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Intelligent manipulation of robots in an unstructured environment is an important

application field of artificial intelligence, which means that robots must have

the ability of autonomous cognition and decision-making. A typical example of

this type of environment is a cluttered scene where objects are stacked and

close together. In clutter, the target(s) may be one or more, and e�ciently

completing the target(s) grasping task is challenging. In this study, an e�cient

push-grasping method based on reinforcement learning is proposed for multiple

target objects in clutter. The key point of this method is to consider the states of

all the targets so that the pushing action can expand the grasping space of all

targets as much as possible to achieve the minimum total number of pushing

and grasping actions and then improve the e�ciency of the whole system. At

this point, we adopted the mask fusion of multiple targets, clearly defined the

concept of graspable probability, and provided the reward mechanism of multi-

target push-grasping. Experiments were conducted in both the simulation and real

systems. The experimental results indicated that, compared with other methods,

the proposed method performed better for multiple target objects and a single

target in clutter. It is worth noting that our policywas only trained under simulation,

which was then transferred to the real system without retraining or fine-tuning.

KEYWORDS

Deep Learning in Robot Manipulation, reinforcement learning, intelligent system, push-

grasping, robot control

1. Introduction

Robotic grasping and manipulation in an unstructured, clutter-filled environment is a

challenging research subject. In such a scenario, the target tends to be tightly wrapped around

the non-target objects. Thus, it is hard to execute effective grasping. To get feasible operation

space for grasping, the system must first focus on the cluttered scene and then separate the

target from other objects. Therefore, the current common methods (Boularias et al., 2015;

Bauza and Rodriguez, 2017) include pushing as a pre-grasping operation. Although pushing

and grasping are two different manipulative skills, the synergy of grasping and pushing

actions remains challenging. Synergizing these two actions will improve the robot’s ability

to efficiently perform robotic manipulation in the midst of clutter.

There have been some studies on how to learn cooperative manipulation policies to

achieve robotic push-grasping. Zeng et al. (2018) used the parallel training architecture of

the grasping network and pushed the network to learn the push-grasping policy. Dogar and

Srinivasa (2010), Hang et al. (2019), and Song and Boularias (2020) devoted themselves to

pre-grasping operations to assist in grasping tasks. Deng et al. (2019) designed a grasping

evaluation mechanism, but they lacked target orientation and preferred push-grasping tasks
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with an unknown target. According to Yang et al. (2020), the

mask of the target object, which to a certain extent realizes the

coordinated operation of pushing and grasping for a target in

clutter, was used as the network input.

A target-oriented grasping task, that is, grasping the target

object from the cluttered scene, needs to integrate the information

of the target object into the pushing-grasping collaborative policy,

so it is more challenging. In the study by Kiatos and Malassiotis

(2019), a pushing policy was obtained using Q-learning to assist

in the realization of target grasping. The motion evaluation

mechanism and classification mechanism were designed by Yang

et al. (2020) for motion primitives to achieve pushing and grasping

around the target object. To improve the training efficiency and

system performance, a three-stage training method of alternate

grasping, pushing, and push-grasping was proposed by Xu et al.

(2021). In the study by Huang et al. (2021b), combining a

prediction network and Monto-Caro tree search, a model-based

learning method was used to predict the shortest push sequence

required to grasp the target object. All the above studies were

conducted around the push-grasping task of the single target object

in clutter. Multi-target grasping in clutter scenes was also common

in real life. An intuitive way is to approach each target using

the single target method one by one, but the efficiency of the

actions may not be optimal. At the beginning of the study, we

believed that there should be an optimal choice of actions, that

is, to create the grasping space successively or simultaneously for

all targets with the least amount of pushing actions. To achieve

this, we needed to take into account all the targets, including their

states, rewards, and robot actions, and then determine a feasible

approach. This study focused on a multi-target push-grasping

task in a clutter scenario, treated the task as a self-supervised

reinforcement learning problem, and proposed a method based

on policy learning for efficient multi-target synergy of push and

grasp. Our approach was analogous to that of Zeng et al. (2018)

and Xu et al. (2021). However, the experimental results showed

that the direct application of these state-of-the-art methods makes

it difficult to obtain satisfactory results for multi-target push-

grasping. Hence, we improved and realized the extension of push-

grasping synergy to multi-target tasks in clutter scenarios. To be

specific, we performed the following steps: first, the image needed

to be segmented and fused to obtain the multi-target mask, and

the multi-target mask, RGB, and depth images were used as the

network input. Second, we defined the graspable probability (GP)

for the target object. This definition was evaluated according to the

maximum output of the grasping network. The larger the value, the

more likely the target was to be grasped. Finally, we set a reward

mechanism based on the GP. In concrete terms, if the GP of a target

object was increased after pushing or grasping, it was considered

that the previous action was beneficial for the target object.

