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Improved multi-objective artificial
bee colony algorithm-based path
planning for mobile robots

Qiuyu Cui, Pengfei Liu, Hualong Du, He Wang and Xin Ma*

School of Mechanical Engineering and Automation, University of Science and Technology Liaoning,

Anshan, Liaoning, China

Mobile robots are widely used in various fields, including cosmic exploration,

logistics delivery, and emergency rescue and so on. Path planning of mobile

robots is essential for completing their tasks. Therefore, Path planning algorithms

capable of finding their best path are needed. To address this challenge, we thus

develop improved multi-objective artificial bee colony algorithm (IMOABC), a

Bio-inspired algorithm-based approach for path planning. The IMOABC algorithm

is based on multi-objective artificial bee colony algorithm (MOABC) with four

strategies, including external archive pruning strategy, non-dominated ranking

strategy, crowding distance strategy, and search strategy. IMOABC is tested on

six standard test functions. Results show that IMOABC algorithm outperforms the

other algorithms in solving complex multi-objective optimization problems. We

then apply the IMOABC algorithm to path planning in the simulation experiment

of mobile robots. IMOABC algorithm consistently outperforms existing algorithms

(the MOABC algorithm and the ABC algorithm). IMOABC algorithm should be

broadly useful for path planning of mobile robots.

KEYWORDS

mobile robots, path planning,multi-objective artificial bee colony algorithm, Bio-inspired

algorithm, multi-objective optimization

1. Introduction

As mobile robots are used in a wide range of applications in the home, defense, medical,

and food service industries, they are being given more and more functions (Liu et al., 2022;

Shi et al., 2023). Path planning is a key technique in mobile robots. Mobile robot path

planning is to find an optimal collision-free path from the start point to the target point for

a mobile robot in an environment with multiple obstacles according to a relevant criterion

(Zhang et al., 2018). A good path-planning strategy ensures that mobile robots can complete

their assigned tasks safely and efficiently.

Several path planning methods have been developed for application to mobile robot

path planning, and these methods can be classified as potential field method, sampling

method, and swarm intelligence method. The core of the potential field method is to

consider the motion of a mobile robot in the environment as a kind of robot motion in

a virtual artificial force field. Mohamed et al. (2011) improved the artificial potential field

method to solve the problem of mobile robot path planning which is prone to fall into local

optimum. Chen et al. (2015) improved the artificial potential field method by adding chaotic

optimization methods to solve the local minima and target unreachability problems. Liu

et al. (2021) proposed an adaptive path planning method with dual potential field fusion

that can satisfy the path planning of mobile robots in the state space with different obstacles

and different velocities. Lee et al. (2017) proposed NP-APF, which is a virtual target point in

an obstacle-free environment to overcome the local minima and path inefficiency problems.
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Hou et al. (2017) proposed an improved artificial potential field

(IAPF) method that solves the problems of the traditional APF

method in robot path planning under different conditions and

avoids the trap problem caused by local minima.

The core of the sampling method is to select a finite

number of unstructured points in the configuration space and to

establish connections between these points. The RRT algorithm

is a sampling-based path planning algorithm that addresses

the drawbacks of the RRT algorithm not applying to narrow

spaces, dynamic environments, and slow convergence (LaValle

and Kuffner, 2001). Kuffner (2000) proposed the RRT-connect

algorithm, which introduced the greedy expansion idea on top

of the bidirectional RRT algorithm to improve the convergence

speed of the algorithm. Karaman and Frazzoli (2011) improved

the RRT∗ algorithm by adding asymptotically optimal properties to

guarantee the quality of the paths while preserving the probabilistic

completeness of the RRT algorithm. Nasir et al. (2013) proposed the

RRT∗-smart algorithm to achieve a sample-only search by heuristic

sampling, which accelerates the convergence speed. Gammell et al.

(2014) proposed the Informed-RRT∗ algorithm to limit the node

sampling range and improve the optimal path convergence speed

by generating a subset of ellipsoidal samples.

Since the above methods have many shortcomings, researchers

have started to study mobile robot path planning based on Bio-

inspired algorithms, mainly including particle swarm algorithms,

ant colony algorithms, genetic algorithms, and neural networks,

and have achieved many results (Dorigo et al., 1996; Ghatee and

Mohades, 2009; Mo and Xu, 2015; Liu et al., 2020). For example,

Gunji et al. (2019) successfully obtained a mobile robot roadmap by

a hybrid algorithm like cuckoo search and bats, and the algorithm

was simulated and tested by a mobile robot in a real workspace.

Hosseininejad and Dadkhah (2019) have designed a novel cuckoo

search algorithm for the problem of dynamic path planning.

Fakoor et al. (2016) proposed a fuzzy control algorithm based

on the Markov decision process in which the obstacle avoidance

requirement of a mobile robot was successfully implemented.

