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Deep reinforcement
learning-aided autonomous
navigation with landmark
generators

Xuanzhi Wang, Yankang Sun, Yuyang Xie, Jiang Bin and Jian Xiao*

Department of Integrated Circuit Science and Engineering, Nanjing University of Posts and

Telecommunications, Nanjing, China

Mobile robots are playing an increasingly significant role in social life and industrial

production, such as searching and rescuing robots, autonomous exploration of

sweeping robots, and so on. Improving the accuracy of autonomous navigation of

mobile robots is a hot issue to be solved. However, traditional navigation methods

are unable to realize crash-free navigation in an environment with dynamic

obstacles, more and more scholars are gradually using autonomous navigation

based on deep reinforcement learning (DRL) to replace overly conservative

traditional methods. But on the other hand, DRL’s training time is too long, and

the lack of long-term memory easily leads the robot to a dead end, which makes

its application in the actual scene more di�cult. To shorten training time and

prevent mobile robots from getting stuck and spinning around, we design a new

robot autonomous navigation framework which combines the traditional global

planning and the local planning based on DRL. Therefore, the entire navigation

process can be transformed into first using traditional navigation algorithms to

find the global path, then searching for several high-value landmarks on the global

path, and then using the DRL algorithm to move the mobile robot toward the

designated landmarks to complete the final navigation, which makes the robot

training di�culty greatly reduced. Furthermore, in order to improve the lack of

long-termmemory in deep reinforcement learning, we design a feature extraction

network containing memory modules to preserve the long-term dependence

of input features. Through comparing our methods with traditional navigation

methods and reinforcement learning based on end-to-end depth navigation

methods, it shows that while the number of dynamic obstacles is large and

obstacles are rapidly moving, our proposed method is, on average, 20% better

than the second ranked method in navigation e�ciency (navigation time and

navigation paths’ length), 34% better than the second ranked method in safety

(collision times), 26.6% higher than the second ranked method in success rate,

and shows strong robustness.

KEYWORDS

deep reinforcement learning (DRL), mobile robots, trajectory planning, autonomous

navigation, simultaneous localization and mapping

1. Introduction

Mobile robotic devices are becoming increasingly popular in daily life and hazardous

industrial production environments (Niloy et al., 2021). In a complex and dynamic

environment, the ability of mobile robots to navigate autonomously, reliably, and safely is

one of themost concerning issues in academia and industry around the world. In an ordinary

static environment, traditional navigation methods such as the Dynamic Window method
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(DWA) (Seder and Petrovic, 2007), the Timing Elastic Band

method (TEB) (Yu et al., 2022), and Model Predictive Control

(MPC) (Yu et al., 2020) can perform the task well. But when faced

with an environment full of dynamic obstacles, they didn’t perform

as well (Rösmann and Hoffmann, 2017). Traditional navigation

methods are based on artificially designed criteria for avoiding

obstacles and safety restrictions. They move straight when there is

no obstacle and circle around when encountering impediments (Li

et al., 2017), so it is difficult to avoid moving blocks and easily get

stuck in stagnation.

Therefore, some researchers have explored a navigationmethod

based on end-to-end deep reinforcement learning (DRL) (Zhu

and Zhang, 2021), which directly maps the data obtained by the

fuselage sensor to the robot’s output actions and can teach the robot

complex behavioral rules. Hence, DRL can show high robustness

in the face of dynamic interference. Moreover, they demonstrate

a high level of generalization in different testing environments.

However, the robot autonomous navigation method based on

deep reinforcement learning currently has a significant bottleneck

(Dugas et al., 2021). In the training process, the network model

cannot remember long-term information, so it is difficult to include

the initial environmental state information into the training scope

at the later stage, which significantly increases the training time.

At the same time, due to over-reliance on the generalization ability

of the action network, when the generalization ability cannot meet

the demand, it is easy to fall into local minima1 in the process of

long-distance navigation (Zeng et al., 2019).

Considering it is an enormous burden for DRL networks to

directly map the data obtained by the fuselage sensors to the robot’s

output actions, we propose a navigation framework, as shown in

Figure 1, which splits long-distance navigation into global and local

navigation modules connected by a waypoint generator. In our

research, this navigation framework is fully integrated into the

Robot Operating System (ROS). Based on the Rapidly-exploring

Random Trees algorithm (RRT) (Wu et al., 2021) to complete

the initial static environment mapping, the specific navigation

implementation steps are as follows: First, the A∗ (Guo et al.,

2022) or Dijkstra (Gao et al., 2019) algorithm is deployed to realize

the global path planning; Then, the mobile robot finds the most

suitable sub-goal on the global path utilizing the real-time sub-

goal generation algorithm. Finally, a local planner based on deep

reinforcement learning navigates the mobile robot to the sub-

goal. After completing several sub-goal navigations, the robot can

eventually reach the target point. During local navigation using

reinforcement learning, our research set up a suitable rewarding

mechanism for mobile robot motion strategy output. The mobile

robot successfully arriving at landmarks or maintaining a safe

distance with obstacles will receive rewards with a positive value. As

for collisions, getting stuck, and being too close to obstacles, those

will lead to receiving rewards with a negative value. In pursuing

1 The local minima in reinforcement learning refers to the behavior of the

agent circling in circles not to decrease the reward value and not to conduct

any navigation during the navigation process. There is no decrease or even a

slight increase in reward value, but this is not what we want.

reward maximization, the robot meets the system’s navigation and

obstacle avoidance needs.

