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Introduction: Myoelectric control of prostheses is a long-established technique,

using surface electromyography (sEMG) to detect user intention and perform

subsequent mechanical actions. Most machine learning models utilized in control

systems are trained using isolated movements that do not reflect the natural

movements occurring during daily activities. Moreover, movements are often

a�ected by arm postures, the duration of activities, and personal habits. It is crucial

to have a control system for multi-degree-of-freedom (DoF) prosthetic arms that

is trained using sEMG data collected from activities of daily living (ADL) tasks.

Method: This work focuses on twomajor functional wrist movements: pronation-

supination and dart-throwing movement (DTM), and introduces a new wrist

control system that directly maps sEMG signals to the joint velocities of the multi-

DoF wrist. Additionally, a specific training strategy (Quick training) is proposed that

enables the controller to be applied to new subjects and handle situations where

sensors may displace during daily living, muscles can become fatigued, or sensors

can become contaminated (e.g., due to sweat). The prosthetic wrist controller

is designed based on data from 24 participants and its performance is evaluated

using the Root Mean Square Error (RMSE) and Pearson Correlation.

Result: The results are found to depend on the characteristics of the tasks. For

example, tasks with dart-throwing motion show smaller RSME values (Hammer:

6.68 deg/s and Cup: 7.92 deg/s) compared to tasks with pronation-supination

(Bulb: 43.98 deg/s and Screw: 53.64 deg/s). The proposed control technique

utilizing Quick training demonstrates a decrease in the average root mean square

error (RMSE) value by 35% and an increase in the average Pearson correlation value

by 40% across all four ADL tasks.

KEYWORDS

prosthetic control, deep learning, training strategy, surface electromyography, activities

of daily living

1. Introduction

The human upper limb function is crucial to perform daily living activities. The

loss of one or both arms causes severe disability that greatly affects a person’s ability to

perform essential daily activities (Kuiken et al., 2009). To date, there are nearly two million

people living with limb loss in the United States, with ∼41,000 individuals suffering from

major upper limb amputations (Atzori and Müller, 2015). The number of individuals with

amputation is increasing, resulting in a significant rise in health care costs. In 2009, hospital
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costs associated with amputation totaled more than 8.3 billion

dollars (Semasinghe et al., 2019). As a result, the development of

upper-limb prosthetic devices is considered to be crucial in helping

amputees adapt to daily activities and reintegrate into society.

In order to restore the upper limb function of amputees,

the development of myoelectric prosthesis started in the early

1940s (Kobrinskiy, 1960; Popov, 1965). A myoelectric prosthesis is

electrically-powered, utilizing the electrical signals generated from

some flexor and extensor muscles of the residual limb, which are

surface electromyography (sEMG) signals that reflect the user’s

intention. To date, almost all commercial electric prostheses use

a “direct myoelectric control” approach, where each direction of

a motor in a prosthetic joint or the opening/closure of a specific

grasp type in a robotic hand is controlled by a specific muscle. The

myoelectric controller often uses the on-off method using a pre-

defined threshold, but all commercial manufacturers also provide

proportional control that can provide essentially continuous output

to the active DoF of the prosthetic system (Fougner et al., 2012). To

actuate multiple active degrees of freedom prosthetic devices, state

machine technique has been suggested, which employs two sEMG

signals to operate a single joint but also permits switching between

other joints by co-activation of both muscles (Vujaklija et al.,

2016). For example, SSSA-MyHAND (Controzzi et al., 2017) used

state-machine, which switched to various grasps such as lateral, bi-

directional, power, hook, pointing up and down by co-activation of

both muscles. The state-machine complexity increases significantly

when the number of prosthetic joints increases (Resnik et al., 2018)

and it lacks the capability of simultaneous control of multiple DoFs

which hinders the dexterity of the hand movement during daily

living tasks.

Pattern recognition has been suggested and widely explored

for the past few decades (Hargrove et al., 2007). Based on

sEMG activation patterns, the amplitude of sEMG was used

to decode the information and transfer the instructions to the

motor, that could identify the user’s intended hand and wrist

motions (Scheme and Englehart, 2011; Parajuli et al., 2019).

