
TYPE Original Research

PUBLISHED 14 July 2023

DOI 10.3389/fnbot.2023.1219170

OPEN ACCESS

EDITED BY

Long Jin,

Lanzhou University, China

REVIEWED BY

Ruoxi Qin,

Henan Key Laboratory of Imaging and

Intelligent Processing, China

Hao Xu,

Anhui University of Technology, China

*CORRESPONDENCE

Yong Liu

liuy1602@njust.edu.cn

RECEIVED 08 May 2023

ACCEPTED 26 June 2023

PUBLISHED 14 July 2023

CITATION

Wang K, Liu Y and Huang C (2023) Active

fault-tolerant anti-input saturation control of a

cross-domain robot based on a human

decision search algorithm and RBFNN.

Front. Neurorobot. 17:1219170.

doi: 10.3389/fnbot.2023.1219170

COPYRIGHT

© 2023 Wang, Liu and Huang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Active fault-tolerant anti-input
saturation control of a
cross-domain robot based on a
human decision search algorithm
and RBFNN

Ke Wang, Yong Liu* and Chengwei Huang

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing,

China

This article presents a cross-domain robot (CDR) that experiences drive e�ciency

degradation when operating on water surfaces, similar to drive faults. Moreover,

the CDR mathematical model has uncertain parameters and non-negligible

water resistance. To solve these problems, a radial basis function neural network

(RBFNN)-based active fault-tolerant control (AFTC) algorithm is proposed for

the robot both on land and water surfaces. The proposed algorithm consists

of a fast non-singular terminal sliding mode controller (NTSMC) and an RBFNN.

The RBFNN is used to estimate the impact of drive faults, water resistance, and

model parameter uncertainty on the robot and the output value compensates the

controller. Additionally, an anti-input saturation control algorithm is designed to

prevent driver saturation. To optimize the controller parameters, a human decision

search algorithm (HDSA) is proposed, which mimics the decision-making process

of a crowd. Simulation results demonstrate the e�ectiveness of the proposed

control methods.

KEYWORDS

cross-domain robot (CDR), radial basis function neural network (RBFNN), active fault-

tolerant control (AFTC), anti-input saturation, human decision search algorithm (HDSA)

1. Introduction

In recent years, there has been a growing interest in multi-environment robots as single-

environment robots are no longer sufficient to meet various practical needs (Cohen and

Zarrouk, 2020). Researchers have proposed different designs to achieve this, such as bionic

robots (Chen et al., 2021) and the legged amphibious robot (Xing et al., 2021). Furthermore,

with the advancements in rotorcraft unmanned aerial vehicle (UAV) technology, researchers

have started exploring the potential of integrating rotorcraft UAVs with wheeled mobile

robots (WMRs) (Wang et al., 2019a). To enhance the capabilities of robots, cross-domain

robots (CDRs) have been designed, which are capable of operating inmultiple environments,

including water, land, and air (Guo et al., 2019; Zhong et al., 2021). The robot presented in

this paper is a CDR that combines a quadrotor UAV with a WMR equipped with webbed

plates. These webbed plates on the wheels enable the robot to generate power at the water

surface through their interaction with the water (Wang et al., 2022a,b).

The CDR presented in this study employs the same drive motors for ground and

water surface operations. Assuming proper functionality during ground motion, a driver

fault is considered to have occurred during the robot’s operation on the water surface.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1219170
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1219170&domain=pdf&date_stamp=2023-07-14
mailto:liuy1602@njust.edu.cn
https://doi.org/10.3389/fnbot.2023.1219170
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1219170/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

Fault-tolerant controls (FTCs) are control algorithms that

effectively deal with system faults (Najafi et al., 2022; Nan et al.,

2022). Sliding-mode controllers (SMCs) are commonly employed

in passive fault-tolerant algorithms due to their robustness in

maintaining control performance when the maximum system fault

is known. However, the use of non-singular terminal sliding mode

control (NTSMC) and SMC results in jitter problems, and this

robust control approach is considered too conservative (Ali et al.,

2020; Hou and Ding, 2021; Guo et al., 2022). To address these

issues, FTCs frequently employ adaptive sliding mode control (Wu

et al., 2020) and integral sliding mode control (Yu et al., 2022).

Additionally, observers are commonly used to detect drive faults.

In Wang F. et al. (2022), a disturbance observer (DO) is used

to quickly compensate and correct unknown actuator faults of

unmanned surface vehicles (USVs). In the context of autonomous

underwater vehicles (AUVs), a sliding mode observer-based

fault-tolerant control algorithm has been proposed in the literature

(Liu et al., 2018). However, the design of higher-order observers

requires complex mathematical proofs and the adjustment of many

parameters. Neural networks (NNs) are often used to estimate

system model parameters and uncertainty terms due to their

ability to approximate arbitrary non-linear functions. In Zhang

et al. (2022), NNs are used to rectify the model parameters of a

USV, and an NN-based adaptive observer is developed to estimate

errors caused by drive faults. As demonstrated in Gao et al. (2022),

NNs can directly estimate system faults by approximating the

uncertainty terms in the system. Event-triggered fault-tolerant

control is a type of AFTC algorithm that has the potential to

reduce system hardware requirements. However, it requires

the development of trigger thresholds and corresponding fault

control algorithms, which increase the difficulty and complexity of

controller design (Huang et al., 2019; Wu et al., 2021; Zhang et al.,

2021). Another important consideration in the FTC algorithm

is the control of input saturation. One efficient approach for

solving this issue is to introduce virtual states in the controller.

These virtual states regulate the input error of the controller,

thereby suppressing control input saturation (Wang and Deng,

2019). Additionally, designing adaptive laws is an effective way to

address control input saturation. In this approach, the adaptive

control input decreases as the actual control input approaches the

maximum physical constraint (Shen et al., 2018).

The controller design presented above does not involve

any optimization of the controller parameters. To address this

limitation, reinforcement learning techniques have been developed

to optimize control parameters. In Gheisarnejad and Khooban

(2020), a reinforcement learning algorithm is employed to optimize

the PID controller parameters. Another study (Zhao et al.,

2020) trains the optimal trajectory following controller using

deep reinforcement learning. However, reinforcement learning

algorithms typically require a significant amount of data and

multiple iterations to achieve optimal results. Swarm intelligence

(SI) optimization algorithms are a promising approach in practical

applications, including data classification, path planning, and

controller optimization (Xue and Shen, 2020, 2022). Among the

various SI optimization algorithms, particle swarm optimization

(PSO) is a classical algorithm known for fast convergence and

few parameters (Song and Gu, 2004). However, traditional PSO

algorithms tend to fall into local optima. Ant colony optimization

(ACO) is another common SI optimization algorithm. ACO can

jump out of local optima but has slower convergence (Dorigo et al.,

1996). In addition, the gray wolf optimizer (GWO) simulates the

predation process of wolves (Mirjalili et al., 2014) and the Harris

hawk optimizer (HHO) simulates the predation process of hawks

(Heidari et al., 2019). These algorithms have shown improvements

in convergence speed and accuracy compared with other animal

predation simulation algorithms. Other popular SI optimization

algorithms include the firefly algorithm (Fister et al., 2013) and the

sine/cosine search algorithm (Mirjalili, 2016). Each SI optimization

algorithm has its own strengths and weaknesses and no single

algorithm can effectively handle all optimization problems. The

goal is to achieve satisfactory results in terms of convergence speed,

accuracy, and robustness for a specific optimization problem.

Based on the previous discussion, an AFTC is proposed for

the CDR on the ground and on the water surface. This control

algorithm consists of three main parts:

a. To enhance the robustness of the robot control system, a fast

NTSMC is designed based on the concept of passive FTC.

Compared with traditional NTSMC and SMC, the proposed

NTSMC has reduced control input chatter. Additionally, to

reduce controller conservatism, an RBFNN is designed to detect

and compensate for drive faults. The adaptive weight control law

of the RBFNN is based on the Lyapunov function.

b. To prevent drive saturation, an anti-input saturation control

algorithm based on the hyperbolic tangent (tanh) function is

employed. An adaptive rate is designed to prevent singularities

in this algorithm. This method does not require complex

mathematical proofs and requires fewer tuning parameters.

c. A new SI optimization algorithm named HDSA is proposed

for the optimization of the weight update rate parameter of

RBFNNs. The proposed algorithm is compared with other SI

optimization algorithms, and the test results demonstrate its

faster convergence rate and higher accuracy.

2. Related work and mathematical
models

2.1. HDSA’s related work

To demonstrate the advantages of the proposed HDSA

optimization algorithm, the results of the HDSA tests are shown

in this section. The theory of HDSA is discussed in detail in

the section entitled “RBFNN-Based Active Fault-Tolerant Control

Algorithm”. The effectiveness of the proposed optimization

algorithm was evaluated by comparing the test results of HDSA

with other popular optimization algorithms, such as particle

swarm optimization (PSO) (Song and Gu, 2004), the sine/cosine

algorithm (SCA) (Mirjalili, 2016), the gray wolf optimizer (GWO)

(Mirjalili et al., 2014), the firefly algorithm (FA) (Fister et al.,

2013), and the Harris hawk optimizer (HHO) (Heidari et al.,

2019). Twenty standard test functions were used for evaluation,

which are presented in Tables 5–7 (included in the Simulation

Results section).