The framework designed in this paper was trained in a ROS

2D simulator. At the same time, under the same test environments,

we deployed the existing common traditional navigation algorithm

and end-to-end deep reinforcement learning navigation algorithm

and compared them with our method. Experimental results

demonstrate that our approach exhibits superior navigation

efficiency in scenarios with numerous dynamic obstacles and

fast-moving barriers compared to the second-ranked method.

Furthermore, it outperforms the second-ranked method regarding

safety and success rate, displaying significant robustness.

The main contributions emphasize in 3 parts:

a) We propose a new framework for robot navigation.

Compared with the DRL-based end-to-end method, which

uses original sensor data as input and outputs control strategy,

we combine DRL with traditional navigation methods,

splitting the tedious long distance navigation task into

global navigation based on numerical optimization and local

navigation based on DRL. It also reduces the difficulty

of training.

b) We design a sub-goal generator connected to two modules.

It will generate several high-value landmarks on the global

path as targets of local navigation. This method is deployed

to enhance the ability of obstacle avoidance under complex

dynamic environments.

c) According to the traditional reinforcement learning

algorithm lacks long-term memory, our research improves

the DRL network’s feature extraction module, using the

fully connected layer for feature extraction, then linking

a memory module, which stores early characteristics for

subsequent training. Thus, the generalization ability of the

system can be improved to avoid falling into local minima in

long-distance navigation.

The structure of this paper is as follows: Section 2 introduces

the related work of traditional navigation and agent navigation

based on DRL. In Section 3, algorithms designed in this research

are described in detail. Then, Section 4 introduces the actual

deployment process of our method. Comparing it with different

methods, we identify the advantages and disadvantages of the

results, and analyzing them in this section. Finally, in Section 5, the

work of this paper is summarized, and possible improvements in

the future are discussed.

2. Related work

2.1. Traditional navigation

Autonomous navigation of mobile robots has been extensively

studied in many papers. The most common method is to obtain

map information through the fusion of sensor data and robot

pose information. Then, they perform numerical optimization or

geometric optimization based on the map information (Musso

and Dambreville, 2021) to find an optimal global path. For

example, Bounini et al. (2017), imitating the concepts of electric
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FIGURE 1

General framework. In the right half, the global planner and the sub-goal generator o�er landmarks to the local planner. The left half reveals the

DRL-based local planner’s operating principle: after getting su�cient training experiences in the 2D simulator, the A3C network get observations

from real environments and outputs policies to get the robot to the final goal.

potential and electric field force in physics, proposed the obstacle

avoidance control method of artificial potential field, established

the virtual potential field in the robot workspace, set the obstacle

as repulsive force and the target as gravity according to the

direction of the virtual potential field force, and realized local

path planning by finding the gradient of the maximum direction

of gravity. However, this method has great disadvantages. When

there are obstacles around the target, the attraction of the target

will be significantly disturbed by the repulsive force. This makes

it difficult for the robot to reach the target point. Comparatively

speaking, the Probabilistic Road Map method (PRM) based on

graph search (Alarabi and Luo, 2022) can effectively solve the

problem of chaotic obstacle distribution. This algorithm establishes

probabilistic road maps in the robot’s free configuration space (C

space) (Lozano-Perez, 1990) by generating and interconnecting

a large number of random configurations. These road maps are

used to reply to the robot’s queries about path planning: Given the

initial and final configuration of the robot, PRM connects them

to the road map via simple paths (such as straight lines), and

then searches for a series of road maps from one connection node

to another.

Although the above methods can effectively solve the

navigation problem in static environments, they have the same

basic idea as other traditional methods, generally establishing the

path planning method according to conservative security criteria

and strictly implementing the planned global path for navigation.
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Therefore, in the face of dynamic environments, they often do not

perform as well as in static environments (Xu et al., 2022).

2.2. Navigation based on DRL

Reinforcement learning (Farhad and Pyun, 2019) simulates

the human brain’s learning process, allowing agents to constantly

interact with the environment and update the neural network

according to the feedback obtained from the interaction to

output the most appropriate decision to pursue the positive

feedback with higher value. Therefore, it is very suitable for

solving the autonomous navigation of robots in dynamic changing

environments. In recent years, reinforcement learning has achieved

excellent results in several fields like robot arm grasping (Inoue

et al., 2017) and robot exploration and mapping in unknown

areas (Li et al., 2019). In the field of autonomous navigation,

the commonly used reinforcement learning method can be

summarized as follows: the robot integrates its own information

collected by sensors (odometer, LiDAR, camera, etc.) with the

environmental information, and directly maps the next action of

the robot, so as to complete the navigation to the target point. In the

field of autonomous navigation, the commonly used reinforcement

learningmethod can be summarized as follows: the robot integrates

its information collected by sensors (odometer, LiDAR, camera,

etc.) with the environmental data and directly maps the following

action of the robot, to complete the navigation to the target

point. Chen et al. (2017a) used DRL to develop a time-saving

navigation strategy that complied with standard social norms, such

as stopping at the red light and proceeding at the green light.