Wang et al. (2016) proposed a genetic bee colony algorithm for the

global path-planning problem of mobile robots. Nazarahari et al.

(2019) have designed a novel genetic algorithm for path planning

of multiple mobile robots in a complex environment map. This

algorithm performs path planning in such a way that the path

length can be reduced with enhanced safety. The principle is to

add several crossover factors andmultiple variation operators to the

basic genetic algorithm. Qu et al. (2013) proposed a novel genetic

algorithm, and the results showed that the convergence speed of

the algorithm was enhanced and its search efficiency was improved.

And the algorithm can also be well-applied to global path planning

for multiple mobile robots. Wang et al. (2012) proposed a hybrid

algorithm combining fuzzy logic and neural network, which can

successfully bring the mobile robot to the task point under an

unknown map. Lamini et al. (2018) devised an improved homo-

neighborhood intersection operator that can generate feasible paths

with better fitness values, successfully improved the problem of

premature convergence of the algorithm, and was well-used in

mobile robot path planning. Contreras-Cruz et al. (2015) fused

evolutionary planning algorithms in artificial bee colony algorithms

and thus obtained a novel algorithm that refines the feasible paths.

To verify the authenticity of the algorithm, they conducted test

experiments using a mobile robot in a real working environment,

and the results confirmed the authenticity of the algorithm and

good performance of the algorithm.

In summary, we can see that a very large number of intelligent

algorithms have been applied to solve problems related to path

planning for mobile robots, and all of them have achieved good

results. However, the current research is basically for the single-

objective path planning problem, while the mobile robot path

planning is a constrained multi-objective optimization problem

(Jeddisaravi et al., 2016). We have to consider how to study a more

practical and effective way to solve this multi-objective problem.

In 2005, Turkish scholars Karaboga and Basturk first proposed

the artificial bee colony algorithm (ABC), the basic idea of

which was inspired by the honey harvesting task of bee colonies

(Karaboga, 2005). The ABC algorithm has been favored by many

scholars due to its advantages such as fast convergence and

excellent algorithm performance in solving the problem. As the

artificial bee colony algorithm was extended for solving multi-

objective problems, theMOABC algorithmwas then widely used in

various fields. However, multi-objective artificial swarm algorithm-

based path planning for mobile robots is rarely reported, so the

contribution of this paper is as follows.

1) An improved MOABC algorithm is proposed.

2) The improved MOABC algorithm is applied to solve the

mobile robot path planning to verify the effectiveness of the

IMOABC algorithm.

The rest of this paper is organized as follows. Section 2

presents the relevant background knowledge. Section 3 presents

the improvement and validation of the MOABC algorithm. Section

4 applies the improved MOABC algorithm to mobile robot path

planning and validates it with experimental simulations. Section 5

summarizes the entire text.

2. Related background knowledge

2.1. MOABC algorithm

Since its introduction in 2005, the Artificial Bee Colony

algorithm (ABC) has been favored by many scholars due to

its unique advantages. The basic MOABC algorithm was first

proposed by Hedayatzadeh et al. (2010). The MOABC algorithm

consists of seven main actions: initializing the honey bee

population, foraging for honey bees, generating new food sources,

evaluating food source mechanisms, onlooker bees foraging,

scouting for bees foraging, and local optimization for external

archive. One of the main roles of the external archive is to keep and

maintain records of the optimal Pareto solutions found up to now.

The following are the specific steps of the MOABC

algorithm implementation:

1. Initialization: the initialization of each parameter and external

archive, the honeybee population is initialized according to

Equation (1).
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j
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)

(1)

Where is themaximum value of the food source in the direction

of j; x
j
min is the minimum value of the food source in the direction

of j.

2. Employed bee stage: a solution is randomly selected from

the external archive. The current domain search is guided

according to Equation (2), and the better solution is retained

through the Pareto dominance relation.

v
j
i = x

j
i + φ

j
i

(

x
j
i − x

j

k

)

(2)

Wherexk denotes an adjacent food source,denotes the current

food source, k ∈ {1, 2, · · · , SN} and k 6= i. φ
j
i is a random

number between [−1, 1].

3. Calculate the corresponding following probabilities for all

solutions according to Equation (3).

Pi =
fiti

SN
∑

j=1
fitj

fiti =
dom(i)
SN

(3)

Where fiti is the specific yield of the food source; dom(i) is the

number of feasible solutions available in the total feasible solutions

for the i and SN is the number of feasible solutions.

4. Onlooker bees stage: a solution is chosen randomly by

the following probability, and then the domain search is

performed using Equation (3).

5. Scout bees stage: the solution whose trial reaches the Limit is

discarded and the food source information is initialized again

according to Equation (1).

6. Update the external archive: add the Pareto optimal solution

from the current population to the external archive and update

it according to the crowding distance clipping when its upper

limit is reached.