Statistical methods such as LDA (Linear Discriminant Analysis)

and SVM (Support vector machine) were used to classify user

intention with feature extraction, which were clinically tested on

several amputee trials (Al-Timemy et al., 2013; Stango et al.,

2014). For neural-based models, ANN (Artificial neural network)

and MLP (Multilayer perceptron) were one of the initial deep

learning algorithms researchers explored (Kawasaki et al., 2014).

In comparison to traditional methods, these models were easily

trainable and have the capability of modeling with non-linear

data (Ahmad et al., 2011). Recently, Tam et al. (2021) designed

a gesture recognition system using a CNN for myoelectric hand

prosthesis control, in which the user could be able to monitor the

gesture recognition output in real time. This pattern recognition-

based classification method could only support discrete movement

classification, which was rather non-intuitive compared to the

natural way of controlling hands’ pose (Yang et al., 2022).

To overcome the limits of classification approaches, several

researchers have used deep learning techniques to control hand

movements with regressions. Bao et al. (2021b) proposed the

regression supervised domain adaptation (SDA) for estimating

wrist angles using sEMG data. This study investigated the domain-

shifting problem of the model when handling new subjects by

categorizing the dataset of each subject as either the source or

target domain and generating pairwise samples instead of single

ones. A specific loss function, discrepancy loss, was also introduced

for better description of the data. Stival et al. (2018) combined

and IMU (Inertial Measurement Unit) features for the control of

prosthetic devices. However, the study by Bao et al. was limited

to simple wrist flexion/extension movements, while Stival et al.’s

study was based on an online database and only presented two

movements (flexion of three fingers or flexion of the wrist), which

had the best performance.

In this study, to overcome the limitations of existing methods,

a CNN-based wrist controller using a regression model is proposed

and evaluated based on real-life ADL data. The proposed controller

continuously estimates the wrist angle velocity from sEMG sensors

placed on the participant’s forearm, enabling continuous control

of a multi-DoF prosthetic wrist in a more natural way. The model

was trained using data collected while participants performing ADL

tasks that focused on pronation-supination and dart-throwing-

motion of the wrist. To increase the robustness of the model,

ADL tasks were conducted to collect movement data at different

heights. To use this model by a new participant within a short

time, a method utilizing Pre-training and Quick training data is

also suggested. This method can be used by participants within

the existing data set to reduce the retraining time, as fast training

is frequently required for amputee participants due to donning-

doffing, muscle fatigue, or contamination (e.g., sweat; Ameri et al.,

2020). An overview of the proposed method is shown in Figure 1.

The results varied depending on the characteristics of the tasks. For

example, tasks with dart-throwing motion showed smaller RSME

values (Hammer: 6.68 deg/s and Cup: 7.92 deg/s) compared to tasks

with pronation-supination (Bulb: 43.98 deg/s and Screw: 53.64

deg/s). The proposed control technique utilizing Quick training

demonstrated a decrease in the average root mean square error

(RMSE) value by 35% and an increase in the average Pearson

correlation value by 40% across all four ADL tasks.

2. Data collection

The study was approved by the Institutional Review Board of

University at Buffalo. Participants provided written consent prior to

the experiment. Only individuals with fully functioning biological

arms and unrestricted arm movement were included in the study.

And, for the current feasibility test, we recruited only right-handed

participants to ensure homogeneous data. Participants included 24

healthy individuals. Their average age, height, and weight were

25.38 ± 3.00 years, 171.74 ± 8.40 cm, and 69.90 ± 14.67 kg,

respectively. All participates were right-handed.

2.1. Sensor system

The Trignor Wireless Biofeedback System (Delsys, MA) is a

device designed to make and biofeedback signal detection reliable

and easy. The system transmits signals from Trigno AvantiTM

sensors to a receiving base station using a time-synchronized

wireless protocol thatminimizes latency in data transmission across

sensors. In this study, eight sensors were placed around the forearm
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FIGURE 1

Overview of the proposed method. This multi-DoF controller will estimate the angular speed for pronation/supination (PS) and dart-throwing

movements (DTM) with a training strategy.

FIGURE 2

sEMG sensors were placed beneath the elbow, uniformly spaced

from each other.

near the elbow to capture muscle signals during experiments,

as depicted in Figure 2. The sEMG sensor data was sampled at

2,000 Hz. Ten Vero motion capture cameras (Vicon, UK) were

used to capture the movements of the participants. A total of nine

markers were placed on the upper body and were divided into four

different body segments (Fazil et al., 2022).