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 1

Single peak function test results. (A–G) represent the test results of the six algorithms in functions F1 to F7.

The number of populations was pop = 100 and the maximum

number of iterations was M = 100. The average fitness over

30 independent runs was considered as the optimization result.

The convergence characteristics of the six algorithms in the

single-peak function test are depicted in Figure 1, while Figure 2

illustrates the convergence characteristics in the multi-peak

function test. Furthermore, Figure 3 demonstrates the convergence

characteristics of the six algorithms on fixed-dimensional multi-

peak functions. The test results of the six algorithms, based on

30 independent runs, are summarized in Tables 1, 2. In Tables 1,

2, purple indicates the optimal value of the test functions, pink

indicates the mean value of the test functions, and white indicates

the mean squared deviation of the test functions.

The results of the single-peak functions F1–F7 test results are

presented in Tables 1, 2. In these tests, the mean and optimal

values obtained by HDSA in F1–F5 are both 0, indicating that

HDSA achieves the highest accuracy among the six algorithms.

Although the accuracy of HDSA is slightly inferior to HHO in the

F6–F7 test functions, it still outshines SCA, PSO, GWO, and FA.

HDSA has a standard deviation of 0 in tests F1–F5, suggesting that

HDSA is the most stable algorithm. Although its stability is slightly

lower than HHO in tests F6–F7, it still outperforms the other four

methods. Convergence speed is depicted in Figure 2. HDSA has a

significantly faster convergence speed compared with the other five

algorithms, but its convergence accuracy in the F6–F7 tests is lower

than that of HHO.

The test results for the multi-peak functions F8–F13 are

presented in Tables 1, 2. In the tests from F9 to F13, HDSA exhibits

significantly better stability and convergence accuracy compared

with the other five algorithms. It achieves higher accuracy and the

smallest standard deviation. As depicted in Figure 3, except for the

F8 test function, HDSA showcases the fastest convergence speed

and highest convergence accuracy among the algorithms.

The results of the fixed dimensional multi-peak functions F14–

F20 test results are shown in Tables 1, 2. In the F14 test, SCA

has the best optimal and average accuracy, while HDSA exhibits

slightly lower average accuracy and stability compared with SCA,

PSO, and HHO. However, HDSA still manages to find the optimal

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 2

Multi-peak function test results. (A–F) represent the test results of the six algorithms in functions F8 to F13.

solution in 30 runs. In the F15–F18 test results, HDSA, SCA, GWO,

and HHO perform closely, with good stability and accuracy. In

the F19–F20 tests, HDSA outperforms the other five algorithms

significantly in terms of accuracy and stability. As shown in

Figure 3, HDSA exhibits the fastest convergence speed among the

other test functions, except for F15, F17, and F18. In the F15 test,

HDSA is only slightly slower than HHO, while in the F17 and F18

tests, HDSA converges slightly slower than FA.

2.2. Mathematical model of the CDR

Before discussing the mathematical model of the CDR, the

following assumptions are made: Assumption 1: The center of

gravity and the geometric center of the robot body coincide.

Assumption 2: The motor output torque meets the actual

performance requirements of the robot during ground and water

motion. Assumption 3: The robot’s vertical swing, horizontal

rocking, and longitudinal rocking during its movement on the

water surface are ignored. Assumption 4: The motion of the robot

on the ground is purely rolling, without any sliding motion.

The CDR designed in this study can be seen as a combination of

a quadrotor UAV and aWMR. Figure 4A shows the robot moves on

the ground. Figure 4B shows the robot moves on the water surface

by webbed plates. Figure 4C shows the robot moves on the water

surface by propllers. The robot moves in the air in a similar way

to the quadrotor UAV as shown in Figures 4D, E. Figure 4F shows

the structure of the robot, where webbed plates are mounted on the

wheels. These webbed plates generate traction and rotational torque

on the water surface by interacting with the water. However, as this

paper focuses primarily on the FTC algorithm of the robot on the

ground and on the water surface, the discussion does not explore

the robot’s aerial motion in detail.

The robot in the inertial frame and in the body frame is shown

in Figure 5.

In Figure 5, d is the distance from the geometric center of the

robot Ob to the mass center of the robot. b is the axis radius and

r is the wheel radius. ωl, ωr are the angular velocities of the left

and right wheels. ψ is the angle between the robot body coordinate

system b and the inertial coordinate system A, and ψ is the yaw

angle of the robot. The kinematic model of the robot on the ground

and water surface can be represented as (Liu et al., 2020):

q̇= Rη (1)

where q =
[

x y ψ
]

represents the position and orientation of the

robot in the inertial frame, while η =
[

u v r
]

is used to denote

the longitudinal velocity, lateral velocity, and yaw angular velocity

in the body frame. The coordinate conversion matrix is denoted

by R, where R=






cosψ sinψ 0

− sinψ cosψ 0

0 0 1




. The dynamics model of the

robot’s motion on the ground can be expressed as

M(q)q̈+ Cm(q, q̇)q+ F(q̇)+ τd = B(q)τ (2)

The matrices M are symmetric positive definite inertia matrices,

while Cm represents the centripetal and Coriolis matrix. The term

F(q̇) denotes mechanical friction, while τd is used to represent

external disturbances. The input transformation matrices are

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 3

Fixed dimensional multi-peak function results. (A–G) represent the test results of the six algorithms in functions F14 to F20.

denoted as B(q). Furthermore, the robot drive motors in the left

and right wheel output torque are represented by τ =
[

τl τr

]T
.

M(q) =






m 0 md sinψ

0 m −md cosψ

md sinψ −md cosψ I




 ,

B(q) = 1

r






cosψ cosψ

sinψ sinψ

L −L




 ,

Cm(q, q̇) =
[

mdψ̇2 cosψ mdψ̇2 sinψ 0
]T

The mass of the robot is represented bym. The I is a scalar quantity

and represents the rotational inertia of the robot as it rotates in

the X-Y plane. The angular velocity of the robot is assumed to

vary smoothly, so that ψ̇ ≈ 0. According to assumption 1, the

Coriolis matrix can be assumed to be negligible, resulting in Cm ≈

0. According to assumption 1, d = 0, so the matrix M(q) =
diag

[

m m I
]

. Based on these assumptions, the dynamics model

of the robot on the ground can be rewritten as follows:

M̄q̈+ C̄q++F̄(q̇)+ τ̄d = B̄τ (3)

where C̄ = R−1CmṘ, M̄ = R−1MR , B̄= R−1B. F̄(q̇)=
[

fu fv fr

]T

is the mechanical friction and τ̄d =
[

du dv dr

]T
is the external

disturbance. Rewriting 3 into algebraic form can be expressed as:









u̇ =
(

Fu − fu − du
)

/m+ vω

v̇ = −uω −
(

fv + dv
)

/m

ṙ =
(

Tr − fr − dr
)

/I

(4)

The traction force is represented by Fu, while Tr represents the

torque. To model the dynamics of the robot on the water surface,

we can refer to the USV dynamics model (Chen et al., 2019), which

can be expressed as follows

Mw(q)η̇ + Cw

(

q, η
)

+ Dw (η) η+Fw(η)+ τdw = τw (5)

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

TABLE 1 Test results of HDSA SCA and PSO algorithms run independently 30 times.