Moreover, if other target objects met this requirement,

additional rewards were given during the training, which is

different from the single-target policy learning. Therefore, we

incorporated themulti-target states into the training process so that

the policy could gradually master the efficient pushing and grasping

of the targets. We conducted experiments in both simulations

and the real system, and the experimental results indicated that,

compared with other methods, the proposed method has better

performance not only for multiple target objects but also for a

single target in clutter; therefore, our system has a comprehensive

capability and generalization from sim-to-real. To the best of our

knowledge, in the field of policy learning, existing studies may

not include multi-target push-grasping in clutter. In summary, the

main contributions of this study are the following:

(1) We fused the masks of each target and defined the graspable

probability under multi-target, as well as a reward mechanism

that provides a training paradigm for a multi-target push-grasping

synergy policy.

(2) The proposed method could accomplish the push-grasping

task for both single and multiple target(s) in clutter.

(3) We evaluated the performance of the learned system in

clutter scenarios not only for simulation but also for the real

world. Experimental results indicated that the proposed method is

more effective.

2. Related work

2.1. Grasping

Robotic grasping methods can be divided into analytical and

data-driven categories (Bohg et al., 2013). The analytical method

relied more on precise physical configuration and a detailed

mechanical model to obtain the grasping feasibility prediction

based on the force-closed type (Rodriguez et al., 2012). However,

due to the difficulty associated with accurately obtaining physical

properties (friction, etc.) and ensuring the accuracy of 3D object

model construction, more researchers are gradually turning to

data-driven methods to achieve direct mapping from vision to

motion (Mahler et al., 2017; Choi et al., 2018). Meanwhile, sensor

research based on deep learning has been carried out (Ovur et al.,

2021; Qi et al., 2021, 2022). More data-driven approaches focused

on a single object in a scattered scenario (Mahler and Goldberg,

2017; Kalashnikov et al., 2018; Lu et al., 2020; Sarantopoulos et al.,

2020; Zhang et al., 2023). Researchers have recently started to apply

this method to object grasping in clutter scenes (Boularias et al.,

2014; Ten Pas and Platt, 2018). Fang et al. (2020) introduced a

large-scale training standard for general object grasping. Moll et al.

(2017) presented a grasping motion planning method. Ten Pas and

Platt (2018) trained CNN to detect 6D grasping posture in the

point cloud. However, these methods only use grasping without

other types of action; therefore, their ability to deal with complex

and chaotic environments is limited. Therefore, the combination of

grasping pre-operation (such as pushing) and grasp may be better

for robot grasping tasks in clutter scenarios.

2.2. Push-grasping

For non-prehensile manipulation, Cosgun et al. (2011) from

a model-driven perspective and Danielczuk et al. (2018) from a

data-driven perspective aimed to reduce the impact of uncertainties

such as collisions. The combination of pushing and grasping further

improved the robot’s operating system (Boularias et al., 2015)

to rearrange the disordered objects by pushing for subsequent
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grasping (Deng et al., 2019; Huang et al., 2021a). A representative

study is that of Zeng et al. (2018), in which researchers proposed

a model-free deep reinforcement learning framework to realize

push-grasping synergy through parallel network architecture. Deng

et al. (2019) evaluated whether the target is suitable for grasping.

However, if grasping is unsuitable, a push was performed to obtain

a better grasping space. Huang et al. (2021a) trained the neural

network to predict the action and state after the execution of the

push to distinguish whether grasping should be performed.

The above methods focused on the push-grasping task with an

unknown target object. Comparatively, there are few studies on

the push-grasping synergy for targets in the cluttered scene, except

for Kiatos and Malassiotis (2019), Kurenkov et al. (2020), Yang

et al. (2020), Xu et al. (2021), and Huang et al. (2021b). Kiatos

and Malassiotis (2019) used Q-learning to train a pushing policy

to achieve the separation of target objects in clutter. Kurenkov

et al. (2020) provided rewards according to occlusion changes to

train the pushing policy. Based on Baye’s strategy to promote the

exploration of invisible targets to expose them to the visual field,

Yang et al. (2020) combined the action evaluation mechanism

and the classification mechanism to achieve pushing and grasping

around the target object. Xu et al. (2021) used the idea of HER

(Andrychowicz et al., 2017) to relabel the grasping condition that

meets the requirements to improve training efficiency. A three-

stage training method was adopted to improve the performance

of the push-grasping system. Combined with a state prediction

network, Huang et al. (2021b), used a model-based learning

method, based on the Monto-Caro tree search, to realize that the

learned policy can predict the shortest push sequence required to

grasp the target.