And then, it identified pedestrians on the road through semantic

segmentation and collected pedestrian movement information to

realize fully autonomous navigation of robot vehicles moving at

human walking speed in a downtown environment. Later, for

the case of multiple robots, Chen et al. (2017b) also proposed a

distributed multi-agent navigation obstacle avoidance algorithm

based on deep reinforcement learning, which developed a value

network. The collision-free velocity vector is output by the input

of the estimated time to reach the target, the joint configuration

of the primary and side robots (position and velocity), and the

uncertainties in the motion of other agents were also taken into

account. Simulation results show that compared with the latest

dynamic collision avoidance strategy–Optimal Reciprocal Collision

Avoidance (ORCA) (Guo et al., 2021), its path quality (i.e., time

to reach the target) is improved by more than 26%. Everett

et al. (2018) extended the previous approach. They completed

the navigation of multi-agent groups on the road under the

premise of mutual obstacle avoidance among various dynamic

agents. Without assuming they follow specific behavior rules,

they directly mapped the obstacle avoidance strategy by inputting

mutual location and environmental information. The algorithm

also introduces a strategy using Long-Short TermMemory (LSTM)

(Khataei Maragheh et al., 2022), which enables the algorithm to

use any number of observations from other agents rather than

the fixed numerical size of the primary agent. It is worth noting

that such a memory module effectively inherits comprehensive

and multi-time data. Therefore, we consider designing a similar

memory module to store the input features or the reward value of

reinforcement learning to avoid the lack of long-term memory for

long-distance navigation.

The above methods are based on end-to-end deep

reinforcement learning. The only input information is the

sensor’s data, which often leads to lengthy training and less

reward value. In 2018, Google proposed the combination of

the probabilistic road map method and reinforcement learning,

hierarchically combining sample-based path planning and

reinforcement learning to complete remote navigation tasks,

known as PRM-RL (Faust et al., 2018). Firstly, agents are taught to

learn short-range point-to-point navigation strategies, which are

only constrained by robot dynamics and tasks, and do not need

to understand large-scale map topologies. Next, the sample-based

planner provides a road map to connect the robot configuration,

and by advancing toward these sampling points, it can successfully

navigate to the intended goal. This is also the closest approach to

our research.

Inspired by the practice of Google, we divide the whole path

planning process into global and local planning. We use a common

numerical optimization algorithm to generate the global path, and

then use deep reinforcement learning as the local planner. This

is to reduce the computational burden of the deep reinforcement

learning network by offering sub-goals. The most significant

difference between our method and Google’s work is that Google

adopts the K-Neighborhood algorithm (Ran et al., 2021) to sample

points with high information value in the static probabilistic road

map as landmarks. However, this sampling method cannot meet

the requirements in a highly dynamic environment where the

spatial region changes rapidly. Therefore, we design a dynamic

real-time sub-goal generator. The specific algorithm is described

in Section 3.1. In addition, different from previous navigation

methods based on DRL, we adopt an Asynchronous Advantage

Actor-Critic network (A3C) (Mnih et al., 2016) for reinforcement

learning. Actor networks output the robot’s motion strategy, while

critic networks evaluate whether the motion is appropriate or not

at this moment. A3C uses multiple agents, each of which learns

in parallel using different exploration strategies in a replica of the

actual environment. Finally, a global agent is formed by integrating

these experiences to output overall strategies and evaluations.

Compared with traditional DRL methods, A3C has better effects

and accuracy in continuous and discrete behavior space (Liu et al.,

2020). The algorithmic details are described in Section 3.3.

3. Methodology

3.1. Problem definition

When our mobile robot faces with an unfamiliar environment,

the first thing to do is to build a map for it. With the rapid

development of Simultaneous Localization and Mapping (SLAM),

efficient positioning and mapping have become a reality. Before

setting up dynamic obstacles, we utilize RRT algorithm to quickly

complete the construction of static environment’s map. Then,

the A∗ algorithm acts as a global planner to plan the first

global trajectory.

Our innovation is in the next designs. As shown in Figure 2,

we add dynamic obstacles to the environment. When the mobile
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robot starts approaching the destination based on the first global

path, what the landmark generator needs to do is to find the

most appropriate sub-goal considering various obstacles. At the

same time, the reinforcement learning algorithm will act as a local

planner to output policies for mobile robots. The details of the

algorithm are as follows:

3.2. Real-time sub-goal generator

Unlike Google’s K-neighborhood sampling, the sub-goal

generated by the landmarks generator in our research depends

on the current position of the mobile robot, which effectively

improves the limitation that K-neighborhood sampling can only be

effective in a fixed environment. The following sections provide an

explanation of the sub-goal generator algorithm.

3.2.1. Preprocessing raw LiDAR’s data
When ROS Gazebo reads data from the Lidar topic, it often

reads invalid “inf” or “nan” values. In this case, “inf” indicates

that the distance value is infinite and “nan” indicates that no data

is available.

Let d[i] represent the range value No. i in the original laser data,

dmax and dmin represent the farthest and nearest effective range

values of LiDAR, respectively, and size indicates the number of

original laser data. The preprocessing method is as follows:

a) Traverse each raw laser data d [i] sequentially, and if d [i] is

less than dmin, dmax is assigned to d [i]. The index number of

the first valid data is denoted as j;

b) Make i equal to j, if the 0th data d[0] in the original laser data

is invalid, assign d[0] as dmax; If the last data d[size− 1] in the

original data is invalid, assign d[size− 1] as dmax;

c) Make i equal to i + 1. If d[i] is invalid data and i is less than

size − 1, skip to step (d); If d[i] is valid data and i is less than

size− 1, repeat step (c); If i is equal to or greater than size− 1,

make i equivalent to j and skip to step (e);

d) If both adjacent data to d[i] are valid data, assign the smaller

value of the two data to d[i]; If there is only one valid data

adjacent to d[i], assign that valid data to d[i]; If i is greater

than j, skip to step (c); otherwise, skip to step (e);

e) Make i equal to i − 1. If d[i] is invalid data and i is greater

than 0, skip to step (d); If d[i] is valid data and i is greater

than 0, repeat step (e); If i is equal to or less than 0, the

preprocessing ends.

3.2.2. Obtaining frontiers
Before getting the sub-goal, we will first detect the frontier of

the local environment to narrow the search range. Our method

divides the local environmental frontier into two types: A and B.