HDSA SCA PSO

F Best Ave Std Best Ave Std Best Ave Std

F1 0 0 0 0.043621199 55.2091773 36.42876978 4.456913956 8.976645307 46.32264983

F2 0 0 0 0.010156561 0.288456338 0.399117642 6.86827201 10.3267055 10.28163277

F3 0 0 0 9.53E+03 2.23E+04 5.86E+03 2.70E+02 7.57E+02 2.15E+04

F4 0 0 0 37.35838437 59.20677056 8.010506582 1.92884739 3.830868295 55.38478266

F5 0 0 0 37.92815456 6.61E+05 8.02E+05 5.46E+02 1.57E+03 6.59E+05

F6 3.14E−05 0.001383925 0.001405319 4.67425676 1.15E+02 1.15E+02 6.428054849 10.03538963 57.17359472

F7 5.90E−05 5.11E−04 4.07E−04 0.024658139 0.341143612 0.269446788 45.07882375 96.08387995 98.09394285

F8 −1.26E+04 −1.07E+04 1.97E+03 −4.81E+03 −4.37E+03 2.21E+02 −4.12E+03 −3.49E+03 9.36E+02

F9 0 0 0 0.860127299 78.49328591 70.22545167 30.55768733 94.82695388 34.53524407

F10 8.88E−16 8.88E−16 0 0.187682845 10.65598272 8.935131413 2.867362804 3.884021036 6.796254632

F11 0 0 0 0.513962142 1.962336683 2.819722656 1.72E+02 2.25E+02 2.24E+02

F12 1.57E−32 1.57E−32 5.47E−48 1.043279428 3.39E+05 8.56E+05 0.650894524 1.738034681 3.39E+05

F13 1.35E−32 1.84E−23 9.89E−23 10.16366581 2.10E+06 2.56E+06 0.62640203 1.796606655 2.10E+06

F14 0.998003838 4.801561855 4.696216357 0.998003841 0.998323781 9.29E−04 0.998003838 1.163740602 0.405679435

F15 3.08E−04 4.82E−04 2.60E−04 4.25E−04 8.05E−04 1.88E−04 5.35E−04 0.003654847 0.007160687

F16 −1.031628435 −1.03162038 8.23E−06 −1.031628443 −1.031626913 1.82E−06 −1.031615014 −1.031069614 6.31E−04

F17 0.397888187 0.397903308 1.88E−05 0.397889317 0.397918592 3.12E−05 0.397935785 0.399283994 0.001760397

F18 3.000000032 3.000013391 1.62E−07 3.000000177 3.000055929 8.99E−05 3.000002051 3.007764558 0.014062845

F19 −3.862751312 −3.862443601 2.78E−04 −3.86268097 −3.861957813 0.00102005 −3.849759489 −3.653030339 0.272064362

F20 −3.320685667 −3.277232199 0.056398698 −3.314075954 −3.22298511 0.922404083 −2.942883457 −2.387193028 0.041529991

Mw is the inertia matrix. The traction force and torque of

the robot at the water surface are τw =
[

Fu 0 Tr

]T
.

τdw =
[

duw dvw drw

]T
is the lumped disturbance and

Fw(η)=
[

fuw fvw frw

]

is the water resistance.

Mw =






m11 0 0

0 m22 m23

0 m32 m33




 ,

Cw

(

q, η
)

=






0 0 C13 (η)

0 0 C23 (η)

−C13 (η) −C23 (η) 0




 ,

Dw (η)=






d11 0 0

0 d22 d23
0 d32 d33




 .

The disturbances are represented by τdw. On the other hand,

Dw (η) represents the water resistance. The Coriolis force matrix

can also be neglected according to Assumption 1 and Assumption

3, so Cw

(

q, η
)

≈ 0. The elements of the non-diagonal matrix in

matrix Dw (η) and matrixMw are small and can be neglected. This

model simplification approach is also more common (Liao et al.,

2016; Wang et al., 2019b; Deng et al., 2020), where m11 = m− Xu̇,

m22 = m−Yv̇, andm33 = Iz −Nṙ are the inertia parameters of the

three axes and Xu̇, Yv̇, and Nṙ are the additional inertia parameters

due to the wet water of the robot shell and the viscosity of the

water. The dynamics model of the robot on the water surface can

be expressed as:









u̇ = m22
m11

vω − Xu
m11

u− X|u|u
m11

|u| u+ Fu
m11

+ du
m11

v̇ = −m11
m22

uω − Yu
m22

v− Y|v|v
m22

|v| v+ dv
m11

ω̇ = m11−m22
m33

uυ − Nω
m33
ω − N|ω|ω

m33
|ω|ω + Tr

m33
+ dr

m33

(6)

Xu, X|u|u, Yu, Y|v|v, and Nω , N|ω|ω are the resistance coefficients.

The resistance of the robot moving on the water surface can be

approximated as a quadratic function of the velocity and angular

velocity.

The mathematical model should be rewritten into a form that

better suits the needs of the subsequent controller design. The

dynamics model of the robot’s motion on the ground is rewritten

according to 4 as















u̇ = Fu/m−
(

fu + du
)

/m+ vω
︸ ︷︷ ︸

dug

ṙ = Tr/I −
(

fr + dr
)

/I
︸ ︷︷ ︸

drg

(7)

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

TABLE 2 Test results of GWO FA and HHO algorithms run independently 30 times.

GWO FA HHO

F Best Ave Std Best Ave Std Best Ave Std

F1 2.69E−06 2.59E−05 1.52E−05 2.29E+04 4.77E+04 9.85E+03 1.08E−33 1.95E−26 7.53E−26

F2 4.61E−04 8.55E−04 2.86E−04 53.06138425 1.06E+02 18.47075013 1.08E−17 2.26E−14 6.46E−14

F3 2.333236967 16.15496494 16.17029995 3.37E+04 6.69E+04 1.69E+04 6.30E−32 4.03E−18 2.17E−17

F4 0.076161242 0.190101216 0.067944463 46.02316618 63.05292108 7.574286394 1.03E−17 4.60E−14 1.18E−13

F5 26.18035457 28.03756308 0.956956464 5.84E+07 1.29E+08 3.79E+07 1.17E−04 0.043168201 0.061375953

F6 3.62E−04 0.996486127 0.498192351 3.06E+04 4.64E+04 7.31E+03 2.08E−06 2.68E−04 3.23E−04

F7 0.001822731 0.004742428 0.001594265 10.11397979 48.34775676 17.25308781 9.10E−06 1.82E−04 1.50E−04

F8 −8.30E+03 −6.30E+03 1.05E+03 −5.73E+03 −4.35E+03 6.34E+02 −1.26E+04 −1.25E+04 2.43E+02

F9 10.61773399 21.78763545 6.854472334 2.15E+02 0.860127299 34.00946589 0 0 0

F10 6.79E−04 0.001208914 4.59E−04 19.41517193 19.96298677 0.1314286 8.88E−16 1.33E−14 2.00E−14

F11 2.16E−05 0.020113329 0.01797284 4.03E+02 4.93E+02 48.66049354 0 0 0

F12 0.01735841 2.091212922 0.039891925 5.55E+07 2.26E+08 1.13E+08 2.47E−07 2.25E−05 2.25E−05

F13 0.39714087 0.90669375 0.26593137 1.29E+08 4.74E+08 1.87E+08 5.84E−11 3.13E−04 4.99E−04

F14 0.998003838 2.149370759 1.977247758 0.998003838 9.85228046 7.376397236 0.998003838 1.592846754 1.007706592

F15 3.33E−04 0.002524088 0.005948479 5.95E−04 0.009720032 0.008406408 3.09E−04 4.19E−04 2.61E−04

F16 −1.031628453 −1.031628406 8.86E−04 −1.031621754 −1.030900759 0.002366781 −1.031628453 −1.031628451 1.05E−08

F17 0.397887459 0.397888965 1.47E−06 0.397894813 0.398122914 3.37E−04 0.397887358 0.397893418 2.30E−05

F18 3.000000021 3.000091041 9.87E−05 3.000120892 3.027874998 0.065760186 3 3.000000968 4.43E−06

F19 −3.86278078 −3.861772215 0.00183244 −3.861890169 −3.830959144 0.086620017 −3.862769505 −3.861362289 0.001672668

F20 −3.321992055 −3.265460239 0.071106357 −3.201236207 −2.894366935 0.195231925 −3.263585483 −3.123254299 0.085277304

Where dug is the lumped disturbance and dug ≤ d̄ug , d̄ug is the

upper limit of the total disturbances. drg is the lumped disturbance

and drg ≤ d̄rg , d̄rg is the upper limit of the total disturbances. The

dynamics model of the robot on the water surface is











































u̇ = Fuc
m − ξuFuc

m11
− Fua −

Xu

m11
u− X|u|u

m11
|u| u+1F

︸ ︷︷ ︸

−Duw

+ m22

m11
vω + du

m11
︸ ︷︷ ︸

duw

ṙ = Trc
I − ξrTrc

m33
− Tra −

Nω

m33
ω − N|ω|ω

m33
|ω|ω +1T

︸ ︷︷ ︸

−Drw

+ m11 −m22

m33
uv+ dr

m33
︸ ︷︷ ︸

drw

(8)

where Fuc is the desired tractive force and Fuc = Fu represents

no force loss. ξu ∈
[

0 1
)

is the force loss parameter. 1F is the

force disturbance due to mass change. duw is a lumped disturbance,

duw ≤ d̄uw. d̄uw is the upper bound of duw. Duw is the uncertainty

term when the robot moves on the water surface due to changes

in system parameters, water resistance, and driver faults. Trc is the

desired torque and Trc = Tr represents no force loss. ξr ∈
[

0 1
)

is the power loss parameter. 1T is the torque disturbance due

to the change of inertia parameter. drw is a lumped disturbance,

drw ≤ d̄rw. d̄rw is the upper bound of drw. Drw is the uncertainty

term due to changes in system parameters, water resistance, and

driver faults during robot rotation on the water surface.