All of the above target-oriented push-grasping methods were

aimed toward a single target. It is common in real life to

find multiple target objects in clutter scenarios. The repeated

application of a single target push-grasping method may not

be the optimal choice for the overall manipulation of pushing

and grasping. Our approach was data-driven, similar to the

above methods, and the training architecture was similar to that

of Zeng et al. (2018), both of which are parallel networks of

pushing and grasping. However, we added the fusion of target

masks to solve the multi-target recognition problem. Moreover,

the definition of graspable probability was provided to better

guide policy learning. To enable the policy to comprehensively

consider each target state, the reward mechanism was set up

based on the graspable probability. Thus, the learning paradigm

and the specific method for multi-target push-grasping synergy

were established.

3. Preliminaries

3.1. Problem formulation

To address the problem ofmulti-object push-grasping in clutter

scenarios, the following definition has been provided:

Definition 1. A multi-target push-grasping task in clutter

scenarios means that the robot takes several objects as retrieval

targets from a series of densely disordered objects and obtains each

target one by one with the least number of actions through limited

pushing and grasping.

Objects in a cluttered scene, including multiple targets, may

have different shapes, sizes, colors, weights, and other physical

properties. For the setup of the experimental platform, we made

the following basic assumptions: (1) the hardware included a UR3

robot equipped with a robotic two-finger 85 parallel gripper at the

end, a flat workspace, and a Kinect camera above the workspace; (2)

the objects were rigid and could adapt to the gripper’s operation,

that is, a straight-line pushing action and a top-down grasping

action; (3) the working space was a fixed space within the field of

view of the camera. If an object fell out of the working space, it

could no longer be recognized and operated upon.

3.2. Primitive actions

Similar to previous studies (Zeng et al., 2018; Xu et al., 2021),

we used the primitive actions of pushing and grasping instead of

continuous action exploration. aMg (x, y, θ) represents the grasping

action primitively performed at a pixel (x, y) and θ represents the

rotation angle of the gripper along the z-axis. (x, y) can be any pixel

under the scene 224 × 224 of the workspace plane, and the center

position of the gripper needs to be moved to this point.θ represents

one of the 16 evenly divided portions 0 ∼ 2π . When the gripper

reaches the corresponding position, it moves down to the grasping

position, executes the closure of the gripper, and then moves the

target object outside the working space.

In the clutter scenarios, the target is often tightly wrapped by

other objects; therefore, it is difficult to grasp directly. At present,

the push action should be performed first to create grasping space.

For the push action aMp (x0, y0, x1, y1), the robot terminal gripper

will move horizontally and straight from the initial point (x0, y0) to

(x1, y1) to the point of closure.

4. Methods

Objects in cluttered scenes were often tightly packed together.

When the robot wanted to grasp, it first had to execute the pre-

operation (pushing, etc.) to create the grasping space. If there was

more than one target in these objects, the synergy of pushing and

grasping was performed around each target. Before a certain target

was successfully captured, any action the robot performed was

likely to affect the subsequent operations of other targets, leading

to a larger total number of actions for all targets to be captured. We

were interested in ways to minimize the total number of actions

so that the manipulation was as efficient as possible. To address this

challenge, we proposed amodel-free, self-supervised reinforcement

learningmethod that trains neural networks to obtain a cooperative

push-grasping policy. An overview of our system is shown in

Figure 1.

We modeled the multi-target push-grasping problem as a

Markov decision process and added a new symbolMtto represent

the multi-target states, including color heightmap ct , depth

heightmap dt, and multi-target mask mt . In this form, we defined

the policy, reward, and Q-function as π(st |Mt ), R(st , at ,Mt) and

Qπ (st , at ,Mt), respectively.
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FIGURE 1

Overview of the whole system. We fused the mask of each target, provided a reasonable definition of graspable probability (GP), and considered the

impact of each target in the reward function to realize the e�cient multi-target push-grasping synergy (MTPG). When the system started running,

the camera captured the RGB-D image of the clutter scenario. The input from the networks included three types of image information, as shown in

the figure. The pixel-wise grasp Q maps that grasp network outputs were used as the quantized value of GP. If the GP of a certain target is greater

than grasp threshold, a grasp action will be performed against the target; if the GP of multiple targets exceeds the threshold simultaneously, the

action corresponding to the maximum grasp Q maps will be performed; otherwise, a push action will be performed. During the execution of the

task, if the GP of all targets is enhanced, and the agent will receive an extra reward.