The A-type frontier is generated by the laser range constraint,

located at the maximum range of the LiDAR, as shown by the arc-

shaped red line in Figure 2A. The B-type frontier is generated by

obstacles, as shown by the red line NL marked in Figure 2B. The

length of both types of frontiers is longer than the width of the

mobile robot to ensure that the mobile robot can cross the frontier.

First, assume that the frontier set in the current local

environment is Fc,

Fc =< F0, . . . , Fi > (1)

For each frontier, there are:

Fi =< idxs, idxe, type > (2)

In this formula, idxs is the index number corresponding to the

starting point of the frontier in the laser data, idxe represents the

index number corresponding to the ending point of the frontier in

the laser data, and type represents the type of the frontier. Define

the length of type A frontier as:

lengthA = fmax · angle_inc · (idxe − idxs) (3)

fmax which sets by ourselves represents a number slightly

smaller than dmax, angle_inc is the LiDAR’s angular resolution.

We first sequentially traverse the preprocessed laser data. For

each laser data segment with a distance value greater than fmax, we

use idxs and idxe to determine the index numbers of the beginning

and end of the data segment, and then calculate its length according

to formula (3). If the length is greater than the width of the mobile

robot, a type A frontier is detected and< idxs, idxe, A >is added

to the Fc set. Continue traversing the preprocessed laser data until

all laser data has been traversed.

For type B frontier, we redefine the length:

lengthB = |d[idxe]− d[idxs]| (4)

For any two adjacent laser data, record their index numbers

using idxe and idxs respectively, and calculate the lengthB. If the

length is greater than the width of the mobile robot, a type B

frontier is detected and < idxs, idxe, B > is added to the Fc set.

Continue traversing the preprocessed laser data until all laser data

has been traversed.

3.2.3. Obtaining sub-goals from frontiers
Considering the different reasons for frontier generation in

types A and B, our algorithm utilizes different geometric rule sets

to obtain corresponding sub-goals.

Assuming the current moment is t, let the set of sub-goals at the

current moment be:

Ptc =< p0, . . . , pi > (5)

For each sub-goal pi:

pi =< position, d, idx, typep > (6)

In this formula, position =< x, y > is the global coordinate of

the sub-goal, d represents the distance between pi and the center of

the LiDAR, idx represents the index number of the direction of the

sub-goal in the laser data, typep is the type of the current sub-goal.

The obtained rules for type A sub-goals are as follows:
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FIGURE 2

The schematic diagram for frontiers of type A and B: (A) shows schematic diagram of A-type frontier while (B) shows schematic diagram of B-type

frontier.

FIGURE 3

The schematic diagram for selecting sub-goals of type A and B: (A) shows schematic diagram of a A-type sub-goal while (B) shows schematic

diagram of a B-type sub-goal.

a) Connect the midpoint of the type A frontier to the center of

the LiDAR;

b) Take pi on the connecting line as the current initial sub-goal,

so that the distance between pi and LiDAR is fmax, as shown in

Figure 3A. Then the various elements of pi are:











typep = A

idx = (idxs + idxe)/2

d = fmax

(7)

At this time, the initial sub-goal pi will be added to the set Ptc.

We adopt different methods for obtaining the type B sub-goal.

First of all, we set a safe distance safe_d slightly greater than half the

width of the mobile robot. The obtained rules for type B sub-goals

are as follows:

a) Mark the two ends of type B frontier as N and L respectively;

b) Take a point M on NL, so that MN= safe_d;

c) Use the center position of the LiDAR as the center of the

circle, create an arc arc passing through point M;

d) Take a point Q on the perpendicular line passing through N

points, so that NQ = safe_d. And point Q is within the free

passage area.

e) Make a ray pointing from the center of the LiDAR toward

point Q, and the intersection of the ray and arc is the initial

sub-goal pi, as shown in Figure 3B.

We set a variable skip to control the index of type B sub-goals:

skip = safe_d/(angle_inc · (d − safe_d)) (8)

At this time, the various elements of pi are:



















typep = B

d = min
(

d
[

idxe
]

, d
[

idxs
])

+ safe_d

idx = idxe − skip, if d
[

idxs
]

> d
[

idxe
]

idx = idxs + skip, if d
[

idxs
]

< d
[

idxe
]

(9)

And now, the initial sub-goal pi will be added to the set Ptc.

So far, two types of sub-goals have been achieved. DRL-based

local planner will complete navigation from the initial position to

the sub-goal. Once the sub-goal point is reached, the A∗ algorithm
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FIGURE 4

The whole A3C network. Agents are trained asynchronously in each di�erent environment. On each step, the agent gets experiments to the

Actor-Critic network after interacting with its own environment. Each agent then transmits the newly acquired policy separately to the global agent.

will update the global path to provide the initial orientation for the

mobile robot.

3.3. Local navigation based on DRL

The autonomous navigation of agents to target goals can be

considered as a partially observable Markov decision processes2

(POMDP) problem (Liu et al., 2021) which is formally formalized

as a 5-tuple (T, S,O,A,R, γ ): including the current time T, the

environment state S, the information observed by the mobile robot

O, the motion space of the mobile robot A, the reward R and the

2 Partially observable Markov decision processes (POMDP) are an ideal

model for sequential decision-making in the partially known dynamic

uncertain environment (Wan et al., 2018). Its core point lies in that the agent

cannot see the state of its territory. Therefore, it needs to know its state by

means of additional sensors or interaction with other agents so that it can

objectively and accurately describe the real world and make corresponding

decisions to achieve the desired purpose.

discount rate of the reward γ as time progresses. Reinforcement

learning algorithms achieve their goals by maximizing rewards.