3. Active fault tolerance control
algorithm and human decision search
algorithm

3.1. RBFNN-based active fault-tolerant
control algorithm

Both the yaw control and the linear velocity control of the robot

are essentially single-input single-output (SISO) second-order

non-linear affine systems. Without loss of generality, a second-

order non-linear affine SISO system with drive faults can be

expressed as:









ẋ1 = x2
ẋ2 = f (x)+ g(x)uc + D

y = x1

+ d (9)

uc is unconstrained control input, ua is the drive bias, ξ is the power

loss parameter, ξ ∈
[

0 1
)

, 0 represents no power loss, and 1

represents a complete loss of efficiency. D = −g(x)ξuc + ua is the

uncertainty term due to the driver fault. The disturbance d has a

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 4

(A) The robot moves on the ground. (B) The robot moves on the water surface by webbed plates. (C) The robot moves on the water surface by

propllers. (D) The robot takes o� from water surface. (E) The robot flying in the air. (F) The structure of robot.

FIGURE 5

Robot in the inertial frame and the body frame.

well-defined upper limit and
∣
∣d
∣
∣ ≤ d̄. x1, x2 are system states. f (x)

is the system function and g(x) is the input function. Owing to the

physical constraints of the controlled object, the control input is

subject to saturation:

ucon =
{

umax, |uc| > umax

uc, uc ≤ umax
(10)

umax is the physical constraint. To make the control input

smoother, the cutoff function is usually replaced by a saturation

function, such as tanh.

ucon = umax tanh(uf /umax) (11)

where ucon is the constrained control input and uf is a function of

uc. Thus, the control objective is to design the constrained control

law ucon so that it satisfies the control requirements even in the

presence of drive faults and external disturbances in the controlled

object. The steps for designing an AFT controller are the following:

Step 1: Define the state error e1 = x1d − x1. Establish the

Lyapunov function V1 = 1
2 e

2
1. Taking the derivative of V1 with

respect to the time t gives

V̇1 = e1ė1=e1(ẋ1d − x2) (12)

Define the virtual state αx = k1e1 + ẋ1d as the desired input of the

next step. If x2 can follow αx, V̇1 = −k1e
2
1. So, the next step of the

control law must ensure that αx − x2 = 0. αx is the next desired

state x2d.

Step 2: Define the state error e2 = x2d−x2, and the fast NTSMC

is designed as

S= e2 + αe1 + βeλ1 (13)

where α and β are positive adjustable parameters and λ is a positive

odd number. The sliding mode convergence law is

Ṡ= − k2S− k3|S|γ1 sgn(S) (14)

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

where k1, k2, and γ1 are positive adjustable parameters. sgn is the

symbolic function. The derivation of 13 yields:

Ṡ= ė2 + αė1 + λβe1
λ−1ė1=− k2S− k3|S|γ1sgn(S) (15)

where

ė2 = ẋ2d − ẋ2
= α̇x − f (x)− g(x)uc − d − D

= −k2S− k3|S|γ1sgn(S)
(16)

The controller law can be designed as follows:

uc =
1

g(x)

(

α̇x − f (x)− D+ k2S+ k3|S|γ1 sgn(S)+ αė1 + λβe1
λ−1ė1

)

(17)

In 17, the uncertain term due to drive faults D is known.

Establishing the Lyapunov function V2 = 1
2S

2, the derivative of

V2 yields

V̇2 = SṠ

=S
(

ė2+αė1+λβe1λ−1ė1
)

= S
(

α̇x − f (x)− g(x)uc − d − D+αė1+λ1βe1λ1−1ė1
)

(18)

Bringing 17 into 18 yields

V̇2 = SṠ

= S
(

−d − k2S− k3|S|γ1sgn(S)
)

= − k2S
2 − k3|S|γ1+1 − Sd

≤ − k2S
2 − k3|S|γ1+1+ |S| d̄

= − k2S
2 − k3|S|γ1+1+ |S| d̄

= − k2S
2 − |S|

(

k3|S|γ1 − d̄
)

(19)

When k3 > d̄/|S|γ1 , k3|S|γ1 − d̄ = ε, ε > 0, thus:

V̇2 ≤ −2k2V2 − ε |S| ≤ −2k2V2 −
√
2εV

1/2
2 < −α1V1/2

2 − β1V2

(20)

where α1 = 2k2, 0 < β1 <
√
2ε.

LEMMA 1 [44] (Jiang and Lin, 2020): Consider a smooth

positive definite V(x), x ∈ Rn. Suppose that real numbers p1 ∈
(0, 1), α > 0, and β > 0 exist such thatV(x) < −αV(x)p1 −βV(x).
Then, an area U0 ∈ Rn exists, such that any V(x) starting from

U0 can reach V(x) = 0 in finite time Tv, which is expressed as

Tv ≤ 1
β(1−p1)

ln
(
V1−p1 (x0)+α

α

)

.

According to lemma 1, V2 can converge to 0 in finite time.

In the above discussion, the uncertainty term D is assumed to be

known, but the actual uncertain term D is unknown. As RBFNN

can approximate arbitrary uncertain non-linear functions and does

not depend on a mathematical model, it is more suitable for

estimating stochastic uncertain terms. Therefore, optimal neural

network weights w∗ must exist such that D=ε0+w∗Th, ε0 is the

estimated residual and h is the neuron. w̃ = ŵ−w∗, ŵ is an estimate

of w∗ and w∗ is a constant, so ˙̃w = ˙̂w. Rewrite 9 as:








ẋ1 = x2
ẋ2 = f (x)+ g(x)uc + d+ε0+w∗Th
y = x1

(21)

Step 3: Establish the Lyapunov function V3 as

V3=
1

2
S2+1

2
tr(w̃TŴ−1w̃) (22)

The derivation of formula 22 yields

V3 = SṠ+ w̃TŴ−1 ˙̂w
= S

(

α̇x − f (x)− g(x)uc − d − ε0 − w∗Th+ αė1 + λ1βe
λ1−1
1 ė1

)

+ w̃TŴ−1 ˙̂w
(23)

The control law is designed to

uc=
1

g(x)

(

α̇x − f (x)− ŵTh+k2S+k3|S|γ1 sgn(S)
)

(24)

Bringing formula 24 into 23 yields

V̇3 = −k2S
2 − k3|S|γ1+1 − Sε1+w̃T(Sh+ Ŵ−1̇ŵ) (25)

where ε1 = d + ε0, the upper limit of the estimation error of the

neural network is ε̄0 . ε̄0 ≥ ε0, d̄ ≥ d, so that ε1 ≤ d̄ + ε̄0 = ε̄1 .

The update law of the RBFNN weights is designed as

˙̂w = −ŴSh (26)

Bringing 26 into 25 yields

V̇3 = −k2S
2 − k3|S|γ1+1 − Sε1

≤ − k2S
2 − k3|S|γ1+1+ |S| ε̄1

=− k2S
2 − |S|

(

k3|S|γ 1 − ε̄1
)

(27)

when k3 > ε̄/|S|γ1 , k3|S|γ1 − ε̄ = ε2 , where ε2 > 0, thus:

V̇3 ≤ −2k2V2 − ε2 |S| ≤ −2k2V2 −
√
2ε2V

1/2
2 (28)

< −α1V1/2
2 − β1V2 < 0

According to lemma 1, V2 can converge to 0 in finite time.

The control input uc in formula 24 is the unconstrained, to

prevent the control input saturation, define ud = uc, where ud is

the desired value in the next step, and the state error e3 = ud −
ucon. ucon satisfies the constrained control input of the saturation

function tanh; therefore, parameter uf must exist, such that ucon =
umax tanh(uf /umax), where umax is the maximum input.

u̇con =
(

1− tanh2(uf /umax)
)

u̇f (29)

Step 4: Establish the Lyapunov function V4 = 1
2 e

2
3 and derive V3

and bring it into 29 to obtain:

V̇4 = e3ė3
= e3(u̇d − u̇con)

=e3

(

u̇d −
(

1− tanh2(uf /umax)
)

u̇f

) (30)

u̇f is designed as

u̇f =







(

k4e3 + |e3|γ2 sgn(e3)+ u̇d
)

/
(

1− tanh2(uf /umax)
)

, δ ≥ 1

|δe3|γ2 sgn(e3)+ u̇d/
(

1− tanh2(uf /umax)
)

, δ < 1

(31)

where δ=
∣
∣uf
∣
∣−2umax,1 is a smaller normal value. γ2 ∈ (0, 1). The

convergence of the controller is discussed in the following cases.

When δ ≥ 1, substituting 31 into 30 yields

V̇4 = −k4e
2
3 − |e3|γ2+1 = −2k4V3 − 2(γ2+1)/2V

(γ2+1)/2
3

< −α2V(γ2+1)/2
4 − β2V4 (32)

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

where 0 < α2 < 2(γ2+1)/2, 2k3 = β2. According to Lemma 1, V4

can converge to 0 in finite time. When δ < 1, substituting 31 into

30 yields

V̇4 = −
(

|δ|γ2 |e3|γ2+1
)

/
(

1− tanh2(uc/umax)
)

= −
(

|δ|γ22(γ2+1)/2/
(

1− tanh2(uc/umax)
))

V
α3
4

= −cV
α3
4

(33)

where α3 = (γ2 + 1) /2, c = |δ|γ22(γ2+1)/2/
(

1− tanh2(uc/umax)
)

,

and tanh(uc/umax) < 1, so c > 0. According to Lemma 2, V4 can

converge in finite time.