2.2. Experimental task

Four representative activities of daily life were specifically

chosen for the experiment focusing on pronation-supination (PS)

FIGURE 3

The activities of daily living (ADL) tasks are trained/tested through

the Screw rotation, Bulb twisting, Hammering, and Cup drinking

(from left to right).

movement or dart-throwing movement (DTM). Specifically, PS

and DTM were chosen for our prosthetic emulator in Poddar et al.

(2021) and Poddar and Kang (2022). The Bulb twisting task and

the Screwdriver task were designed for PS movements, and the

Hammering task and the Cup drinking task were designed for

DTM, as depicted in Figure 3. In each experiment, the participant

started the tasks once all the sensors and markers had been placed.

For each experiment, the participant was provided with different

tools set up on a table in front of them. For the Bulb Twisting task,

a custom-made board with a bulb socket fitted in parallel to the

participant was placed at the edge of the table, and a bulb was placed

within reach to its right. For the Screwdriver task/Hammering task,

a steel panel with a nail in the center was fixed by a clamp and placed
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at the edge of the table, while the screwdriver/hammer was placed

within reach to its right. The nail was placed∼2 cm above the table.

For the Cup drinking task, a paper cup was placed in front of the

center of the participant’s body on the table within reach.

For each trial, the procedure was as follows: First, the

participant started from the T-pose position which stretches the

arm shoulder height with palms facing down and feet on designated

marks on the floor. The participant’s toes were ∼40 cm away from

the edge of the table, with the distance adjusted based on the reach

range of each individual. Recording began after a voice cue. After 2 s

of recording, the participant was visually/orally prompted to begin.

In the Screwdriver/Hammering/Cup Drinking task, the participant

reached forward to pick up the screwdriver/hammer/cup and

performed the screwing/hammering/drinking action 10 times. The

procedure for the Bulb twisting task was slightly different. The

twisting was performed 10 times in a clockwise direction and

10 times in a counterclockwise direction. After the participant

completed the final movement, the tools were returned to the initial

position on the table.

For each activity of daily living task, the trial was repeated

three times by incrementally increasing the height of the table.

The height of the table for the first trial started at 78.5 cm and

increased by 5 cm each time, ending at 88.5 cm. A verbal cue

was given before each trial to start. The participant was instructed

to perform the movements at a consistent speed to maintain

uniformity and integrity of data. A practice trial was conducted

prior to the recording sessions to familiarize the participant with

the steps involved in each trial. Participants performed four tasks

sequentially in random order.

2.3. Data set generation

The data collection system consisted of a motion capture

system, eight Delsys wearable sensors, a height-adjustable table, and

four sets of tools for conducting experiments. In the experiment

of this study, upper limb motion is measured using ten motion

capture cameras and sEMG data were collected from eight wireless

Trigno sensors. In the present ADL tasks, two angles were

calculated: the pronation-supination (PS) angle and the dart-

throwing motion (DTM) angle. These angles were calculated by

constructing pairs of vectors within the markers in 3D space

and computing the angle between them as in Fazil et al. (2022).

As shown in Figure 4, the sEMG data were first filtered using

a low-pass Butterworth first-order filter at 1 Hz. To generate

feature data, the filtered data from eight sensors were cut into

segments using a sliding window. The length of the window

was set to 250 frames, which corresponds to 125 ms, with an

overlap of 240 frames. The resulting feature data had a shape

of (250, 8).

3. Deep learning wrist controller

3.1. Inception-time model

Hierarchical Vote Collective of Transformation-based

Ensembles (HIVE-COTE; Lines et al., 2016) recently emerged as

one of the most popular methods for Time Series Classification

tasks; Such method is a meta-ensemble built on several

classifiers, including Time Series Forest, Shapelet Transform

Classifier, and KNN-based classifiers. Although this algorithm

has achieved outstanding performance on the benchmark

datasets, it suffers from O(n2 · T4) time complexity. Recently,

Ismail Fawaz et al. (2020) introduced a deep Convolutional

Neural Network (CNN), called Inception-Time, which not

only outperforms the accuracy of HIVE-COTE but is also

substantially faster while the complexity of Inception-Time

increases almost linearly with an increase in the time series’

length. The high accuracy and scalability of Inception-Time

make it an ideal candidate for system development. In

this study, we adapted the Inception-Time model to handle

regression tasks.

