of the robot (Tutsoy et al., 2023). However, in these

methods, the controller and the dynamic model usually operate as

a whole, which might limit the independent use of the obtained

dynamic model.

The NID configuration, as demonstrated in Sections 3.3 and

3.4, has been shown to have high torque estimation performance.

This makes it a good candidate for real-time control applications

where the inverse dynamics of the robot are the main actions, as

implemented in Section 3.5. In real-time scenarios, there is a risk of

joint locking, collisions, errors, or delays in sensing the robot’s state.

However, the proposed implementation deals with these situations

by maintaining the real robot close to the desired trajectory with

compliant features, as described in Section 3.5. It should be noted,

though, that caution is required when working with trajectories

outside the workspace of the training-validation dataset. Since

NID is a non-parametric algorithm, its performance in data

extrapolation cannot be guaranteed (Mozian et al., 2020). If the real

robot is going to work outside the explored space, it would be more

advisable to use a semi-parametric inverse dynamic configuration,

such as those presented in Section 2.5. We confirmed that the

NID + PD controller outperformed the robot’s default factory

position controller in terms of path tracking accuracy. The NID

also helped improve the PD controller in terms of (i) compliance

and response to disturbances and (ii) resilience to open-loop

control at short time intervals. Note that, as aforementioned, we

implemented NID as a worst-case scenario feedforward robot

controller. Given a RBD robot model, SID and ESID could also

be implemented. Improved torque estimation is one of the main

control goals when operating cobots in unstructured scenarios

involving human-robot interaction (HRI). Not only the energy at

stake is diminished preventing damage in case of collision but also

the improved precision and response to disturbances help avoid

those collisions (Mohajerin andWaslander, 2019). We also verified

the NID resilience by depriving temporally the control architecture

of any active feedback information during 500 ms. NID controller

was able to keep track of the reference trajectory with precision.

The NID capacity of operating with no feedback could be useful

in remote control, cloud, or fog computing scenarios, presenting

significant non-deterministic latencies in the transference of sensed

information. NID could indeed predict the commanded torque

values while temporally blocking the sensorimotor feedback, i.e.,

during open loop operation.

It is important to note that the mechanical and electrical

components of a robot may undergo changes in their parameters

over time due to factors, such as environmental conditions or

wear, resulting in dynamic changes in the cobot (Camoriano et al.,

2016). Significant differences between the torque estimated by

the learned inverse dynamic model and the torque sensed at the

joints may be indicative of such changes in the parameters of

the real robot. In such cases, the learned offline dynamic cobot

model would no longer be effective for controlling the cobot,

and retraining would be necessary after cobot maintenance or

repair. There are online learning strategies available for training

a BRNN in real-time applications, if needed. However, training

the Bidirectional Recurrent Neural Network (BRNN) in real time

can be challenging due to multiple factors. These factors include

the risk of fatal errors that may occur if the network weights are

updated improperly, as well as the potential for a delayed control

loop if the computational cost of training the model on real-time

data is significant. Furthermore, if the goal is to identify sudden

changes in the robot’s dynamics caused by external factors, it may

be more appropriate to leave the dynamic model invariant during

the task execution to prevent any potential issues. Since data-

driven approaches have no analytical guarantee of performance,

they may be difficult to certify for safety critical applications. This

can be mitigated by integrating a PD controller into the loop to

account for unexpected uncertainties. Furthermore, if deviations

from the expected performance are encountered (for instance

detectable by measuring the error or the PD output activity), safety

actions, such as interlock or alarm signals, shall be integrated.

In future studies, the performance of the PD controller used in

the feedforward loop in this study could be compared with other

adaptive control strategies for cobots, such as the ones proposed

by Pan et al. (2018). Additionally, the possibility of integrating

our NID configuration with more robust control architectures or

adaptive control strategies could be explored to assess how the

balance between identification techniques and control techniques

would be.
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