LEMMA 2: Chu et al. (2022) Suppose that there is a positive

definite continuous Lyapunov function V(x, t) defined onU1×R+,
where U1 ⊆ U ⊆ Rn. Rn is a neighborhood of the origin, and

V(x, t) ≤ −cVα(x, t), ∀x ∈ U1\ {0}, where c > 0, 0 < α < 1. Then,

the origin of the system is locally finite time stable. The settling time

T ≤ V1−α (x(t0), t0
)

/c(1− α) satisfies for a given initial condition

x(t0) ∈ U1.

3.2. Human decision search algorithm

The human decision search algorithm (HDSA) is a swarm

optimization technique that mimics the decision-making process

of a human crowd. In many post-apocalyptic survival games or

films, the strong group consciousness of humans is often portrayed,

but the importance of individual consciousness is also emphasized.

In human groups, a small group of individuals called decision-

makers make the final decisions based on their experience and

personal status. However, the decision of the decision-maker is not

necessarily optimal. When the number of individuals in the group

is small, it is important to involve more people in the decision-

making process to guide the development of the group and to

avoid the excessive impact of individual decisions on the group.

However, when the number of individuals in the group is large, the

proportion of decision-makers should be reduced and only a few

elite individuals should be selected to determine the development

of the group. This is because too many people involved in the

decision-making process may take more time, and the experience

of ordinary people may not be as good as that of elite individuals.

Because people have emotions, they can think both rationally and

emotionally when dealing with problems, and these two opposing

ways of thinking must coexist.

Apart from the decision-makers, the rest of the human

population is referred to as the executors, consisting of individuals

who have no or less ability to make decisions. They carry out

the optimal decisions made by the decision-makers. However,

individuals among the executors who have some decision-making

ability should be encouraged to seek more humane decisions

based on the optimal decisions. These decisions should become

more adapted to the current environment over time. The number

of decision-makers is fixed, and elite individuals in the human

population will always be selected as decision-makers. Over time,

any individual has the potential to become a decision-maker, and

the current decision-maker may become an executor.

In a human population, there are always individuals who

question the current decision or believe they have a better

one, including the decision-makers themselves. These individuals

are known as adventurers, and their numbers and identities

are random, making them a source of uncertainty within the

population. Although adventurers can lead people to a better life,

they can also lead them to disaster. Adventurers, on the other

hand, inherit the current optimal choices of the human population

and take them into account when making decisions. However,

more adventurous individuals will also seek out possible optimal

decisions based on their own state. To avoid harming the human

population, adventurers must consider whether the decisions they

make are more beneficial to their own survival. Additionally, there

is a chance that an adventurer will become a decision-maker if

they come up with a better or suboptimal decision. Based on the

above analysis, the proposed algorithm for optimizing the human

decision population consists of three main components: decision

updating for decision-makers, decision updating for executors, and

decision updating for adventurers.

3.2.1. Decision updates for decision makers
The number of decision-makers is fixed in proportion to

the total number of people, and the number of decision-makers

is 20–50% of the total number of people. The decision-makers

make their decisions based on individual experience as well as

individual characteristics. The sine and cosine functions are used

to distinguish between rational and emotional decisions by people,

and the individuals are randomly updated due to the random

adoption of rational and emotional decisions by people.

xt+1
i =







r1x
t
i sin

(

r2

∣
∣
∣r3x

t
ibest

− xti

∣
∣
∣

)

,R < 0.5

r1x
t
i cos

(

r2

∣
∣
∣r3x

t
ibest

− xti

∣
∣
∣

)

,R ≥ 0.5
(34)

where xti denotes the tth iteration of the ith human individual. r1 is a

non-linear term, r1 = 2∗
(

1− i/(α1 ∗ dnum)
)

. dnum is the number of

decision-makers. α1 is a random number between (0, 1). r2 = α22π

and α2 is the random number between (0, 1). r3 = 2α3, α3 is a

random number between (0, 1). r is the random number between

(0, 1). xt
ibest

is the individual optimal solution for 1 to t iterations.

3.2.2. Decision updates for executors
Except for the decision-maker, the rest of the individuals are

the executors. Among the executors, individuals with a fitness that

is higher than the intermediate fitness are ordinary executors that

must follow the optimal decision of the decision-maker. Individuals

with a fitness below the intermediate fitness are considered as

executors with some decision-making ability, and this group can

continue to explore the next optimal decision that may exist based

on the current optimal decision.

xt+1
i =







xt
best

+ β1
∣
∣
∣

(

xti − xtm
)

/
(

f ti − f tm
)
∣
∣
∣ , f ti > f tm

sgn(xte)exp
(∣
∣
∣xtbest − xti

∣
∣
∣ /β2

)

, f ti ≤ f tm
(35)

where xt
best

is the current global best individual and xtworst is the

current global worst individual. xte = xt
best

− xtworst . f
t
i is the fitness

of the ith individual, f tm =
(

f t
best

+ f tworst
)

/2, f t
best

is the current

best fitness, and f tworst is the current worst fitness. β1 is the random

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

number of normal distribution with mean 0 and variance 1. The

sgn function determines the direction of exploration of individuals.

β2=t2/f t
best

indicates that a more favorable decision result can be

obtained over time.

3.2.3. Decision updates for adventurers
The adventurers are random individuals and the number of

adventurers is also random. If the adventurer’s fitness is less than

the average fitness, the adventurer randomly explores based on

the current optimal solution. If the adventurer’s fitness is higher

than the average fitness, the adventurer will continue to explore

in the optimal direction according to the current state of the

individual.

xt+1
i =







xt
best

+ c1

∣
∣
∣xtbest − xti

∣
∣
∣ , f ti > f tavr

xti + (2c2 − 1)
∣
∣
∣

∣
∣
∣xte

∣
∣
∣

∣
∣
∣
2
sgn(xte), f

t
i ≤ f tavr

(36)

where c1 is a normally distributed random number with mean

0. c2 is a random number between (0, 1) with variance 1.
∥
∥xte
∥
∥
2

is the Euclidean norm of xte and f tavr is the current mean

fitness.

Based on the above discussion, the proposed HDSA has three

steps. The first step performs a global random search using the

formula 34. In the second step, a local search is performed based

on the first step using the formula 35. The third step performs a

second global random search using the formula 36 on the basis

of the first and second steps. HDSA framework as Algorithm 1.

3.3. Yaw controller and linear velocity
controller

According to the control algorithm in the “RBFNN-Based

Active Fault-Tolerant Control Algorithm” section, the AFTC is

used to design controllers in this section to follow the desired yaw

angle ψd and desired linear velocity vd. The robot linear velocity

sliding mode surface is: Sv = αvev + βvev
λv , where ev = vd−v. The

sliding mode convergence law is Ṡv = − k2vSv − k3v|S|γ1v sgn(Sv).
The proof of convergence for the velocity controller is similar

to that for the general-purpose controller in the “RBFNN-

Based Active Fault-Tolerant Control Algorithm" section. The

unconstrained control law is designed as

Fuc =m
(

v̇d − ŵT
v hv + k2vSv + k3v|Sv|γ1v sgn(Sv)

)

(37)

The anti-input saturation controller of linear velocity is designed as



















Fuf =















∫ (

k4veF + |eF|γ2v sgn(eF)+ Ḟuc
)

/
(

1− tanh2(Fuf /Fmax)
)

dt , δv ≥ 1v
∫

|δveF|γ2v sgn(eF)+ Ḟuc/
(

1− tanh2(Fuf /Fmax)
)

dt

, δv < 1v

Fucon = Fmax tanh(Fuf /Fmax)

(38)

Where eF = Fuc − Fucon.

The yaw angle controller is ωd = kψ eψ + ψ̇d, where

eψ = ψd − ψ . The yaw angle sliding mode surface is

Input: input parameters M, dn, pop, dim, lb, and ub

Output: output xbest, fmin

1 Initialize individuals, constrain the upper and

lower bounds of individuals, calculate the

individual fitness, initialize the global

optimal solution xbest and the optimal fitness

fmin;

2 while t < M do

3 Find the current global optimal solution xbest

and the current individual optimal solution

xibest r = rand(1)

4 for i : dn do

5 Use 34 to update the decision-maker’s

decision and calculate the individual

fitness

6 Find the current global optimal solution xbest

and the global worst solution xworst, compute

the intermediate solution and intermediate

solution fitness.

7 for dn + 1 : pop do

8 Use 35 to update the executor’s decision and

calculate the individual fitness

9 Calculate the average fitness, randomly select

an individuals

10 for 1 : an do

11 Use 36 to update the adventurer’s decision

and calculate the individual fitness

12 Find the current global optimal solution xbest,

the individual optimal solution xibest, and the

optimal fitness fmin.

13 t = t + 1

14 return xbest,fmin

Algorithm 1. HDSA.