7. Export all solutions of external archive.

2.2. Multi-objective mobile robot path
planning model

In this paper, we only consider the static known environment

and assume that the route of the mobile robot from the starting

point to the endpoint in the map environment is a series of

path nodes.

Then the path of the mobile robot Path can be represented

using Path =
[

Start = P0, P1, P2, · · · , Pn, Pn+1 = End
]

. Where

Start and End are the starting point and the endpoint, respectively.

Pi is the ith path node on the path and the two path nodes are

considered to be connected by line segments. In this paper, two

objective functions are proposed for the two performance metrics

of path length and path safety, which are the path length function

fl and the path safety function fl. The mobile robot path planning

problem is transformed into solving the optimal set of solutions of

a multi-objective function, whose mathematical model is shown in

Equation (4):











F
(

Path
)

=
[

Start = P0, P1, P2, · · · , Pn, Pn+1 = End
]

Minimize fl
(

Path
)

= Length
(

Path
)

Minimize fs
(

Path
)

= Safety
(

Path
)

(4)

Satisfaction.

P0 = Start, Pn+1 = End, Path ∩ Obstacle = ∅ (5)

That is, the path Path cannot intersect with an obstacle, but is

allowed to coincide with the edge of the obstacle. Where represents

the set of feasible paths, Path = {Path1, Path2, ..., Pathm}.

In this paper, the adopted path safety function is defined as.

fs =

{

fso, fso ≤ distance

const, fso ≻ distance
(6)

Where distance represents the safe distance from the position
of the obstacles in the working environment set in this paper; Const
is a constant; fso represents the shortest distance from the path of
the mobile robot to all obstacles, and the definition of fso is shown
in Equation (7).

fso =
m
min
k=1

{

Distk

∣

∣

∣

∣

∣

Distkij =

√

(

PathXk
i − soxj

)2
+

(

PathYk
i − so

y
j

)2
}

(7)

Where i = 1, 2, · · · , n represents the number of path nodes

of each feasible path of the mobile robot; j = 1, 2, · · · , r is the

number of obstacles in the working environment; k = 1, 2, · · · ,m

represents the number of feasible paths of the mobile robot; Distk

represents the distance of the mobile robot path nodes in each

feasible path from the obstacles in the working environment.

The total length of the path Path can be expressed by

Equation (8).

L
(

Path
)

=

n
∑

i=0

d (Pi, Pi+1) (8)

Where n denotes the number of path nodes, d(Pi, Pi+1) denotes

the distance between the point Pi and the point Pi+1.

To further compare the performance advantages and

disadvantages of the IMOABC algorithm in planning paths

for mobile robots, path planning experiments were conducted

with the single-objective artificial bee colony (ABC) algorithm

under the same environmental map. The parameters in the ABC

algorithm are set as follows: the bee colony size is 100 and the

maximum number of iterations is 200. The cost equation is shown

in Equation (9).
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cost =

√

(

Xg − Xi

)2
+

(

Yg + Yi

)2

+
(

collide ∗ 5000+ oldpoint_cost + collide_to_target
)

∗ 0.5 ∗ sqrt
(

MMˆ2+MMˆ2
)

(9)

Where Xi, Yi are the coordinates of the food source and Xg , Yg

are the coordinates of the target point; oldpoint_cost is the value of

the previously selected path; collide_to_target has two cases: Case

1: When a collision occurs, the collision-to-target value is equal to

zero, and Case 2: When there is no collision, the collision-to-target

value is equal to one.

2.3. Performance metrics for mobile robot
path planning

This thesis evaluates the goodness of the feasible path obtained

by the multi-objective optimization algorithm by the length of the

path obtained by the optimization algorithm and the path safety.

2.3.1. Criteria for measuring path length
Among the many performance metrics for path planning, only

the length size of the feasible path of the mobile robot optimized by

the multi-objective optimization algorithm is considered. A long

path is inferior to a short path.

2.3.2. Path safety metrics
Among the many performance metrics of path planning, only

the path safety of the mobile robot optimized by the multi-objective

optimization algorithm is considered. A path with a small path

safety value is inferior to a path with a large path safety value. The

formula for calculating the safety indicator for each route of the

mobile robot is shown in Equation (10).

S = min

{

Dist

∣

∣

∣

∣

∣

Distij =

√

(

PathXi − soxj

)2
+

(

PathYi − so
y
j

)2
}

(10)

Where i = 1, 2, · · · , n, represents the number of path nodes;

j = 1, 2, · · · , r, represents the number of obstacles in the working

map environment.