Considering that the overall modeling of the environment is very

heavy, we propose a model-free actor-critic structure to optimize

the reinforcement learning algorithm further.

In order to intuitively demonstrate the navigation and obstacle

avoidance capabilities of mobile robots, the following state-value

function is constructed as follows:

Vπ (s) =
∑

a

π (a|s) · Qπ (s, a) (10)

π (a|s) is a policy function that will output the probability value

of the robot’s following action. The robot will move according

to the maximum probability of the action; Qπ (s, a) is a value

function that will output the predicted reward value, which can be

used to evaluate whether the robot’s action at the current time is

conducive to completing the final navigation task. The algorithm

uses a neural network π (a|s; θ) to approximate the policy function

π (a|s) ; Another neural network q (s, a;w) to approximate the

value function Qπ (s, a), θ and w are trainable parameters of the
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FIGURE 5

Actor-Critic network model. Input sensor and sub-goal information, output motion policies and the state-value. For both, actor and critic network,

we use the same head. The LSTM stores long-term memory for the actor network to make decisions about the long-distance navigation, as depicted

in this figure, h(t) carries characteristic information repeatedly input to the computing unit.

corresponding neural network. Thus, the state-value function can

be rewritten as:

Vπ (s; θ;w) =
∑

a

π (a|s; θ) · q (s, a;w) (11)

Take it as an actor-critic reinforcement learning model in one

environment, and its value directly reflects the robot’s navigation

and obstacle avoidance abilities. Several fully connected layers

are constructed at the beginning of both networks to enable the

neural network to better retain features from the input information

for a long time. In addition, a memory module is added behind

the policy network. At the same time, to reduce the difficulty of

network convergence, we utilize several different environments for

training, then input the training experience into amaster agent, and

construct the asynchronous advantage actor-critic reinforcement

learning model (A3C). The integrated reinforcement learning and

training process in all asynchronous environments is shown in

Figure 4.

3.3.1. Neural network architecture
In any of the environments in Figure 4, the network structure of

the actor-critic model is shown in Figure 5. The structure is divided

into two parts. The first half is the policy network (actor), used

to output policies that the mobile robot takes; The bottom half

is the value network (critic), which outputs state-value functions

to evaluate how effective or bad the policies are. The two parts

use the same backbone to extract the input information’s features,

including the 360◦ LiDAR scanning information and the location

information of the sub-goal. It should be noted that the sub-

goal position information is relative position information, which

contains two elements, namely the distance and angle of the sub-

goal relative to the mobile robot. The two-part shared backbone

feature extraction network adopts three layers, each with 512

fully connected units, and a Rectified Linear Unit (ReLU) (Glorot

et al., 2011) is used as the activation function. To avoid long-

term memory loss caused by the long-distance transmission of

feature information in the network, after the feature extraction

module of the critic network is completed, we add a Long-Short

Term Memory module (LSTM) containing 512 units (Ordóñez

and Roggen, 2016), which is used to store the feature information

and accumulated reward values. This is followed by 256 fully

connected layers with ReLU activation units, and finally, it ends

with a layer with a single neuron that has linear activation to output

different actions. In the lower part of the value network, the feature

extraction module is followed by 256 fully connected layers with

ReLU activation units. It also ends with a single neuron, which is

used to output the state-value function.

3.3.2. Networks’ iteration
On the one hand, to improve the state-value function

Vπ (s; θ;w) reflecting the overall navigation and obstacle avoidance

abilities of the system, we need to update π (a|s; θ) to output

better policies; On the one hand, supervision of the quality of the
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FIGURE 6

In test environments, (A) has only static obstacles. From (B–D) 5, 10, and 20 dynamic obstacles moving back and forth at a certain speed between

two points 3 meters apart are configured, respectively.
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TABLE 1 Quantitative evaluations.

Time[s] Path[m] Collisions Success Time[s] Path[m] Collisions Success Time[s] Path[m] Collisions Success

5 dyn. obstacles 10 dyn. obstacles 20 dyn. obstacles

vobs = 0.1m/s

Our method 121.19 24.09 1 100 131.69 23.44 7.5 100 141.85 25.42 14 97

CADRL 132.43 29.22 0 100 133.56 28.74 1 100 139.62 24.17 11.5 94.5

TEB 154.87 21.67 0 100 169.90 20.18 3.5 100 167.23 23.27 6.5 98

DWA 147.03 28,34 9 92 175.31 26.82 31 88 175.98 26.15 72 82

vobs = 0.2m/s

Our method 119.22 23.11 3.5 98 142.17 24.31 14 95 142.57 26.52 26 93

CADRL 114.57 24.59 8 100 146.98 25.45 37 92 151.84 28.96 42 86.5

TEB 139.94 22.57 5.5 96 166.07 21.20 22 94 163.48 25.79 36.5 92.5

DWA 152.31 26.41 21 84 174.21 30.71 48 82 167.94 25.13 108 54

vobs = 0.3m/s

Our method 115.72 26.13 12 94 154.35 28.41 27 92 162.84 29.13 44 78.5

CADRL 114.91 27.88 18.5 82 166.38 35.33 55.5 78 194.56 40.74 107 62

TEB 157.91 23.45 21.5 91 189.09 30.96 39 86 214.31 36.89 66.5 68

DWA 162.43 28.32 27 77 202.58 37.38 52 76.5 229.95 35.08 129 56

The meaning of the bold values is the numerical value that performs best in the same dynamic environment.
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policies can only be realized through the value network’s output–

the value function q (s, a;w). Therefore, it is necessary to update

the value network to estimate the reward of the action policies

more accurately. The value network (critic) will only randomly

rate the reward at first, but as the training progresses, the value

network’s judgments become more accurate due to the monitoring

of environmental feedback. A complete dual-network iteration

process can be summarized as follows: 1. Obtain the current

environment state St ; 2. According to the current policy network

π (·|St; θt), randomly outputs the action at ; 3. Perform action at
and observe new state St+1; 4. In the value network, the Temporal

Difference (TD) algorithm (Tesauro, 1995) is used to update the

network parameter w. In contrast, in the policy network, the policy

gradient algorithm is used to update the network parameter θ .