Sω = eω + αψ eψ + βψ eψ
λψ . The sliding mode convergence law is

Ṡω = − k2ωSω − k3ω|Sω|γ1ω sgn(Sω).
The unconstrained control law is designed as

Trc = I
(

ω̇d − ŵT
ωhω + k2ωSω + k3ω|Sω|γ1ω sgn(Sω)

)

(39)

The anti-input saturation controller of the yaw angle is

designed as



















Trf =















∫ (

k4ωeT + |eT |γ2ω sgn(eT)+ Ṫrc

)

/
(

1− tanh2(Trf /Tmax)
)

dt , δω ≥ 1ω
∫

|δωeT |γ2ω sgn(eT)+ Ṫrc/
(

1− tanh2(Trf /Tmax)
)

dt,

δω < 1ω

Trcon = Tmax tanh(Trf /Tmax)

(40)

where eT = Trc−Trcon. The controller parameters are not described

in this section as they have been discussed in the “RBFNN-Based

Active Fault-Tolerant Control Algorithm" section.

The input to the angular velocity neural network is both the

yaw error and the angular velocity error, and the output is the

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 6

AFTC framework.

uncertainty term in the angular velocity control. The coordinate

vector matrix of the centroids of the Gaussian basis function

neurons in the angular velocity neural network is

cψ =
[

−1.6 −0.8 −0.4 −0.2 −0.1 0 0.1 0.2 0.4 0.8 1.6

−1.6 −0.8 −0.4 −0.2 −0.1 0 0.1 0.2 0.4 0.8 1.6

]

2∗11
The width of the Gaussian basis function bψ = 0.1, i = 1 · · · 11.
The input to the linear velocity neural network is the velocity

error and the output is the linear velocity control uncertainty term.

The coordinate vector matrix of the centroids of the Gaussian basis

function of the neurons in the linear velocity neural network is

cv =
[

−1.6 −0.8 −0.4 −0.2 −0.1 0 0.1 0.2 0.4 0.8 1.6
]

1∗11
.

The width of the Gaussian basis function bv = 0.1, i = 1 · · · 11.
Based on the above discussion, the proposed framework for the

AFTC is shown in Figure 6.

4. Simulation results

In the section entitled “HDSA’s Related Work”, we have

demonstrated the advantages of the proposed HDSA; therefore, in

this section, the HDSA is used to optimize the sliding mode surface

parameters of the yaw controller and the linear velocity controller.

As the weight update parameters of the RBFNNs are related to

the sliding mode parameters, this also indirectly optimizes the

RBFNNs.

The parameters to be optimized for yaw angle control are the

sliding mode surface coefficients αω , βω and the neural network

update coefficient Ŵω . According to the idea of AFTC, the presence

of −3N.m of disturbance torque in the robot model simulates the

worst case. The initialized optimization algorithm parameters are

as follows: dimension is 3, the number of populations is 20, the

number of max iterations is 10, and the upper limit of parameters

is 20 and the lower limit is−20.

The evaluation function of the yaw controller is designed as

fobj = 0.8∗
∣
∣eψ
∣
∣+ 0.1∗ |eω|+ 0.01∗ |Trc|. For yaw control, we want

to reduce both the yaw error and the yaw velocity error with the

smallest control input. As the control objective is to eliminate the

yaw error, the yaw error is given the largest weight in the evaluation

function. To keep the control input and yaw error in the same order,

the control input weight is reduced. The optimization parameters

for the yaw controller are shown in Figure 7.

As shown in Figure 7, the optimized parameters converge

after eight iterations. The values of Ŵω = 20, αω = 7.4407, and

βω = 2.9369 are obtained through the optimization process.

The optimized parameters are substituted into the AFTC and

the control results are compared with the unoptimized AFTC,

NTSMC, and SMC. Before 10 s, the yaw angle is influenced by a

torque with a mean value of−1N.m and a mean square error of 0.1.

After 10 s, the yaw angle is influenced by a torque with amean value

of −3N.m and a mean square error of 0.1. The control parameters

are given in Table 3.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 7

Yaw control parameter optimization and fitness of the yaw controller objective function. (A) The optimized parameters of yaw controller. (B) The

objective function output value.

TABLE 3 Parameters of yaw angle controllers.

Controllers Parameters Value

Proposed AFTC k1ψ 2

αω ,βω , λω 1, 2, 3

k2ω , k3ω , γω 1, 5, 0.5

k4ω 5

Ŵω 10

NTSMC k1ψ 2

αω ,βω , λω 1, 2, 3

k2ω , k3ω , γω 5, 20, 0.5

SMC k1ψ 2

k2ω , k3ω 5, 5

The results of the yaw angle controller are shown in Figure 8.

In Figure 8A, the optimized AFTC has a significantly faster

response speed (pink line). Despite being influenced by a −1 N.m

torque disturbance in the range of 0–10 s, the AFTC, NTSMC

(green line), and SMC (red line) maintain their robustness and

are not affected by the disturbance. After 10 s, the yaw angle is

subjected to a torque of −3N.m, in which case reliance on the

robustness of the controller can no longer guarantee yaw angle

control performance, as shown in the 10–11 s enlargement in

Figure 8A. The SMC is unable to follow the desired yaw angle

with a static error of ∼0.05 rad, and the NTSMC also has a small

static difference.

As shown in Figure 8B, the proposed AFTC (pink line) and the

optimized AFTC (orange line) do not enter the driver saturation

state. The NTSMC (purple line) and the SMC (green line) enter

the driver saturation state. Compared with the conventional SMC

(green line) and NTSMC (purple line) control inputs, which have

high-frequency input chatter, the control input of the proposed

AFTC is more stable. This suggests that the robustness achieved

by the conventional SMC comes at the expense of control input

performance. In Figure 8C, the output of the radial basis function

neural network (RBFNN) is displayed, showing a value of 1 before

10 s and 3 after 10 s. The RBFNN can estimate the unknown yaw

disturbances online. The RBFNN weights are updated accordingly,

as shown in Figure 8.

The parameters to be optimized for the velocity controller are

the sliding mode surface coefficients αv and βv and the neural

network update coefficients Ŵv. The presence of −5N force in the

robot model simulates the worst case. The initialized optimization

algorithm parameters are as follows: the dimension is 3, the number

of populations is 20, the number of maximum iterations is 10, and

the upper limit of parameters 20 and the lower limit is 20.

The evaluation function is designed as fobj = 0.8 ∗ |ev| + 0.02 ∗
|Fuc|. When controlling the linear velocity, we want to minimize

the linear velocity error with the smallest control input. Therefore,

the linear velocity error has the largest weight in the evaluation

function. The weight of the control input is reduced to keep the

control input and the linear velocity error at the same level. The

linear velocity controller optimization parameters are shown in

Figure 9.

As shown in Figure 9, the optimization parameters converge

after two iterations. The optimized parameters are Ŵv = 15.6467,

αv = 16.1866, and βv = 20.

These parameters are used in the proposed AFTC, and the

control results are compared and analyzed with the unoptimized

AFTC, NTSMC, and SMC controllers. Before 10 s, the linear

velocity is affected by a force with a mean value of−2N and a mean

square error of 0.1. After 10 s, the velocity is influenced by a force

with a mean value of −5N and a mean square error of 0.1. The

velocity controller parameters are given in Table 4.

The control results of linear velocity controllers are shown in

Figure 10.

Similar to the performance of the yaw control, in Figure 10A,

the optimized AFTC (pink line) responds faster compared with the

proposed AFTC (purple line) and SMC (red line). Between 0 and

10 s, when the line speed is subjected to -2N force, AFTC (purple

line), NTSMC (green line), and SMC (red line) are not affected

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 8

(A) The yaw angle control results. (B) Control input torque. (C) Yaw angle RBFNN output value. (D) Yaw angle RBFNN weight.

FIGURE 9

Velocity control parameter optimization and fitness of the velocity controller objective function. (A) The optimized parameters of velocity controller.

(B) The objective function output value.

by the disturbances. After 10 s, the linear velocity is subjected to

a force of −5N and the velocity control performance cannot be

guaranteed by the NTSMC and SMC. There is a static error of

∼0.05m/s for the NTSMC and ∼0.6m/s for the SMC, as shown in

the 9–12 s enlargement in Figure 10A. Both the proposed AFTC

and the optimized AFTC can follow the desired linear velocity,

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

and the velocity controller is almost unaffected by the −5N force

using the optimized parameters. The proposed AFTC and the

optimized AFTC can effectively track the desired linear velocity,

with minimal impact from the−5N force disturbance. The velocity

controller of the AFTC is almost unaffected by the disturbance,

indicating its robustness and ability to maintain precise control

performance.

The previous discussion has highlighted the improved

responsiveness and robustness of the optimized AFTC. To further

TABLE 4 The parameters of velocity controllers.

Controllers Parameters Value

Proposed AFTC αv ,βv , λv 1, 2, 3

k2v , k3v , γv 1, 5, 0.5

k4v 5

Ŵv 10

NTSMC αv ,βv , λv 1, 2, 3

k2v , k3v , γv 5, 20, 0.5

SMC k2v , k3v 5, 5

emphasize the advantages of the optimized AFTC, the output value

of the evaluation function is used as a criterion to evaluate the

performance of the four controllers. A smaller output value of

the evaluation function indicates better controller performance.