3. Improvement and validation of
MOABC algorithm

3.1. Improvement of MOABC algorithm

While the MOABC algorithm has many advantages, it also

has its disadvantages. First, since there is a greater demand for

external archive space, the algorithm will have higher requirements

for the objective environment. Second, although the algorithm

takes all objective functions into account when optimizing, the

degree of optimization of them will still be different in practical

applications, which will make the results with a certain bias. Third,

FIGURE 1

Schematic diagram of external file trimming.

when solving multi-objective problems, the algorithm suffers from

problems such as the tendency to fall into local optimality. In

this paper, we propose an improved MOABC algorithm, namely

IMOABC algorithm, for a series of problems existing in the above

MOABC algorithm. Inspired by the ideas of algorithms such as

NSGA-II and DNPSO, this paper combines the MOABC algorithm

with a series of multi-objective optimization strategies (Deb et al.,

2002; Zhou et al., 2017). It consists of four important strategies:

the external archive pruning strategy, the non-dominated ranking

and crowding distance strategy, the search strategy, and the

Pareto optimal strategy to evaluate food source locations with

multiple objectives and select non-dominated solutions, and is thus

presented as follows.

3.1.1. External archive pruning strategy
To reduce the complexity of the algorithm computation and

to obtain a uniformly distributed solution, the size of the external

archive should not increase rapidly. Therefore, to prune external

archive, this paper uses a technique based on the concept of domain

radius for pruning external archive. The domain radius (Rn) of the

non-dominated solution is considered and the Euclidean distance

between the non-dominated solutions is calculated at the end

of each iteration. If the distance between two non-dominated

solutions is less than Rn, one of the non-dominated solutions

is omitted. Figure 1 illustrates this process in the space of two

objective functions.

3.1.2. Non-dominated sorting and congestion
distance strategies

Inspired by the ideas of the NSGA-II algorithm, in this thesis

we also introduce the concepts of fast non-dominated sorting

and congestion distance (Deb et al., 2002). The individuals in the

population that are not dominated by non-inferior solutions are

defined as rank 1, then they are removed from the population

and new non-inferior solutions are identified from the remaining

individuals and defined as rank 2; the above process was repeated

until all individuals in the population were given the appropriate

rank. By storing the current solution and all individuals in

the population in a hierarchical manner, the top-performing
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FIGURE 2

Diagram of congestion distance.

FIGURE 3

Global domain search operator.

individuals can have a higher probability of survival and can quickly

improve the population ranking.

Once the number of non-inferior solutions exceeds the external

archive size, the removal of individuals with small crowding

distance in the external archive starts until the algorithm condition

is satisfied (Akbari et al., 2012). As shown in Figure 2, regarding

the two objective problems, the black dots in the figure are the

non-inferior solutions in the population, and for the non-inferior

solution x, the sum of the two sides of the rectangle consisting

of x + 1 and x − 1 is computed; the final result is the crowding

distance xdist of the non-inferior solution x. The crowding distance

of the boundary solutions (solutions with minimum andmaximum

objective function values) is infinite. When two solutions have the

same rank, the superiority of the two solutions can be compared

by the magnitude of the crowding distance, thus ensuring the

convergence and diversity of the population. It can be seen that the

individual x is superior to the individual y when and only when,

xrank < yrank or xrank = yrank and xdist > ydist .

3.1.3. Pareto optimal strategy
The Pareto solution set is a variety of feasible solutions for

mobile robot path planning, which can also improve the efficiency

of mobile robot path planning. Manual Pareto selection is subject

TABLE 1 Set each algorithm parameter.

Algorithm Parameter setting

IMOABC SN= 100 Limit= 100 maxCycle= 5,000 runtimes=

20

MOPSO SN= 100 Limit= 100 maxCycle= 5,000 runtimes=

20 alpha= 0.1 beta= 4 gamma= 2

MOGWO SN= 100 Limit= 100 maxCycle= 5,000 runtimes=

20 alpha= 0.1 beta= 4 gamma= 2

MOFA

SN= 100 Limit= 100 maxCycle= 5,000 runtimes=2

0

Gamma= 2 beta 0= 1 alpha= 0.1 alpha_damp= 0.9

mu= 0.1

TABLE 2 Statistical results of IGD value of 6 test functions of each

algorithm.