FIGURE 2

Mask fusion of multiple targets.

FIGURE 3

Multi-target push-grasping synergy policy learned in the V-REP

simulation environment by the UR5 robot.

We adopted the parallel network architectures of pushing and

grasping to realize the synergy, where φMg represents grasp network

FIGURE 4

A preliminary grasping network and grasping threshold were

obtained by grasping training in the initial stage.

and φMp represents push network. The input of the network was

the rotated heightmaps in the form of a total of 16 rotations, with

each rotation of 22.5
◦
corresponding to 16 different grasping angles

based on the z-axis and 16 different horizontal pushing directions.

The output was 32 Q-values of pixels (16 Q-values from φMg , others

from φMp ), and each Q-value represented the expected future

reward of the corresponding primitive action if it were executed.

The execution of the grasp action was determined by the maximum

Q value output from the grasp network φMg , and the same logic as

the push action by the push network φMp was applied.

Multi-target grasp was the ultimate goal of the task, but

the purpose of the pushing action was to create grasping space.
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FIGURE 5

During coupling training, we ran 1,000 steps, and the policy

gradually acquired the ability to grasp multiple targets with a

probability greater than the threshold.

FIGURE 6

Multi-target grasping success rate reflecting the training

performance of di�erent methods.

Therefore, we defined the graspable probability (GP) of the

target and the grasp threshold to measure the effectiveness of

executed actions. As the training proceeded, the threshold tended

to converge. When the push action was executed once or more, and

if the GP of one target exceeded the threshold, the system executed

the grasp action. Then, the system continued pushing GP to exceed

the threshold of other targets.

The efficiency of the synergy policy was reflected in the

implementation of only n grasp actions for n targets to complete the

task with as few push actions as possible. We made some specific

adjustments to the reward function for policy learning. In short,

except for the sparse reward after each action execution, we gave

additional rewards according to whether the GP of each target at

the current time had been enhanced compared to the previous time.

4.1. Multi-mask

To implement multi-target push-grasping, each target needed

to be effectively recognized first. After the RGB-D images of the

scene were obtained by the camera, the target information could

not be known for the first time; therefore, image segmentation

was required. In the studies by Xu et al. (2021) and Huang et al.

(2021a), a mask segmentation method was used to obtain the

image information of a single object. However, for our research

problem, the parallel training of multiple single targets greatly

increased the processing load of the GPU. Therefore, we organically

integrated all the target masks and reconstructed the multi-

mask image information, including all targets. This is shown in

Figure 2.

4.2. Graspable probability

For multi-target push-grasping in clutter scenes, the optimal

situation was that one grasp was executed for one target; in

other words, the total number of actions was n for n targets to

complete the task. However, in direct grasping, it was hard to

capture the target due to the tight wrapping of non-target objects.

Therefore, we defined a metric to measure whether the target can

be grasped, the graspable probability (GP):Gp(it), where i was one

of any targets.

GP can be quantified by the Q value, which is output by

the grasp network. The larger the Q value is, the greater the

GP is. The reason that we normalized it was to dig out the

actual meaning of the grasp Q value. Specifically, if the maximum

Q-map value of the grasping network φMg was less than the

grasp threshold, the pushing action was performed to create more

grasping space to improve the GP; otherwise, the grasping action

was performed.

The purpose of multi-target push-grasping is to increase GP

of every target through push action, rather than only for a certain

target, instead just starting from the first target whose GP is more

than grasp threshold to perform grasp action. After successful

grasp, the system then follows the same logic to continue to push

and grasp, until all targets are grasped successfully.

4.3. Reward for multi-target

To make the policy learn to comprehensively consider the

push-grasping action for each target in the training process, reduce

the impact of the execution of each action on the state of subsequent

targets, and achieve themulti-target grasp with the shortest number

of actions, we set up an additional reward. Specifically, if the

graspable probability of each target at the current moment was

higher than the term at the previous moment, an extra reward

RMewas provided as follows:

RMe =







0.5, 1
n

n
∑

i=1
Gp(It+1) > Gp(It), I ∈ {one of n targets}

0, otherwise

(1)
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FIGURE 7

Five cases of challenging arrangements.