The TD algorithm is a method used to estimate the value

function of a policy that can be learned from samples without prior

knowledge of the environment. As a first step, the policy network

obtains two consecutive actions, at and at+1, through random

sampling. Then the value network will evaluate the value functions

q (st , at;wt) and q (st+1, at+1;wt) corresponding to these two

actions. In this way we can get a TD target function:

yt = Rt + γ · q (st+1, at+1;wt) (12)

It’s the reward at the moment plus the discount rate γ

mentioned earlier times the value of the reward estimated by the

value network at the next moment. The TD target function yt is

similar to q (st , at;wt) in that they are both estimates of the sum of

future rewards, but yt is more accurate and reliable because part of it

is the actual observed reward Rt . The purpose of the TD algorithm

is to make the value network predict q (st , at;wt) is closer to the

TD target function. Therefore, we adopt a mean square error to

construct the loss function:

L (w) =
1

2
[q (st , at;w) − yt]

2 (13)

In order tomake the gap between q (st , at;w) and yt smaller and

smaller, gradient descent can be used to iterate the value network

parameter w:

wt+1 = wt − α ·
δL (w)

δw
|w=wt

(14)

The parameter α is the learning rate of the value network.

To update the policy network parameter θ of the current state

so that the state-value Vπ (s; θ;w) that evaluates the quality of

the policies becomes as large as possible, the gradient of the state-

value function in the θ direction at this moment can be updated by

gradient ascent:

θt+1 = θt + β ·
δV (s; θ ,wt)

δθ
(15)

The parameter β is the learning rate of the policy network. At

this time, wt is a constant value, and the gradient of the state-value

function in the θ direction can be expanded as:

δV (s; θ)

δθ
=

∑

a

∂π(a|s; θ)

δθ
· Qπ (s, a) (16)

The first half on the right side of the equation is the gradient

of the policy function in the θ direction under all action spaces.

The second half is the assessment provided by the value function at

the moment. However, in practical applications, it is inefficient to

carry out gradient updates for the policy function directly because

the output range of the policy function is (0, 1). To increase the

data range, speed up the policy update speed, and eliminate the

correlation in the sample calculation of the same action space

(Silver et al., 2016), the identity variation of the equation is

as follows:

δV (s; θ)

δθ
=

∑

a

π(a|s; θ)
∂ logπ (a|s; θ)

δθ
· Qπ (s, a) (17)

Because of the existence of a logarithmic function, the output

range of the policy function can become (−∞, 0). Therefore, we

define a new policy function:

g (a, θ) =
δlogπ (a|s; θ)

δθ
· Qπ (s, a) (18)

Combined with formula (8), we can find that the gradient of the

state-value function in the θ direction is the expectation of this new

policy function:

δV (s; θ ,wt)

δθ
= EA

[

g (A; θ)
]

(19)

According to the definition of expectation, g (a, θ) can be

considered as an unbiased estimation of δV(s;θ)
δθ

, so g (a, θ) can be

used to update the policy network:

θt+1 = θt + β · g (a; θt) (20)

We use two identical Adam optimizers to iterate the parameters

of the two networks. The learning rate is 0.0001, and the epsilon is

set to 0.003. The discount rate γ for the TD target is set at 0.9.

This is followed by training in continuous motion state for

greater flexibility and fluid movement. According to the actual

motionmode of Turtlebot3 (Zhao et al., 2020) used in this research,

the action space A is formalized as follows:

a =
{

vlin, vang
}

,

vlin ∈ [0, 0.26]m/s, vang ∈ [−2.7, 2.7] rad/s (21)

3.3.3. Reward mechanism
To make the training process more efficient, appropriate

rewards need to be set for the entire local navigation process. In the

reward system, there are positive rewards for successfully reaching

the sub-goals and negative rewards for colliding and staying within

a dangerous distance of the obstacle. For clarity, we’ll denote them
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FIGURE 7

(A–C) Shows the performance of each method at a dynamic obstacle velocity of 0.3 m/s. (D) Shows the relative performance of all the methods.

as rs, rd, rc, rst . The total reward Rt is calculated as follows:

Rt = rts + rtd + rtc + rtst (22)

rts =

{

50, arrive at subgoal

0, otherwise
(23)

rtd =

{

−0.5, 1d < dsafe
0, otherwise

(24)

rtc =

{

−20, collisions happen

0, otherwise
(25)

rtst =

{

−0.05, 1r < rmin

0, otherwise
(26)

Among these reward conditions, 1d refers to the distance

between the mobile robot and the obstacle. In this research,

the safe distance dsafe is set as 0.1m. 1r refers to the relative

displacement within a given time of 1 s, and rmin refers to the

shortest moving distance that the system can tolerate for the mobile

robot within 1 s, which is set as 0.03m according to the experience

in the experiment.

3.3.4. Training setup
The training process of the agent takes place in randomized

environments, as illustrated in Figure 1. Following each

episode, walls and static obstacles are randomly generated.

Additionally, dynamic obstacles are spawned at random

positions and move in unpredictable trajectories. This deliberate

randomness serves the purpose of mitigating over-fitting

concerns and fostering improved generalization of the agent’s

learned behaviors.