Function IMOABC MOPSO MOGWO MOFA

UF1 Max 6.0977E-04 7.2238E-01 5.6043E-03 1.2877E-01

Min 3.0968E-04 3.4987E-01 3.4772E-03 5.8557E-02

Mean 3.9535E-04 5.8111E-01 4.5354E-03 9.6393E-02

Std 9.8998E-05 1.1530E-01 6.8383E-04 2.6902E-02

UF2 Max 3.9503E-04 1.5286E-01 2.6193E-03 6.8151E-02

Min 2.7110E-04 9.0947E-02 2.0654E-03 4.7688E-02

Mean 3.1956E-04 1.1721E-01 2.2934E-03 5.7197E-02

Std 4.0266E-05 1.6970E-02 1.4827E-04 6.3076E-03

UF3 Max 3.7099E-03 5.7834E-01 1.0777E-02 3.3310E-01

Min 2.4375E-03 4.8281E-01 6.1589E-03 2.0697E-01

Mean 2.9466E-03 5.4727E-01 9.2236E-03 3.0021E-01

Std 3.3504E-04 2.6733E-02 1.5362E-03 4.1251E-02

UF4 Max 1.0123E-03 1.2913E-01 3.1823E-03 1.1771E-01

Min 8.9674E-04 8.1743E-02 1.9092E-03 1.0491E-01

Mean 9.4301E-04 1.0063E-01 2.1780E-03 1.1295E-01

Std 3.8383E-05 1.3554E-02 3.7717E-04 3.9907E-03

UF5 Max 3.3773E-02 3.7239E+00 5.3183E-01 2.3188E-01

Min 1.7787E-02 3.1088E+00 1.3546E-01 1.9165E-01

Mean 2.3999E-02 3.3441E+00 2.9843E-01 2.0271E-01

Std 4.6789E-03 1.7392E-01 1.3587E-01 1.2418E-02

UF6 Max 6.7739E-03 3.4929E+00 1.7238E-02 3.5559E-01

Min 2.1384E-03 2.3373E+00 1.0387E-02 1.3182E-01

Mean 4.3481E-03 3.0233E+00 1.2353E-02 1.7620E-01

Std 1.3624E-03 3.4637E-01 1.8345E-03 6.6398E-02

to various subjective uncertainties, which can make the chosen

solution not optimal. Fix a function ηi and the function ηi is

denoted as
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FIGURE 4

Test function IGD boxplot.

ηi =











1,Vi ≤ Vmin
i

Vmax
i −Vi

Vmax
i −Vmin

i

,Vmin
i ≤ Vi ≤ Vmax

i

0,Vi ≥ Vmax
i

(11)

Where Vmax
i and Vmin

i are the maximum and minimum values

of the ith objective function in the Pareto solution set, respectively;

Vi is the ith objective function value. For each non-inferior solution

k, the normalized affiliation function ηk is calculated by the

following equation.

ηk =

∑Nob
i=1 ηki

∑M
j=1

∑Nob
i=1 η

j
i

(12)

Where M is the number of non-inferior solutions in the

Pareto solution set and Nob is the number of objective functions.
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FIGURE 5

Test function Pareto frontier comparison graph.

The larger the value of ηk, the better the performance k of in

coordinating multiple objective functions. The ranking of the

Pareto solution set by the value of ηk gives the priority sequence

of non-inferior solutions.

3.1.4. Search strategy
As one of the most representative variants, the

DNPSO algorithm is characterized by the introduction

of the global NS operator. Therefore, the search strategy
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FIGURE 6

Mobile robot working environment.

in this paper also adds that operator, which can be

expressed as:

vj
i
= r1x

j
i + r2xgbest + r3

(

x
j
a − x

j

b

)

(13)

Where r1, r2 and r3 are three mutually exclusive numbers

chosen at random from (0, 1), which must satisfy another

condition: r1 + r2 + r3 = 1; xgbest is the global optimal solution for

the whole population; and the indices a and b aremutually exclusive

integers chosen at random from (1, 2, · · · , SN), which are different

from the basic index i. It is important to note that r1, r2 and r3 are

regenerated in each generation, but they remain the same for all

dimensions of each generation. Once an experimental solution has

been generated, its associated food source must compete with it for

entry into the next generation. This means that individuals with

better fitness values have a chance to survive. An explicit illustration

of the global NS operator is shown in Figure 3.

Thus, the basic flow of the IMOABC algorithm is

shown below.

Step 1: Population initialization, randomly generate SN

feasible solutions according to equation (1).

Step 2: Calculate the objective function values for all

individuals and complete the initialization of the external

archive set.

Step 3: In the employed bees stage, the employed bees guide

the current domain search according to Equation (13).

Step 4: During the onlooker bees stage, the onlooker bees

randomly select the nectar source according to Equation (3).

Step 5: Add all non-dominated solutions of the current

population to the external archive according to the external

archive pruning strategy.

Step 6: During the scout bees stage, a nectar source is randomly

selected according to Equation (1).

Step 7: When the number of non-inferior solutions exceeds

the limit number of external archives, fast non-dominated

sorting is performed on solutions in external archives using

the grouping of solutions and the

Step 8: Determine if the termination condition is met. If yes,

output the Pareto front; otherwise go to step 3.

Step 9: The set of Pareto solutions is sorted by the Pareto

optimal strategy, and then a priority list of solutions is derived.