TABLE 1 The completion of multi-target experiments.

Metric Completion (%)

Arrangement r C1 C2 C3 C4 C5 A

Grasp only 50.8 58.6 69.8 61.4 54.3 51.2 57.7

gc-VPG 63.2 64.5 77.8 68.4 63.2 63.2 66.7

GOPG 55.6 70.6 87.5 88.0 82.4 77.8 77.0

Our System 92.2 100 100 100 81.2 89.5 93.8

TABLE 2 The grasp success of multi-target experiments.

Metric Grasp success (%)

Arrangement r C1 C2 C3 C4 C5 A

Grasp only 43.6 42.5 39.3 41.4 30.8 33.2 38.5

gc-VPG 53.4 48.0 44.4 48.7 38.3 39.6 45.4

GOPG 59.2 52.1 54.7 59.3 60.6 49.8 56.0

Our System 73.7 61.3 89.1 81.9 67.2 78.4 75.3

4.4. Multi-target push-grasping synergy
policy training

Grasp training. At the initial stage, we only trained the grasp

network. n objects were randomly dropped in the workspace, where

the number of target objects was a (<n). We took the form of

sparse rewards:

RMg =

{

1, grasp a certain target successfully

0, otherwise
(2)

In addition, to enhance the training efficiency, we relabeled

the wrong grasping experience (grasping non-target objects)

and saved it in the replay buffer for training. The Q value

of the grasp network tended to converge, which was regarded

as the grasp threshold Q∗
g . In the subsequent training, Gp(it)

had to be greater than this threshold before we executed the

grasp action.

Pushing and grasping coupling training. The key point is to have

as few push movements as possible to achieve an efficient push and

TABLE 3 The motion number of multi-target experiments.

Metric Motion number

Arrangement r C1 C2 C3 C4 C5 A

Grasp only 15.2 14.1 9.2 13.7 13.8 13.5 13.3

gc-VPG 10.5 12.7 8.9 7.9 8.3 11.0 9.9

GOPG 8.4 9.1 6.2 9.6 8.1 8.1 8.3

Our System 7.2 8.4 3.9 5.1 7.6 6.5 6.5

TABLE 4 The action e�ciency of multi-target experiments.

Metric Action e�ciency (%)

Arrangement r C1 C2 C3 C4 C5 A

Grasp only 31.5 23.8 33.2 22.8 24.7 24.2 26.7

gc-VPG 39.0 38.4 35.5 39.5 29.9 28.8 35.2

GOPG 36.3 27.4 49.1 33.4 39.7 43.9 38.3

Our System 49.3 38.9 82.9 61.2 44.0 48.1 54.1

TABLE 5 The completion of multi-target experiments for ablation studies.

Metric Completion (%)

Arrangement r C1 C2 C3 C4 C5 A

gc-VPG-mm 65.3 68.4 93.8 74.2 81.2 86.4 78.2

GOPG-mm 68.7 77.8 92.6 93.8 88.2 84.2 84.2

TABLE 6 The grasp success of multi-target experiments for ablation

studies.

Metric Grasp success (%)

Arrangement r C1 C2 C3 C4 C5 A

gc-VPG-mm 54.3 51.2 48.9 72.7 46.2 68.0 56.9

GOPG-mm 62.8 63.1 69.6 71.8 63.6 66.0 66.2

grasp. The agent performed the push action when Gp(it) of each

target did not exceed the grasp threshold Q∗
g . The pushing reward

function took the following form:

RMp =

{

0.5, change states of targets

0, otherwise
(3)
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TABLE 7 The motion number of multi-target experiments for ablation

studies.

Metric Motion number

Arrangement r C1 C2 C3 C4 C5 A

gc-VPG-mm 9.8 11.4 7.8 6.6 9.1 13.0 9.6

GOPG-mm 8.2 10.7 5.6 6.9 9.4 5.8 7.8

TABLE 8 The action e�ciency of multi-target experiments for ablation

studies.

Metric Action e�ciency (%)

Arrangement r C1 C2 C3 C4 C5 A

gc-VPG-mm 41.8 40.2 39.8 47.6 39.2 30.1 39.8

GOPG-mm 42.3 43.6 54.0 44.6 42.5 54.8 47.0

Changing states indicate that the orientation or position of a

certain target object has changed. However, to improve the GP of

each target, it was necessary to motivate the agent further to make

a more efficient motion decision; thus, the multi-target reward

mentioned in Formulation (1) was added.