To accommodate the inclusion of more intricate obstacle

models and shapes, application interfaces are provided.

These interfaces enable the integration of complex obstacle

representations into the training framework, allowing for greater

diversity in the training scenarios.

The training curriculum is designed to adapt dynamically

based on the agent’s performance. When the agent surpasses a

predefined success threshold, indicated by the cumulative mean

reward, the curriculum increases the number of obstacles spawned

in subsequent episodes. Conversely, if the agent’s success rate

is below the threshold, the curriculum reduces the number of

obstacles in order to facilitate a smoother learning process.
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4. Results and assessments

4.1. Deployment of training and
environments

As shown in Figure 1, map boundaries and static obstacles

are constant, while dynamic obstacles are randomly generated.

Based on the characteristics of asynchronous training, we create

different copies of the environment for multiple agents to train

simultaneously, and these copies become more and more difficult.

To alleviate the overfitting problem and enhance the generalization

ability of the policy and value network. All training sessions are

conducted in the ROS 2D simulator, while the Turtlebot3 vehicle

is used to evaluate the navigation strategy of the design entirely.

After training begins, update the difficulty of the training

environment based on the success threshold. After every ten

successful navigations in the same environment, the environment

will increase the difficulty by increasing the number or speed of

dynamic obstacles. All the training is done on the PC, which is

configured with an Intel i7-9750H CPU. And optimize the training

process with a GeForce GTX 1650. Appendix Table 1 lists the

training hyperparameters.

4.2. Deployment of other navigation
methods

To demonstrate the advantages of the proposed navigation

framework, a variety of different navigation methods are deployed

in the same environment for comparison, including the Dynamic

Window Approach (DWA) and the Time Elastic Band method

(TEB) based on numerical optimization, as well as a recent obstacle

avoidance approach based on DRL: CADRL (Everett et al., 2018).

In addition, to prove the effectiveness of the memory module,

we add an additional experimental comparison part to the paper.

Compare the navigation framework using thememorymodule with

the framework not using the module.

4.3. Carry out experiments

To test the navigation and obstacle avoidance abilities of mobile

robots in different environments, four test environments of various

levels are constructed in this paper, as shown in Figure 6.

In this research, different algorithms are deployed on the

robot and tested. We set the running quantity and speed of

different dynamic obstacles during the test and completed 100

tests under each condition. Table 1 records the average time spent,

the average path length, the average number of collisions, and

overall success rate to compare the various methods’ performance

comprehensively. It is critical to note that success is determined by

both the number of collisions and the elapsed times of the robot. If

the running time is more than 4min or the collisions are more than

4 times, it is judged as a failure. Since there is no robot collision

in the static map and all robots have reached the final goal, the

navigation performance of each algorithm in the static map is not

listed in Table 1 in our research. To display the obstacle avoidance
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FIGURE 8

(A) Shows one of the trajectories of a mobile robot with a memory module deployed on a map with 20 dynamic obstacles and a speed of 0.3 m/s;

and (B) shows one of the trajectories of a mobile robot deployed without an LSTM network on the same map.

ability of the mobile robot in a high-speed dynamic environment

more intuitively, we select the performance of various algorithms

when the dynamic obstacle speed vobs is 0.3 m/s and make bar

charts in Figure 7.

4.3.1. Assessment of navigation capability
To evaluate the navigation capabilities of various algorithms,

we mainly compare the average time required to reach the goal

each time, the length of the path, and the success rate per hundred

tests. For the sake of simplicity, we define the time consumed to

reach the target each time as navigation speed and the navigation

path length as navigation efficiency. As can be seen in Table 1,

TEB shows strong navigation efficiency when there are only five

dynamic obstacles. TEB planned the shortest path regardless of

the speed of the dynamic obstacle, and the success rate is more

than 90%. But at the moment, the TEB algorithm does not show

high navigation speeds. TEB is about 30% slower than the two

DRL-based methods. When the vobs is 0.1 m/s, the navigation

speed of TEB is even slower than that of DWA. When the vobs
is 0.2 m/s and 0.3 m/s, respectively, the navigation time of the

TEB algorithm is the same as that of the DWA algorithm. We

speculate that since the TEB algorithm is more dependent on

globally planned paths, even if dynamic obstacles occur, following

the global approach is still the preferred solution of the algorithm,

resulting in increased planning time. At the same time, due

to the constraint of the distance information provided by the

LiDAR, to avoid collision with obstacles, the robot deploying the

TEB algorithm will appear stagnant and shaky, so much time

is wasted. However, the two methods based on DRL will try to

cross the lines of moving obstacles when they encounter obstacles,

so stagnation rarely occurs. In addition, although CADRL shows

some advantages in navigation speed when the vobs is 0.1 m/s

and 0.2 m/s, the navigation efficiency and success rate of CADRL

are not as good as that of TEB and our method. Our method

shows excellent advantages when the vobs is 0.3 m/s. Although it

is exceeded by CADRL in navigation speed and TEB in navigation

efficiency and success rate when there are only 5 dynamic obstacles,

the success rate of the two methods is lower than that of the

method in our research. The success rate of CADRL is even 10%

lower than our method’s. Especially after the number of obstacles

increases, all performances of our method are the best. Compared

with conditions with lower speed and fewer obstacles, the decline

rate of the three performances—navigation speed, efficiency, and

success rate of our algorithm is much lower than that of the other

three methods, showing strong robustness.