• The fully-connected layer at the end of the network is

substituted by a fully connected dense layer.

• The loss function is changed to a mean-square-error function.

• In each Inception module, kernel sizes and the numbers of

filters are selected to fit the study.

3.2. Quick training strategy

As depicted in Figure 5, a unique training strategy is

proposed. In this study, 24 participants performed three trials.

The data was divided into four parts: pre-training group, model

selection group, “Quick training” group, and test group. The pre-

training group consisted of all trials of the first 15 individuals

and the first trial of the 16th participant’s three trials. The

data in this group was used to initially train the modified

Inception-Time model. The remaining two trials of the 16th

participant were used as the validation set, and the model

with the best performance, as measured by Pearson Correlation,

was selected. The remaining data from the eight participants

were considered new subjects, as they were unseen by the

selected model. For each participant, the first trial was used

for “Quick training,” and the model was evaluated on the rest

two trials.

For the implementation of the Inception-Time model and

Quick training, Python 3.0 was used to design the wrist controller.

The NumPy Python library is frequently used for scientific

computing operations. The model was built on TensorFlow 2.5.0.

Tools which was used for generating labels, normalization, and

performance evaluations in Python. Most parts of our programs

were computed on an NVIDIA GeForce RTX 3080 10G GPU.

In the present study, four different models were created for each

task. The tasks could be divided into pronation-supination based

Bulb and Screw tasks and dart-throwing-motion based Hammer

and Cup tasks. The input of models was set in the form of (250,

8), which means the length of the sliding window is 250 frames

(125 ms), and eight-channel signals were collected from eight

sEMG sensors. Besides the Butterworth filter mentioned before, a

scaler was used to normalize the data when generating features

from the data. Same scaler was also applied to the data of the

validation group, “Quick training” group, and test group.
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FIGURE 4

Raw data processing pipeline for features and labels.

3.3. Performance metrics

In this study, two common measures are used for numerical

evaluations: Root Mean Square Error (RMSE) and Pearson

correlation (PC), with following formulas. θi represents the true

angle (PS angel or DTM angle) at time frame i, while θ̇i represents

the true joint velocity at time frame i. ˆ̇θ stands for the predicted

joint velocity, and (·) as the mean value of (·). The number of total

time frames is denoted as n.

RMSE =

√

∑n
i=1‖

ˆ̇
θi − θ̇i‖2

n

Pearson Correlation =

∑n
i=1(

ˆ̇
θi −

¯̂
θ̇)(θ̇i −

¯̇
θ)

√

∑n
i=1(

ˆ̇
θi −

¯̂
θ̇)2

√

∑n
i=1(θ̇i −

¯̇
θ)2

where Pearson Correlation is a measure of linear correlation

between two sets of data. It is essentially a normalizedmeasurement

of the covariance, such that the result always has a value between−1

and 1.

4. Result

The comparisons between the measured and predicted data

with Quick training of four different tasks are depicted in Figure 6.

The data shows the data fit better for the positive values compared

to the negative angular speed in general. The Screw and Bulb task

follows the true value better. The Cup andHammer task has smaller

range of angular speed compared to Screw and Bulb tasks.

The Bulb task used a model with a depth of 5, which means

five Inception blocks are used. In each block, there are three

convolutional layers with kernel sizes of 64, 16, and 4, respectively.

The number of filters is 128. The numbers of epochs for the

pre-training and “Quick training” part are both set as 30. When

the model is pre-training, optimizer Adam (adaptive moment

estimation) is used with a learning rate starting as 1e-3 and

other parameters as default. The learning rate is decayed to half

of its original value every 10 epochs. On data from the pre-

training group, the selected model has RMSE of 19.723 deg/s,

and Pearson Correlation of 0.669. On data from the validation

group, the selected model has RMSE of 21.123 deg/s, and Pearson

Correlation of 0.628. For the Screw task, an eight-depth model

is utilized, which employs eight Inception blocks. Each block

is composed of three convolutional layers with kernel sizes of

64, 16, and 4, respectively. The number of filters used is 128.