3.2. Performance testing and analysis of an
IMOABC algorithm

3.2.1. Test functions and performance metrics
To test the IMOABC algorithm proposed in this paper,

simulation tests will be carried out for the single-objective
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FIGURE 7

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 1 for case 1.

optimization problem. In this paper, six standard test functions

UF1-UF6 are selected, and all six test functions have two

optimization objectives. The inverse generation distance (IGD) is

chosen as the evaluation criterion to compare the performance

of the algorithms. The inverse generation distance (IGD) is used

to evaluate the comprehensive performance of the algorithm

(convergence and distributivity) and is defined as (Durillo and

Nebro, 2011).

IGD (P,Q) =

∑

v∈Pd (v,Q)

|P|
(14)
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FIGURE 8

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 2 for case 1.

Where P is the set of points on the real Pareto front

end and |P| is the number of P. Q is the set of Pareto

optimal solutions. And d (v,Q) is the minimum Euclidean

distance from the individual to the population Q in P.

The smaller the value, the better the overall performance

of the algorithm.

3.2.2. Test function simulation results and analysis
To test the performance of the IMOABC algorithm proposed

in this paper, three typical multi-objective algorithms will be

selected for comparison, i.e., they will be compared with MOPSO,

MOGWO, and MOFA. To ensure the fairness of the algorithm

testing, the parameter settings for each algorithm are given in
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FIGURE 9

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 3 for case 1.

Table 1, and the algorithms are run 20 times separately and

independently to reduce any unexpected errors in the algorithm’s

operation. By counting and comparing the maximum value (Max),

minimum value (Min), mean value (Mean), and standard deviation

(Std) of IGD for these four algorithms, the results are shown

in Table 2, where the bolded items are the optimal values. At

the same time, to have a better feeling of the performance

comparison between each algorithm, we introduce box plots, which

can more intuitively show the dispersion of the performance

index data between each algorithm. We then plotted the values

of the IGD metrics in Table 2 separately into the box plots shown

in Figure 4.
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FIGURE 10

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 4 for case 1.

From the IGD of the integrated performance metrics in Table 2

and Figure 4, it can be seen that for these six test functions,

the IMOABC algorithm outperforms the other three algorithms

compared to the other three algorithms, and its IGD data values

of integrated performance metrics are more concentrated. This

shows that the IMOABC algorithm is also more stable in solving

multi-objective optimization problems, further demonstrating the

effectiveness of the IMOABC algorithm.

To visually and compare the performance of each

algorithm, Figure 5 gives a comparative plot of the Pareto

frontier for these four algorithms solving the six standard

test functions.
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FIGURE 11

Path planning results of mobile robot in 4 di�erent environments based on ABC algorithm for case 1.

From Figure 5 we can see more intuitively that the approximate

Pareto front obtained by the IMOABC algorithm is closer to the

real Pareto front than the other three algorithms. In particular,

for the UF5 problem, the IMOABC algorithm shows a large

improvement in the combined performance metrics compared to

the remaining three algorithms. This further demonstrates that

the IMOABC algorithm proposed in this paper not only yields a

better approximation of the frontier, but also its convergence and

distributivity metrics are superior and have been improved.

4. Simulation verification

4.1. Establishment of mobile robot
optimization environment

Before a mobile robot searches for a path, it is important to first

model the workspace in which it is located to facilitate identification

and decision-making by the mobile robot. Environment modeling

refers to the formal description of the realistic environment

of a mobile robot through feature analysis and then replacing

the obstacle information into a language that the computer can

understand using a suitable approach. A variety of methods for

environment modeling exist in the world, and the three most basic

and commonly used methods are the raster method, the geometric

feature method, and the topological method (Zhang et al., 2018).

There are advantages and disadvantages to each of these three

approaches to constructing a work environment map. The object

of this paper is mainly for land mobile robots, whose working

environment is a two-dimensional plane, so the motion space

of mobile robots is represented by a two-dimensional coordinate

system. The mobile robot is represented by a mass point, and an

image in BMP format is set up as the actual working environment

of the mobile robot. The size of this BMP is 100∗100, the black

part is the obstacle area and the white part is the feasible area.

The obstacle locations and shapes in the four different BMPs are

shown in Figure 6. The obstacle shapes in the BMPs are set to

geometric polygons to facilitate verification of the effectiveness

of IMOABC algorithm-based path planning in complex and

variable environments.

4.2. Experimental simulations and
algorithm comparison

The effectiveness of the IMOABC algorithm proposed in this

thesis has been confirmed in the previous section, so this section
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TABLE 3 The first experiment is to compare the path planning data

between each algorithm.