To improve the cooperativity of the push-grasp policy, we

conducted pushing and grasping coupling training. At this stage,

the grasp threshold remained unchanged, and the two networks

were trained following the previous reward function and multi-

target reward. The parameters of the grasping network were trained

based on the previous stage. This training process could gradually

optimize the performance of the push-grasping network. The

environment reset of the training episode was consistent with the

grasp training.

5. Experiments

In this section, we conducted a series of experiments to

evaluate our system. The objectives of the experiments were as

follows: (1) to verify that our policy can effectively realize multi-

target push-grasping in clutter scenes, (2) to indicate whether our

approach is still effective for single-target conditions, and (3) to

investigate whether our system can be generalized to real-world

experiments. The video is available at https://www.youtube.com/

watch?v=Cp71V-29mgs.

5.1. Implementation details and simulation
setup

Our network included three parallel networks with the same

structure, consisting of a fully convolutional network (FCN)

including 121-layer DenseNets (Huang et al., 2017) and ImageNet

(Deng et al., 2009), which was used for feature extraction from

input (color heightmaps, depth heightmaps, goal masks), and

outputs each pixel’s Q value. FCN uses batch normalization (Ioffe

and Szegedy, 2015), is bilinearly upsampled, and includes two 1× 1

convolutional layers with ReLU (Nair and Hinton, 2010). The loss

function was set up the same as VPG (Zeng et al., 2018).

FIGURE 8

The real-world experiment system which comprises an UR3 robot

arm equipped with a robotic-85 gripper and a Kinect2 camera

mounted on top.

The Adam optimizer was utilized for network training, with a

fixed learning rate10-4, a momentum of 0.9, and weight decay2-5.

Our future discount γ was a constant 0.5. For the exploration

strategy, we used ε-greedyand ε initialized at 0.5, then annealed it

to 0.1.

The simulation experiment used a UR5 robot equipped with

an RG2 gripper, as shown in Figure 3. The simulation software

is V-REP, with Bullet Physics 2.83 for dynamics configuration

and using V-REP’s built-in inverse dynamics module for robot

action planning.

5.2. Baseline methods and evaluation
metrics

We compared the proposed method with the following

baseline approaches.

Grasp only is a method that uses grasp only without pushing

action and uses an FCN network to train a greedy, deterministic

grasping policy.

Goal-Conditioned VPG (gc-VPG) is an expanded version of

VPG (Zeng et al., 2018), incorporating target masks to train

policy. In this approach, two parallel DQN network architectures
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FIGURE 9

The multi-target push-grasping manipulations.

FIGURE 10

Four random clutter arrangements.

are used to predict pushing and grasping, respectively, and the

corresponding action with the highest Q value is executed.

Goal-Oriented push-grasping (GOPG) (Xu et al., 2021). This

method is modified on the basis of VPG, and the policy training

is divided into three stages. The relabeling borrowed from HER

(Andrychowicz et al., 2017) is used to improve training efficiency.

Baseline methods were originally proposed for single-target

pushing and grasping in clutter scenarios. Hence, the environment

is still a single target whenwe use it for policy training. In the test for

multi-target pushing and grasping, baselines sequentially captured

each target one by one.

5.2.1. The ablation studies
To explore whether VPG and GOPG also have the potential

for multi-target pushing and grasping, we made some adjustments

to their method framework, changed the single-target mask to the

multi-target mask, and retrained the policy to conduct compared
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FIGURE 11

Four challenging arrangements.

TABLE 9 The completion of single-target experiments.

Metric Completion (%)

Arrangement r C1 C2 C3 C4 C5 A

GOPG 93.3 93.3 93.8 86.7 93.8 76.5 89.6

Our System 100 72.2 100 93.8 100 87.5 92.3

experiments, that is, gc-VPG with multi masks (gc-VPG-mm) and

GOPG with multi-masks (GOPG-mm).

For the test, we used the following four evaluation metrics to

measure the system.

5.2.2. Completion
The percentage of completed tests over total tests. For the

multi-target push-grasping task, we stipulated that each target

should not be executed for more than 10 times of invalid push

(after an invalid push, the state of each target does not change)

or failed to grasp 10 times before capture. Otherwise, it was

deemed incomplete. When all targets were retrieved, the mission

is considered complete.

5.2.3. Grasp success rate
The ratio of the number of successful grasps over the total

number of grasps.

5.2.4. Motion number
The total number of pushing and grasping actions executed to

obtain targets.

5.2.5. Action e�ciency
The ratio of the number of targets to the number of actions

before completion.