Pre-training is done for 40 epochs, while “Quick training” is

done for 30 epochs, using the Adam optimizer as before. The

pre-training group achieved RMSE of 9.467 deg/s and Pearson

Correlation of 0.849. On the validation group data, the selected

model achieved RMSE of 25.265 deg/s and Pearson Correlation of

0.727.

For the Hammer task, a model with a depth of 4 is

employed, utilizing four Inception blocks. Each block contains

three convolutional layers with kernel sizes of 64, 16, and 4,

respectively. The number of epochs for pre-training and “Quick

training” is set to 30, and the Adam optimizer is used as before.
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FIGURE 5

Proposed training strategy including Pre-training process and Quick training process.

The selected model achieved RMSE of 5.679 deg/s and Pearson

Correlation of 0.817 on the pre-training group data. However,

on the validation group data, the selected model achieved RMSE

of 5.385 deg/s and Pearson Correlation of 0.166. As for the

Cup task, a model with a depth of 3 is used, employing three

Inception blocks. Each block consists of three convolutional layers

with kernel sizes of 128, 32, and 8, respectively. The number of

epochs for pre-training and “Quick training” is set to 30, and

the Adam optimizer is used as before. Unfortunately, during the

second trial of Subject 2, the sEMG sensors disconnected from

the software, so the entire set of Subject 2 had to be dropped.

The selected model achieved RMSE of 2.298 deg/s and Pearson

Correlation of 0.961 on the pre-training group data. However, on

the validation group data, the selected model achieved RMSE of

4.701 deg/s.

In Table 1, RMSE and Pearson Correlation for all new

individuals are presented for each task. When tested on eight

new participants, the average RMSE increased and the Pearson

Correlation decreased, which means the performance drop of the

model by unseen data. However, if the “Quick training” process

was applied with a small amount of data, the results improved

to similar level as those of the training group. For example, in

the Bulb task, the selected model had RMSE of 19.723 deg/s,

and a Pearson Correlation of 0.669 on the training group. If

new participants were applied to the model, RMSE increased to

43.977 deg/s, and Pearson Correlation dropped to 0.526. After

the “Quick training” process was utilized, the average RMSE

decreased to 25.813 deg/s and the average Pearson Correlation rose

to 0.702. Similar trends were also observed through other tasks.

In general, the performance improved after the “Quick training”

process, however, there were some exceptional cases, especially

on the Cup task for participants 1 and 6. This discrepancy of

performance between the participants will be further discussed in

the following section.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1185052
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Meng and Kang 10.3389/fnbot.2023.1185052

FIGURE 6

Comparison between measured (true) and predicted angular velocity of four di�erent tasks with Quick training. (A) Screw, (B) cup, (C) bulb, (D)

hammer.

5. Discussion

The presented study shows a new framework to use real ADL

task data to train a multi-DoF prosthe tic wrist using sEMG signals.

The “Quick training” shows the utilization of a large data pool for

creating a generic model but applies to a new user by using only a

small amount of data for improving the model performance. Four

tasks were tested to create the ML models by recruiting a total

of 24 participants and tested on eight participants, which showed

comparable performance with other models using a larger data set

or training only simple motions.

Comparing between tasks, the Screw and Bulb tasks showed

higher Pearson‘s correlation than the Cup and Hammer tasks.

This is presumably because high variation was found in the

movement in Cup and Hammer tasks for various reasons. First,

participants chose different movement strategy to perform the Cup

and Hammer tasks. Some participants preferred moving only their

wrists when lifting the hammer, while other participants preferred

only moving their wrists when dropping the hammer. Participants

chose different movement coordination between the wrist, elbow,

and shoulder to perform the Cup and Hammer task. Second,

the end-effector (tool) movement to fulfill the task had different

kinematic redundancy. The Bulb and Screw tasks required to rotate

the screw or bulb exactly along the screw thread. However, the cup

or hammer task was not performed with restricted end-effector

as Bulb and Screw tasks. Lastly, participants had different fluency

to perform the hammer task. Even though 5-min practice session

was provided for each task, there were participants who never

used a hammer before. This could be another factor to create

deviation in the movement, resulting different sEMG patterns

among participants. Even though higher Pearson’s Correlation was

observed in the Cup and Hammer tasks, it should be noted that

the Cup and Hammer tasks had larger RMSE. This was due to

the different range of motion of the pronation-supination and

the dart-throwing-motion tasks. Pronation-supination tasks (Bulb

and Screw) had a significantly larger range of motion than dart-

throwing-motion tasks (Hammer and Cup), which naturally led to

larger RMSE despite higher Pearson’s correlation.