Performance
indicators

Working
environment

IMOABC MOABC ABC

Path length Map 1 Max 186.144 162.428 144.2091

Min 143.605 152.553 144.2091

Map 2 Max 192.274 171.17 158.1544

Min 149.317 162.469 158.1544

Map 3 Max 150.671 154.703 170.2625

Min 143.641 148.697 170.2625

Map 4 Max 162.777 160.95 181.8178

Min 148.855 159.4 181.8178

Path security Map 1 Max 18.827 2.39384 0.588

Min 2.09754 0.752478 0.588

Map 2 Max 10.3018 0.977297 0.0868

Min 0.686048 0.136834 0.0868

Map 3 Max 2.45146 1.21333 0.238

Min 0.19272 1.05764 0.238

Map 4 Max 1.44622 0.646673 0.996

Min 0.259739 0.209394 0.996

Number of

possible routes

Map 1 42 36 1

Map 2 43 11 1

Map 3 26 12 1

Map 4 27 17 1

The meaning of the bold values is the optimal value.

will explore the application of the IMOABC algorithm to the

mobile robot path planning problem and verify its effectiveness.

Here, we have conducted simulation experiments using Matlab

2018b, and the two selected objective functions are path length

and path safety. Firstly, the effectiveness of the IMOABC algorithm

applied to mobile robot path planning in a two-dimensional

working environment with complex and variable obstacles is

verified, followed by a comparative analysis with path planning

based on the MOABC algorithm and ABC algorithm. Also, to

verify the robustness of the algorithm, two experiments were

conducted in the same experimental environment by changing

the starting and ending coordinates of the mobile robot path

planning, with the starting coordinates of case 1 being (0,

0) and the ending coordinates being (100, 100); the starting

coordinates of case 2 being (0, 100) and the ending coordinates

being (100, 0).

4.2.1. Simulation and verification for case 1
To verify the effectiveness of IMOABC algorithm-based

path planning, path planning experiments are first conducted

in four environments with different obstacles. The initialization

algorithm parameters are: the bee colony size is set to 100,

the maximum number of iterations of the algorithm is set

to 200, the four different 2D working environment pixels

TABLE 4 The second experiment is to compare the path planning data

between each algorithm.

Performance
indicators

Working
environment

IMOABC MOABC ABC

Path length Map 1 Max 183.036 166.022 150.4454

Min 146.967 155.866 150.4454

Map 2 Max 200 166.033 151.1716

Min 142.005 146.41 151.1716

Map 3 Max 199.679 149.641 173.1685

Min 144.449 146.547 173.1685

Map 4 Max 193.988 161.705 159.2363

Min 150.584 159.319 159.2363

Path security Map 1 Max 18.6376 4.09792 0.9205

Min 1.11984 0.974716 0.9205

Map2 Max 10.2965 2.83367 0.575

Min 0.00602009 0 0.575

Map 3 Max 8.46905 1.04332 1.115

Min 0 0.479438 1.115

Map 4 Max 3.32034 0.890569 0.0625

Min 0 0.652126 0.0625

Number of

possible routes

Map 1 39 29 1

Map 2 25 4-15 1

Map 3 32 27 1

Map 4 14 30 1

The meaning of the bold values is the optimal value.

constructed using BMPs are uniformly set to 100∗100,

and the starting coordinates of the experimentally set path

planning are (0, 0) and the ending coordinates are (100, 100).

The results are shown in Figures 7–11, where the mobile

robot harvested several feasible routes. Mobile robots can

select routes from planning results based on environmental

conditions and their preferences. As can be seen, the mobile

robot can perfectly avoid complex and variable obstacles and

find the minimum path distance from the starting point to

the endpoint.

From Table 3 and Figures 7–11 we can find that the

path length of the mobile robot based on the IMOABC

algorithm is the shortest in all four environments. That

is, the path length performance of path planning based

on the IMOABC algorithm is better than the path length

performance of path planning based on the MOABC algorithm

and ABC algorithm.

From Table 3 and Figures 7–11 we can find that the path safety

of the IMOABC algorithm-based path planning is maximum in

the map 1 and map 2 environments. That is, the path safety of

path planning based on the IMOABC algorithm is better than the

path safety performance of both MOABC algorithm-based and

ABC algorithm-based path planning. In the map 3 environment,

we can find from Figure 9 that the safety performance of path

planning based on the IMOABC algorithm is the most superior.
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FIGURE 12

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 1 for case 2.

In the map 4 environment, the path safety of path planning based

on the IMOABC algorithm is higher than the path safety of path

planning based on the MOABC algorithm and slightly inferior

to the path safety of path planning based on the ABC algorithm

when the path is shortest, but the shortest path of path planning

based on ABC algorithm is much inferior to the shortest path of

path planning based on IMOABC algorithm. In summary, it is

still the IMOABC algorithm-based path planning that has the best

safety performance.