Among these four metrics, the lower the motion number, the

better. Others are higher and better.

TABLE 10 The grasp success of single-target experiments.

Metric Grasp success (%)

Arrangement r C1 C2 C3 C4 C5 A

GOPG 55.5 68.7 66.9 64.1 29.4 77.9 60.4

Our System 76.6 41.3 96.7 79.4 42.3 96.4 72.1

TABLE 11 The motion number of single-target experiments.

Metric Motion number

Arrangement r C1 C2 C3 C4 C5 A

GOPG 5.1 4.2 3.6 3.6 4.3 5.2 4.3

Our System 2.8 4.7 2.1 3.6 2.7 4.1 3.3

TABLE 12 The action e�ciency of single-target experiments.

Metric Action e�ciency (%)

Arrangement r C1 C2 C3 C4 C5 A

GOPG 25.7 26.6 38.0 30.9 29.2 24.8 29.2

Our System 52.9 24.6 48.9 30.2 42.3 26.6 37.6

TABLE 13 Completion and grasp success of real-world experiments.

Metric Completion (%) Grasp success (%)

Arrangement r C n A r c N A

GOPG-mm 59.2 72.7 53.4 61.8 55.8 60.2 51.6 55.9

Our System 86.4 91.3 80.6 86.1 68.4 73.5 62.7 68.2

5.3. Simulation experiments

For grasp training, 10 objects were dropped randomly into the

workspace, and three of them were targets for 1,000 episodes. After

approximately 500 steps of training, the grasping Q value could

be stable at 1.8; therefore, we considered it the grasping threshold

Q∗
g=1.8, as shown in Figure 4. In the subsequent pushing and

grasping coupling training, the threshold was used to determine

whether the action was pushing or grasping; that is, a grasp action

was performed when the prediction of the Q value was greater than

the threshold. Otherwise, a push-action operation was performed.

For push-and-grasp coupling training, we set up an additional

reward mechanism to enable the policy to gradually master the
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TABLE 14 Motion number and action e�ciency of real-world

experiments.

Metric Motion number Action e�ciency (%)

Arrangement R c n A r c N A

GOPG-mm 14.2 13.5 16.8 14.8 35.9 37.2 31.6 34.9

Our System 10.3 9.2 13.1 10.9 43.2 48.1 39.8 43.7

discrimination of multi-target states and thus give the optimal

decision in terms of overall action efficiency. As the training

went on, after executing actions, the graspable probability of all

targets was gradually improved, and the extra rewards also slowly

increased, which also indicated that the policy’s ability to multi-

target push-grasping was improved, as shown in Figure 5.

Figure 6 shows the training performance of our method and

others. Considering the multi-target task setting, we considered

only grasp, gc-VPG-mm, and GOPG-mm as the comparison

methods. Our approach achieved better performance over 1,000

training steps. Grasp was the only policy network obtained when

we trained only the grasping net. The performances obtained by the

other two methods also highlighted the necessity of pushing action

for multi-target push-grasping in clutter.

5.3.1. The test for multi-target
We conducted test experiments in random and challenging

clutter scenarios. The random clutter scenes: A total of 20 objects

randomly fell into the workspace, and the targets were three

arbitrarily assigned objects among them. Notably, the training

environment was the same, and the difference was that there were

10 falling objects and that three target objects were randomly

assigned. For challenging scenarios, we used the following five

arrangements: case 1, case 2, case 3, case 4, and case 5 (in Table,

simplified to C1, C2, C3, C4, and C5), as shown in Figure 7, and the

targets were three randomly assigned objects. These two categories

of experiments were used to test the generalization ability of the

learned policy and the effectiveness of our method.

We conducted 30 runs of each test, and the results are

shown in Tables 1–4. The alphabet letter r corresponds to random

arrangements and A corresponds to the average.

The results showed that the performance of the proposed

method was better than that of other methods. The main reasons

were as follows: first, VPG and GOPG did not take multiple

targets into consideration, and all targets were only captured

one by one during the test, which affected the overall quality

of task completion and decreased the value of various metrics.

Second, the proposed method set a reward mechanism according

to the graspable probability of each target so that the policy could

gradually master the capability in the learning process to maximize

the graspable probability with the fewest movements to improve

the execution efficiency of the system and reduce the total number

of actions.