A few other researchers also studied various regression models

for controlling prosthetic wrist. Stival et al. (2018) combined

sEMG and IMU features to control prosthetic systems, and tested

their model on a publicly available database as shown in Table 2.

The Pearson’s correlation of our study in Table 1 was changed

to correlation coefficient similar to the study in Stival et al.

(2018). Our controller performed comparably to theirs on the

Bulb and Hammer tasks, and significantly better on the Screw
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TABLE 1 RMSE∗ and Pearson’s correlation (PC) values between measured and predicted angular velocity of regression module before and after Quick

training.

Task Train Metric 1 2 3 4 5 6 7 8 Ave

Bulb WO RMSE∗ 104.09 20.96 33.66 34.07 40.47 148.33 33.27 41.32 43.98

Quick PC 0.30 0.60 0.66 0.80 0.50 0.01 0.85 0.61 0.53

With RMSE∗ 30.31 21.28 27.56 21.15 35.56 22.26 26.78 21.62 25.81

Quick PC 0.73 0.62 0.68 0.78 0.71 0.77 0.66 0.67 0.70

Screw WO RMSE∗ 50.25 26.97 30.26 48.45 172.91 12.05 62.53 25.70 53.64

Quick PC 0.65 0.71 0.48 0.32 0.36 0.82 0.54 0.64 0.57

With RMSE∗ 15.49 20.23 20.49 20.71 31.60 8.19 10.25 14.90 17.73

Quick PC 0.77 0.85 0.60 0.59 0.73 0.82 0.68 0.68 0.72

Hammer WO RMSE∗ 10.05 5.13 3.31 3.81 6.77 9.56 10.24 4.61 6.68

Quick PC 0.36 0.41 0.16 0.15 0.48 0.21 0.22 −0.08 0.24

With RMSE∗ 8.43 6.38 2.68 3.70 6.37 2.90 7.39 3.98 5.23

Quick PC 0.48 0.54 0.38 0.19 0.49 0.42 0.33 0.06 0.36

Cup WO RMSE∗ 13.02 – 3.15 9.79 7.29 4.42 14.20 3.59 7.92

Quick PC −0.15 – 0.54 0.45 0.57 −0.13 0.68 0.21 0.31

With RMSE∗ 6.23 – 3.06 9.36 7.13 4.33 14.47 3.23 6.83

Quick PC −0.22 – 0.59 0.45 0.57 −0.21 0.66 0.26 0.30

A total of eight new participants were tested. ∗Unit of RMSE is deg/s.

TABLE 2 Correlation coe�cient for the considered movements Stival

et al. (2018) method and ADL tasks in our method.

Movement 3 Movement 13

sEMG and IMU

(Stival et al., 2018)

0.7659 0.8634

Bulb Screw Hammer Cup

Our method 0.7651 0.8863 0.7578 0.5463

Pearson’s correlation in Table 1 is converted to correlation coefficient.

task, exceeding their sEMG and IMU data fusion methods. It

should be noted that Stival et al.’s method only showed results

for two tasks that performed the best (three-finger flexion and

wrist flexion), while our method focused on more complex

ADL movements. Our model was trained with data from 16

participants, with each of them performing three trials, whereas

Stival et al.’s method was trained on 35 participants, with six

trials each.

Bao et al. (2021a) also proposed a CNN-LSTM model

for wrist kinematics estimation. The data was collected from

six participants with 12 sensors. Bao et al.’s method trained a

model on 3/4 of the data and tested it on the remaining 1/4.

The trained model was evaluated by using R2, and the detailed

numeric results for the model are listed in Table 3. Although

our method showed less R2 values, it is important to note that

our study performed more complicated ADL movements with

only eight sensors. Additionally, our “Quick Training” process

required much less training data, and the performance of LSTM

models would decrease substantially over time due to its natural

instincts that the model itself depends on its previous predictions,

TABLE 3 Best R2 of the hybrid CNN-LSTMmodel (Bao et al., 2021a) on

single-Dof tasks and our method on ADL tasks.