4.3.2. Assessment of obstacle avoidance ability
In terms of obstacle avoidance ability, when the dynamic

obstacle speed is 0.1 m/s, the three methods have advantages over

each other under the different number of dynamic obstacles. When

the vobs increases to 0.2 m/s, the collision times of our approach

are all the lowest under different amounts of blocks. Although our

method is only 2 times less than the average collision number of the

TEB algorithm when there are only 5 dynamic obstacles, the gap

keeps widening with the increase of obstacles. When the number

of obstacles is increased to 20, the average collision number of
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FIGURE 9

The reward convergence curve. Each network was trained with 800 episodes, and we recorded reward values as points on the line every 20 episodes.

To simplify image information, we selected the maximum value of the 20 values to represent the reward.

our method is 10 times less than that of the second-ranked TEB

algorithm. When the dynamic obstacle speed reaches the fastest

0.3 m/s, the gap between the other methods and the method in

this research is further widened. The collision times are more than

50% more than our method. In general, our approach has the most

obvious advantage in obstacle avoidance ability compared to the

other three indexes—navigation speed, efficiency, and success rate.

When the vobs is increased to 0.2 m/s and 0.3 m/s, the obstacle

avoidance ability of our algorithm is much superior to the other

three algorithms.

4.3.3. Overall performance
As seen from Figures 7A–C, our method presents excellent

advantages when the vobs is 0.3 m/s. Only the navigation efficiency

is exceeded by TEB when the number of dynamic obstacles is 5. In

other cases, our proposedmethod achieves the best performance. In

addition, to more intuitively evaluate the performance of various

methods under any conditions, the data in Table 1 are integrated

and normalized in Figure 7D. The performance of other methods

under the same conditions is divided by the corresponding

performance of our algorithm to obtain the relative value and then

superimposed to get the overall relative value. At the same speed,

the relative values of different dynamic obstacles are averaged to

obtain the normalization performance when the speed changes.

When the vobs is 0.1 m/s, TEB performs the best, CADRL performs

almost as well as our method, and DWA performs the worst.

As the speed of dynamic obstacle increases, the performance

of our method begins to approach TEB. When the vobs is 0.3

m/s, the performance of our method is better than the other

three methods, followed by TEB and CADRL. Therefore, it can

be concluded that when there are many fast-moving dynamic

obstacles, our navigation framework proposed in this research can

achieve high navigation efficiency, high navigation speed, high

safety, and strong robustness.

4.3.4. Assessment of the memory module
In this set of experiments, we evaluate our modified A3C

network (visualized in Figure 4). In the same configuration

environments, our method without memory module is deployed

in turbobot3 and simulation experiments are carried out. Table 2

below presents experimental results.

From the table above, it can be seen that the sub-goal algorithm

with memory modules slightly improves navigation success rates

when there are 5 and 10 dynamic obstacles. However, we believe

that what truly leverages memory modules’ advantages is in

terms of navigation efficiency. From the table, it can be seen

that in nine different dynamic obstacle environments, algorithms

with LSTM networks completed navigation to the destination

in shorter time and shorter paths. In order to more intuitively

demonstrate the contribution of memory modules to navigation,
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we recorded turbobot3’s paths and selected two representative

paths for comparison:

From Table 2 and Figure 8, it can be seen that compared to

algorithms without memory modules deployed, memory modules

can achieve better results in two aspects. Firstly, they can consider

the dynamic obstacles of the global map as a whole, find the shortest

possible path, and reduce unnecessary turns (even if this is to

avoid obstacles); Secondly, when facing multiple moving obstacles

around, the robot’s ability to rotate in place is significantly reduced.

4.3.5. Training results
To verify our network’s advantages in rate of convergence,

we trained CADRL in the same environment. At the same time,

to ensure the reliability of the experiment, we kept the reward

mechanism of CADRL consistent with our algorithm. We plotted

the reward convergence curve of the two algorithms on a line chart,

as shown in Figure 9.

From Figure 9, it can be seen that our method’s reward

curve begins to converge around the 470th episode, while

CADRL begins to converge around the 600th episode.

Compared to the end-to-end reinforcement learning

navigation algorithm, our method that decomposes

global navigation into global and local navigation

reduces training difficulty and makes the training curve

converge faster.

5. Conclusion

This research presents a framework for integrating DRL-based

local navigation into long-distance navigation. The framework

can be used for direct training and deployment of DRL-based

algorithms in combination with local and traditional global

planning. The landmark generator proposed in this research will

generate sub-goals and significantly reduce the computational

pressure of the end-to-end DRL-based navigation method. Besides

integrating the traditional obstacle avoidance algorithm based

on numerical optimization and reinforcement learning into the

system, we use memory-enhanced A3C to construct a local

trajectory planner. Then, different navigation methods were

evaluated for navigation efficiency, safety, and robustness. In

comparison to three traditional navigation methods and one end-

to-end reinforcement learning method, our navigation framework

demonstrates greater efficiency, safety, and robustness, particularly

when faced with a large number of obstacles moving at speeds

exceeding 0.2 m/s. In addition, the researchers of this paper will

continue to explore whether the process of generating sub-goals can

be included in the reinforcement learning-based decision-making

process and consider more influencing factors than only finding the

sub-goal closest to the final goal.
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Appendix

TABLE A1 Hyperparameters for training.

Hyperparameter Value Explanation

Continuous success threshold 10 Training considered

done if the number of

consecutive successes

reaches this value

Discount factor 0.9 Discount factor for

reward estimation (often

denoted by γ )

Learning rate 0.0001 Learning rate for

optimizer

Epsilon max steps 105 Steps until epsilon

reaches mini-mum

Epsilon end 0.003 Minimum epsilon value

Maximum gradient 0.5 Maximum value to clip

the gradient
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