The output values of the evaluation functions for the four

controllers are depicted in Figure 11.

As shown by the green lines in Figures 12A, B, the optimized

AFTC controller exhibits the smallest value of the evaluation

function. This signifies that the optimized AFTC achieves the best

performance among the four controllers. As the linear velocity

and yaw angle are consistently subjected to external disturbances,

the output value of the evaluation function continually increases.

This is because of the fact that the control inputs are not equal

to zero. In the case of large external disturbances, the NTSMC

and SMC controllers can no longer eliminate the yaw angle error

and the linear velocity error. Consequently, the output value of the

evaluation function rapidly increases, as indicated by the red and

blue lines.

To further verify the effectiveness of the proposed algorithm,

the AFTC is used to design the yaw angle controller and the velocity

controller. The desired yaw angle and the desired linear velocity

is planned by the LOS algorithm. The optimized parameters

are selected as the controller’s parameters. The LOS algorithm

FIGURE 10

Linear velocity control results. (A) Velocity control results. (B) Control input force. (C) Velocity RBFNN output value. (D) Velocity RBFNN weight.

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 11

Four control evaluation function outputs. (A) Yaw angle evaluation function outputs. (B) Velocity evaluation function outputs.

FIGURE 12

The robot tracks the desired trajectory. (A) Tracking the circle desired trajectory. (B) X-position control. (C) Yaw angle control. (D) Y-position control.

and the improved LOS algorithm can be found in the author’s

previous work (Wang et al., 2022b). The desired trajectory is

a circular trajectory with radius R = 1m, angular velocity

ωr = 0.5rad/s, and linear velocity vr = 0.5m/s. The initial

position and pose of the robot is
[

0m, 0.5m, 0rad
]

. A drag force

of −2N and a torque of −1N.m are applied to the robot. The

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

FIGURE 13

The control results of linear velocity and yaw angular velocity. (A) Linear velocity control. (B) Yaw angle velocity control.

FIGURE 14

The linear velocity control input and yaw angular velocity control input. (A) Control input force. (B) Control input torque.

LOS algorithm is









ψL=ψr − α
α = arctan(ey/1)

vL=vr + kex

(41)

where ψL, vL are the desired yaw angle and desired linear velocity

planned by the LOS algorithm. ex, ey is the position error in

Frenet-Serret (F-S) frame. 1 and k are the positive adjustable

parameters.

The control results of the robot tracking the desired circle

trajectory are shown as Figures 12–14. The robot position control

and yaw angle control are shown in Figure 12.

The robot can track the desired trajectory. The actual position

pose of the robot is consistent with the desired position pose. The

linear velocity control and angular velocity control are shown in

Figure 13.

In Figure 13A, the linear velocity can track the desired

linear velocity of 0.5m/s. In Figure 13B, the angular velocity

TABLE 5 The single-peak test functions.

Function Initial range Fmin

f1(x) =
30∑

i=1

x2i −100 ≤ xi ≤ 100 0

f2(x) =
30∑

i=1

|xi| +
30∏

i=1

|xi| −10 ≤ xi ≤ 10 0

f3(x) =
30∑

i=1

(

i∑

j=1

xj

)2

−100 ≤ xi ≤ 100 0

f4(x) = max
i

{|xi| 1 ≤ i ≤ 30} −100 ≤ xi ≤ 100 0

f5(x) =
29∑

i=1

[

100
(

xi+1 − x2i
)2 + (xi − 1)2

]

−30 ≤ xi ≤ 30 0

f6(x) =
29∑

i=1

(|xi + 0.5|)2 −100 ≤ xi ≤ 100 0

f7(x) =
30∑

i=1

ix4i + random [0, 1) −1.28 ≤ xi ≤ 1.28 0

can track the desired angular velocity of −0.5rad/s. Figure 14

shows the linear velocity control input and yaw angle velocity

control input.

Frontiers inNeurorobotics 17 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

TABLE 6 The multi-peak test functions.

Function Initial range Fmin

f8(x) = −
30∑

i=1

(

xi sin
(√

|xi|
))

−500 ≤ xi ≤ 500 −12569.5

f9(x) =
30∑

i=1

[

x2i − 10 cos (2πxi + 10)
]

−5.12 ≤ xi ≤ 5.12 0

f10(x) = −20exp

(

−0.2

√

1
30

30∑

1
x2i

)

− exp

(

1
30

30∑

1
cos 2πxi

)

+ 20+ c −100 ≤ xi ≤ 100 0

f11(x) = 1
4000

30∑

i=1

x2i −
30∏

i=1

cos
(

xi√
i

)

+ 1 −600 ≤ xi ≤ 600 0

f12(x) = π
30

{

100sin2
(

πy1
)

+
29∑

i=1

(

yi − 1
)2×

[

1+ 10sin2
(

πyi+1

)]

+
(

yn − 1
)2
}

+
30∑

i=1

u (xi , 10, 100, 4)

−50 ≤ xi ≤ 50 0

f13(x) = 0.1

{

sin2 (π3x1)+
29∑

i=1

(xi − 1)2
[

sin2 (3πxi+1)
]

+

(xn − 1)2
[

1+ sin2 (2πx30)
]

+
30∑

i=1

u (xi , 5, 100, 4)

−50 ≤ xi ≤ 50 0

TABLE 7 The fixed-dimensional multi-peak test functions.

Function Initial
range

Fmin

f14(x) =



 1
500

+
25∑

j=1

1

j+
2∑

i=1
(xi−aij)

6





−1

−65.536 ≤
xi ≤ 65.536

1

f15(x) =
11∑

i=1

[

a2i −
x1(b2i +bix2)
b2i +bix3+x4

]

−5 ≤ xi ≤ 5 0.0003075

f16(x) = 4x21−2.1x41− 1
3
x61+x1x2−4x22+4x42 −5 ≤ xi ≤ 5 −1.0316

f17(x) =
(

x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6

)2

+10
(

1− 1
8π

)

cos x1 + 10

−5 ≤ x1 ≤ 10

0 ≤ x2 ≤ 15

0.398

f18(x) =
[

1+ (x1 + x2 + 1)2 ×
(

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

×
[

30+ (2x1 − 3x2)
2×

(

18− 32x1+12x21 + 48x2 − 36x1x2 + 27x22
)]

−2 ≤ xi ≤ 2 3

f19(x) = −
4∑

i=1

exp

[

−
n∑

j=1

aij
(

xj − pij
)2

]

0 ≤ xi ≤ 1 −3.86

f20(x) = −
4∑

i=1

exp

[

−
n∑

j=1

aij
(

xj − pij
)2

]

0 ≤ xi ≤ 1 −3.32

In Figures 14A, B, the−2N force and−1N.m torque are applied

to the robot. So the control inputs are 2N and 1N.m to counteract

the effect of the external force and torque on the robot.

The test functions for swarm intelligence optimization

algorithms are shown in Tables 5–7.

5. Conclusion

This paper proposes an RBFNN-based anti-input saturation

AFTC to solve the problem of degraded control performance of the

CDR during movement on the water surface caused by drive faults,

uncertain water resistance, and uncertain model parameters. The

AFTC incorporates a fast NTSMC, which ensures the robustness

of the robot against external disturbances and the effects of

uncertain model parameters. The RBFNN is used to estimate drive

faults and compensate for the controller output. Additionally,

an anti-input saturation control algorithm is introduced to

prevent controller input saturation. Furthermore, the traditional

approach of manually tuning controller parameters based on the

designer’s experience and iterative debugging is replaced with

an optimization method called HDSA. The HDSA algorithm

optimizes the controller parameters to ensure the optimal control

performance of the robot.

In further work, adaptive algorithms are necessary for the

adjustment of the upper limit of the maximum control input to the

robot on the ground and on the water surface.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

KW implementation and execution of the theory research and

experiment and writing of the manuscript. YL theoretical support

on the idea and helped write the manuscript. CH preliminary work

and revising the manuscript. All authors actively contributed to the

preparation of the content of this paper.

Funding

This work was supported in part by the Sharing Technology

Project (41412040102), the China National Science Foundation

(61473155), the Jiangsu Technology Department under Modern

Agriculture (BE2017301), and the Six Talent Peaks Project in

Jiangsu Province (GDZB-039).