Task R2

CNN-LSTM (Bao et al.,

2021a)

Flexion/Extension 0.89

Pronation/Supination 0.70

Radial/Ulnar deviation 0.83

Our method Bulb 0.530

Screw 0.685

Hammer 0.195

Cup 0.405

Pearson’s correlation in Table 1 is converted to R2 .

which means minor turbulence could cause large deviation.

Moreover, the way they combined CNN and LSTM required

separate tuning, which would affect the efficiency of the proposed

method significantly.

Another study proposed the regression Supervised

Domain Adaptation (SDA) for estimation of the wrist angle

of flexion/extension through sEMG data (Bao et al., 2021b).

Domain shifting problem was applied to the model to increase

the performance on new subjects. Eight participants were

recruited in total, trained on 7, and tested on the last one. The

model was evaluated by Normalized root mean square error

(NRMSE) and the RMSE of our result in Table 1 was changed

to NRMSE for selected models. Detailed information is shown

in the Table 4. The study showed that the model had NRMSE

of 0.181 on designated simple flexion/extension movements.
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TABLE 4 Average NMSE of regression SDA (Bao et al., 2021b) on the

selected movements and our method on ADL tasks.

Flexion/Extension

Regression SDA

(Bao et al., 2021b)

0.181

Bulb Screw Hammer Cup

Without “Quick

training”

0.191 0.185 0.726 0.443

With “Quick

training”

0.133 0.120 0.138 0.191

RMSE in Table 1 is converted to NMSE.

Our method had slightly worse NRMSE on Bulb (0.191) and

Screw (0.185) tasks but achieved further improvements on

overall more complicated movements with the introduction

of the “Quick Train” process (0.133 on Bulb task, 0.120

on Screw task, 0.138 on Hammer task, and 0.191 on Cup

task, respectively).

Our future studies will focus on addressing the current

limitation of the study. First, we performed four different ADL

tasks in the present work, thus, more diverse ADL tasks could

be explored, and taking extra data into consideration would

potentially improve the performance, such as including elbow

angles as additional data when predicting wrist angles for tasks

that showed different coordination between wrist and elbow

joint movements among participants. Secondly, we used MSE

as loss function in our model. The model could be presumably

improved by modifying the loss function by introducing functions

related to Pearson’s correlation. Thirdly, the current model was

designed for each task. Future models will classify motions

into DTM or PS movements and then performing regression

could allow our method to be used more generically, similar

to previous work (Swami et al., 2021). Some other promising

aspects of model generalization including associating not only

types of ADL tasks, but also grasp types (Masiero et al.,

2023), or arm positions (Gloumakov et al., 2022), could also be

utilized to improve the performance. Lastly, complex ADLs that

include three dimensional wrist motion will be trained in the

model as well in the future. The current study uses ADLs that

focus on majorly one dimensional rotation. In the future, the

suggested controller will be implemented in the UBArm (Kim,

2022) featuring all three dimensional rotation of the prosthetic

wrist with power grasping. With the UBArm, the tasks that

were used to train in the presented paper and new tasks will

be evaluated in real-time. To test the controller on amputee

participants, the protocol will be further optimized and tested.

For example, the number of sensors with less importance will

be reduced by computing feature importance. Local surrogate

models for identifying feature importance will be used such

as SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al.,

2016a,b) to determine the important sensors. For the amputee

participants, the sEMG signals can be inconsistent depending

on the location of the amputation. We will test 20% or 30%

MVC (Maximum Voluntary Contraction) test and check which

position of the muscle shows the most consistent sEMG signals for

the controller.

6. Conclusion

This study employed a data collection approach that included

activities of daily living to ensure the datasets reflect realistic wrist

motions used in day-to-day scenarios. A CNN model based on the

Inception-Time architecture was implemented to train the models

using a specific method that allows the designed wrist controller

to perform on new subjects. The Quick training process improved

the performance of the controller when facing new subjects, while

significantly decreasing on-site training time. We believe our

method will provide a practical solution for new participants using

the model as well as handling situations where sensors may displace

during daily living, muscles can become fatigued, or sensors can

become contaminated (e.g., due to sweat).
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