In terms of task completion, although our system was slightly

inferior to another method for the C4 scene, it was significantly

superior to baselinemethods in other experimental scenes. In terms

of grasp success rate, our system also showed the best performance

except for C1. In motion number and action efficiency, our system

was alsomore dominant. In a comprehensive view of all metrics, the

results of grasping alone were the lowest, suggesting that grasping

with push-assisting can better complete tasks in clutter. The gc-

VPG andGOPGwere in themiddle, amongwhichGOPGwasmore

advantageous. These two methods integrate push action, making

the execution of grasping tasks in clutter more efficient. However,

due to the lack of further consideration of multiple targets, the

overall efficiency of the system was not as optimal.

5.3.2. The ablation studies for multi-target
The experimental settings were consistent with those

mentioned above, and the purpose of the experiment was to verify

the performance of the modified VPG and GOPG in handling

multi-target pushing and grasping.

In terms of task completion, the modified VPG and GOPG

showed improved performance, with the GOPG-mm achieving the

best results in C4. In terms of grasp success rate, the results of the

ablation studies showed some improvements. Meanwhile, GOPG-

mm earned the best score in C1. In terms of motion number and

action efficiency, GOPG-mm obtained a noticeable improvement,

and two of the metrics reached the optimal level. Therefore, the

experiments indicated that gc-VPG-mm and GOPG-mm had some

potential to complete multi-target push-grasping tasks. The results

are recorded in Tables 5–8.

5.3.3. The single-target test
Under the condition that our system remained unchanged in

the training process, we tested the single-target policy learned by

the proposed method in clutter scenarios and compared it with

GOPG. The test scenarios were divided into two types: random

and challenging. The random one: 20 different objects fell into the

workspace, one of which was the target. The challenging one: we

used the same 5 cases as above, but the target was one randomly

assigned object. We conducted 30 runs of each test, and the results

are displayed in Tables 9–12.

The experimental results showed that the performance of the

proposed method was still well and above that of the compared

method for a single target. Hence, our system was also competent

for single-target push-grasping in clutter scenes. The proposed

method referred to these single-target push-grasping methods and

then improved and optimized them based on their ability to retain

their ability to single-target push-grasp.

5.4. Real-world experiments

In this section, we conducted real-world experiments to verify

our system. Our existing system consisted of a UR3 robot arm

with a ROBOTIQ-85 gripper, and the acquisition of the RGB-

D image was performed using Kinect2 with 1920 × 1080 pixels

(shown in Figure 8). Figure 9 shows the experimental process of

the multi-target push-grasping manipulations of the whole system.

The test cases included four random clutter arrangements in which

the target objects were occluded (shown in Figure 10) and four

setting-challenging arrangements (shown in Figure 11). The targets
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FIGURE 12

Two arrangements of novel target objects.

were colored objects, while the non-targets were wood-colored

objects. The comparison method we used was GOPG-mm, which

performed better than the other baselines.

In the real-world experiment, we executed 20 runs for each

test. It should be noted that the policies of each method were

obtained through training under simulation and transferred to the

real system for direct application without retraining or fine-tuning.

The average results for specific metrics such as completion rate,

grasp success rate, motion number, and action efficiency are shown

in Tables 13, 14 (where r, c, n, and A represent random, challenging,

novel target arrangements, and average, respectively). Overall, our

system was superior to the comparison method on all metrics. This

also indicates that our policy can be effectively generalized to a

real system.

In addition, we tested the generalization ability of the system

for novel target objects unseen during training. The targets were

everyday objects with more complex shapes (shown in Figure 12).

The results are shown in the tables above, indicating that our

method can generalize to unseen objects and that the system

performance is better than the baseline method. For the purple pen

and eye drop, the system can accomplish the task well, while for the

mouse, the success rate was relatively low. The more likely reason

was that the shapes of the former are closer to certain training

objects, but the latter lacked similar objects.

6. Conclusions

In this study, we studied the multi-target push-grasping task in

clutter scenarios and conducted policy training under simulation

based on model-free reinforcement learning. To incorporate the

multi-target states and achieve the policy by gradually learning how

to push and grasp efficiently multiple target objects, we fused the

mask of each target, defined the graspable probability, and designed

a reward mechanism. We evaluated the learned policy not only

for simulation but also for the real world. The experiment results

revealed that the proposed method achieves better results than

other methods under random, challenging clutter scenarios and

novel target objects in the real world.

Moreover, our method retained the effectiveness of single-

target push-grasping, endowing our system with comprehensive

capabilities and robust sim-to-real generalization.

In the future, we will study situations where the number of

objects is larger and the shape of objects is more complex, further

explore relevant scientific problems and propose feasible method.
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