From Table 3 and Figures 7–11 we can find that the number

of feasible routes for path planning based on the IMOABC

algorithm is more than that of the MOABC-based algorithm
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FIGURE 13

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 1 for case 2.

and ABC-based algorithm in these four environments. And

the IMOABC algorithm-based path planning feasible routes

are a little more dispersed than the MOABC algorithm and

ABC algorithm-based path planning feasible routes, which

means that the IMOABC algorithm-based path planning

has more options in choosing feasible routes according

to their situation. None of the path planning based on

the MOABC algorithm in the map 2 environment can

completely draw the number of feasible routes. Therefore,

the IMOABC algorithm-based path planning for mobile

robots is the most superior in terms of the number of

feasible routes.

In summary, the experimental results demonstrate the

superiority of IMOABC algorithm-based path planning for mobile
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FIGURE 14

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 3 for case 2.

robots in terms of three aspects: path length, path safety, and the

number of feasible routes.

4.2.2. Simulation and verification for case 2
To verify the robustness of the IMOABC algorithm applied

to the mobile robot, we conduct a second experiment

on the mobile robot, where the starting coordinates are

set to (0, 100) and the ending coordinates are (100,

0). The results of the path planning experiment are

as follows.

From Table 4 and Figures 12–16 we can find that the path

length of the IMOABC algorithm-based path planning is the

shortest in all four environments. That is, the path length
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FIGURE 15

Experimental results of path planning based on IMOABC algorithm and MOABC algorithm in map 4 for case 2.

performance of path planning based on the IMOABC algorithm is

better than the path length performance of path planning based on

the MOABC algorithm and ABC algorithm.

From Table 4 and Figures 12–16 we can find that the security

of IMOABC algorithm-based path planning is highest only in

the map 1 environment for the shortest path length. That is, the

path safety of path planning based on the IMOABC algorithm

is better than the path safety of path planning based on the

MOABC algorithm andABC algorithm. In themap 2 environment,

it is clear from Figure 13 that the safety performance of the

IMOABC algorithm-based path planning is the most superior. In

the map 3 environment, the security of path planning based on
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FIGURE 16

Path planning results of mobile robot in 4 di�erent environments based on ABC algorithm for case 2.

the IMOABC algorithm is not as good as the security of path

planning based on the MOABC algorithm, but better than the

security of path planning based on the ABC algorithm. In the map

4 environment, the best safety performance of path planning based

on the IMOABC algorithm can be found in Figure 15. In summary,

we can find that the path safety of IMOABC algorithm-based path

planning is generally better than the security of MOABC and ABC

algorithm-based path planning.

From Table 4 and Figures 12–16 we can find that the number of

feasible routes for path planning based on the IMOABC algorithm

is more than that based on the MOABC algorithm and ABC-

based algorithm in map 1, map 2, and map 3 environments. And

the IMOABC algorithm-based path planning feasible routes are a

little more dispersed than the MOABC and ABC algorithm-based

path planning feasible routes, which means that the IMOABC

algorithm-based path planning has more options in choosing

feasible routes according to its situation. In the map 4 environment,

although the number of feasible routes of IMOABC algorithm-

based path planning is inferior to that of MOABC algorithm-

based path planning in the experiment, the feasible routes of

MOABC algorithm-based path planning are very concentrated,

which is inferior to the feasible routes of IMOABC algorithm-

based path planning that can provide many choices, so IMOABC

algorithm-based path planning for mobile robots is still the most

superior in terms of the number of feasible routes.

In summary, we can find that the experimental results still

demonstrate the superiority of the IMOABC algorithm-based

mobile robot path planning and its robustness in terms of path

length, path safety, and the number of feasible routes when the

starting and ending points of the mobile robot are changed.

5. Conclusion

This thesis focuses on optimizing the path-planning problem

of mobile robots based on the IMOABC algorithm. Mobile robot

path planning is a complex optimization problem. First of all, it

is necessary to ensure that the mobile robot does not collide with

obstacles in the working environment map, but also to ensure

that the mobile robot can go from the starting point to the
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endpoint smoothly and that the performance indicators of the

path planning should be as good as possible. In this thesis, an

IMOABC algorithm is proposed in conjunction with the MOABC

algorithm for solving mobile robot path planning problems. Firstly,

the external archive pruning strategy, non-dominated sorting and

crowding distance strategy, search strategy, and Pareto optimal

strategy are introduced into the MOABC algorithm, which leads to

the IMOABC algorithm. The IMOABC algorithm is also compared

with three other similar algorithms for verification, and the results

show the effectiveness and stability of the IMOABC algorithm. The

IMOABC algorithm is then applied to mobile robot path planning

based on two performance optimization metrics selected for path

planning, and the results show that the algorithm can complete

the given path planning task. And compare the experiments with

two other algorithms (MOABC algorithm and ABC algorithm)

on the Matlab platform to verify the effectiveness and efficiency

of the IMOABC algorithm in mobile robot path planning. Our

current limitation is simulation validation, and future work will be

conducted in physical experiments.
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