Acknowledgments

We thank the editors and reviewers of the journal.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inNeurorobotics 18 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2023.1219170

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ali, N., Tawiah, I., and Zhang, W. (2020). Finite-time extended state
observer based nonsingular fast terminal sliding mode control of autonomous
underwater vehicles. Ocean Eng. 218, 108179. doi: 10.1016/j.oceaneng.2020.
108179

Chen, G., Tu, J., Ti, X., Wang, Z., and Hu, H. (2021). Hydrodynamic model of
the beaver-like bendable webbed foot and paddling characteristics under different flow
velocities. Ocean Eng. 234, 109179. doi: 10.1016/j.oceaneng.2021.109179

Chen, L., Cui, R., Yang, C., and Yan, W. (2019). Adaptive neural network
control of underactuated surface vessels with guaranteed transient performance:
theory and experimental results. IEEE Transact. Ind. Electron. 67, 4024–4035.
doi: 10.1109/TIE.2019.2914631

Chu, R., Liu, Z., and Chu, Z. (2022). Improved super-twisting sliding mode
control for ship heading with sideslip angle compensation. Ocean Eng. 260, 111996.
doi: 10.1016/j.oceaneng.2022.111996

Cohen, A., and Zarrouk, D. (2020). “The amphistar high speed amphibious sprawl
tuned robot: design and experiments,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (Las Vegas, NV: IEEE), 6411–6418.

Deng, Y., Zhang, X., Im, N., Zhang, G., and Zhang, Q. (2020). Adaptive fuzzy
tracking control for underactuated surface vessels with unmodeled dynamics and input
saturation. ISA Trans. 103, 52–62. doi: 10.1016/j.isatra.2020.04.010

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a
colony of cooperating agents. IEEE Transact. Syst. Man Cybernet. Part B 26, 29–41.
doi: 10.1109/3477.484436

Fister, I., Fister Jr, I., Yang, X.-S., and Brest, J. (2013). A comprehensive review of
firefly algorithms. Swarm Evol. Comput. 13, 34–46. doi: 10.1016/j.swevo.2013.06.001

Gao, B., Liu, Y.-J., and Liu, L. (2022). Adaptive neural fault-tolerant control of a
quadrotor uav via fast terminal sliding mode. Aerospace Sci. Technol. 129, 107818.
doi: 10.1016/j.ast.2022.107818

Gheisarnejad, M., and Khooban, M. H. (2020). An intelligent non-integer pid
controller-based deep reinforcement learning: Implementation and experimental
results. IEEE Transact. Ind. Electron. 68, 3609–3618. doi: 10.1109/TIE.2020.2979561

Guo, J., Zhang, K., Guo, S., Li, C., and Yang, X. (2019). “Design of a new type of tri-
habitat robot,” in 2019 IEEE International Conference on Mechatronics and Automation
(ICMA) (Tianjin: IEEE), 1508–1513.

Guo, X., Huang, S., Lu, K., Peng, Y., Wang, H., and Yang, J. (2022). A fast sliding
mode speed controller for PMSMbased on new compound reaching lawwith improved
sliding mode observer. IEEE Trans. Transp. Elect. 9, 2955–2968.

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., and Chen, H. (2019).
Harris hawks optimization: Algorithm and applications. Fut. Gen. Comp. Syst. 97,
849–872. doi: 10.1016/j.future.2019.02.028

Hou, Q., and Ding, S. (2021). Finite-time extended state observer-based super-
twisting sliding mode controller for pmsm drives with inertia identification. IEEE
Transact. Transport. Electrif. 8, 1918–1929. doi: 10.1109/TTE.2021.3123646

Huang, J., Wang, W., Wen, C., and Li, G. (2019). Adaptive event-triggered control
of nonlinear systems with controller and parameter estimator triggering. IEEE Trans.
Automat. Contr. 65, 318–324. doi: 10.1109/TAC.2019.2912517

Jiang, T., and Lin, D. (2020). Fast finite-time backstepping for helicopters
under input constraints and perturbations. Int. J. Syst. Sci. 51, 2868–2882.
doi: 10.1080/00207721.2020.1803438

Liao, Y.-,l., Zhang, M.-,j., Wan, L., and Li, Y. (2016). Trajectory tracking control for
underactuated unmanned surface vehicles with dynamic uncertainties. J. Cent. South
Univ. 23, 370–378. doi: 10.1007/s11771-016-3082-4

Liu, K., Gao, H., Ji, H., and Hao, Z. (2020). Adaptive sliding mode based disturbance
attenuation tracking control for wheeled mobile robots. Int. J. Control Automat. Syst.
18, 1288–1298. doi: 10.1007/s12555-019-0262-7

Liu, X., Zhang, M., and Yao, F. (2018). Adaptive fault tolerant control and thruster
fault reconstruction for autonomous underwater vehicle. Ocean Eng. 155, 10–23.
doi: 10.1016/j.oceaneng.2018.02.007

Mirjalili, S. (2016). Sca: a sine cosine algorithm for solving optimization problems.
Knowl. Based Syst. 96, 120–133. doi: 10.1016/j.knosys.2015.12.022

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.
Softw. 69, 46–61. doi: 10.1016/j.advengsoft.2013.12.007

Najafi, A., Vu, M. T., Mobayen, S., Asad, J. H., and Fekih, A. (2022).
Adaptive barrier fast terminal sliding mode actuator fault tolerant control

approach for quadrotor uavs. Mathematics 10, 3009. doi: 10.3390/math
10163009

Nan, F., Sun, S., Foehn, P., and Scaramuzza, D. (2022). Nonlinear mpc
for quadrotor fault-tolerant control. IEEE Robot. Automat. Lett. 7, 5047–5054.
doi: 10.1109/LRA.2022.3154033

Shen, Q., Yue, C., Goh, C. H., and Wang, D. (2018). Active fault-tolerant control
system design for spacecraft attitude maneuvers with actuator saturation and faults.
IEEE Transact. Ind. Electron. 66, 3763–3772. doi: 10.1109/TIE.2018.2854602

Song, M.-P., and Gu, G.-C. (2004). “Research on particle swarm optimization: a
review,” in Proceedings of 2004 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No. 04EX826), (Shanghai: IEEE), 2236–2241.

Wang, F., Ma, Z., Gao, H., Zhou, C., and Hua, C. (2022). Disturbance observer-
based nonsingular fast terminal sliding mode fault tolerant control of a quadrotor UAV
with external disturbances and actuator faults. Int. J. Cont. Autom. Syst. 20, 1122–1130.
doi: 10.1007/s12555-020-0773-2

Wang, H., Shi, J., Wang, J., Wang, H., Feng, Y., and You, Y. (2019a).
Design and modeling of a novel transformable land/air robot. Int. J. Aero. Eng.
doi: 10.1155/2019/2064131

Wang, K., Liu, Y., Huang, C., and Bao, W. (2022a). Water surface flight control of
a cross domain robot based on an adaptive and robust sliding mode barrier control
algorithm. Aerospace 9, 332. doi: 10.3390/aerospace9070332

Wang, K., Liu, Y., Huang, C., and Cheng, P. (2022b). Water surface and
ground control of a small cross-domain robot based on fast line-of-sight
algorithm and adaptive sliding mode integral barrier control. Appl. Sci. 12, 5935.
doi: 10.3390/app12125935

Wang, N., and Deng, Z. (2019). Finite-time fault estimator based fault-tolerance
control for a surface vehicle with input saturations. IEEE Trans. Ind. Informat. 16,
1172–1181. doi: 10.1109/TII.2019.2930471

Wang, N., Xie, G., Pan, X., and Su, S.-F. (2019b). Full-state regulation control of
asymmetric underactuated surface vehicles. IEEE Trans. Ind. Informat. 66, 8741–8750.
doi: 10.1109/TIE.2018.2890500

Wu, G., Chen, G., Zhang, H., and Huang, C. (2021). Fully distributed event-
triggered vehicular platooning with actuator uncertainties. IEEE Transact. Vehic.
Technol. 70, 6601–6612. doi: 10.1109/TVT.2021.3086824

Wu, L.-B., Park, J. H., Xie, X.-P., Gao, C., and Zhao, N.-N. (2020). Fuzzy
adaptive event-triggered control for a class of uncertain nonaffine nonlinear
systems with full state constraints. IEEE Transact. Fuzzy Syst. 29, 904–916.
doi: 10.1109/TFUZZ.2020.2966185

Xing, H., Shi, L., Hou, X., Liu, Y., Hu, Y., Xia, D., et al. (2021). Design, modeling
and control of a miniature bio-inspired amphibious spherical robot. Mechatronics 77,
102574. doi: 10.1016/j.mechatronics.2021.102574

Xue, J., and Shen, B. (2020). A novel swarm intelligence optimization
approach: sparrow search algorithm. Syst. Sci. Control Eng. 8, 22–34.
doi: 10.1080/21642583.2019.1708830

Xue, J., and Shen, B. (2022). Dung beetle optimizer: a new meta-heuristic
algorithm for global optimization. J. Supercomput. 1–32. doi: 10.1007/s11227-022-
04959-6

Yu, X.-N., Hao, L.-Y., and Wang, X.-L. (2022). Fault tolerant control for
an unmanned surface vessel based on integral sliding mode state feedback
control. Int. J. Control Automat. Syst. 20, 2514–2522. doi: 10.1007/s12555-021-
0526-x

Zhang, G., Chu, S., Zhang, W., and Liu, C. (2022). Adaptive neural fault-tolerant
control for usv with the output-based triggering approach. IEEE Transact. Vehic.
Technol. 71, 6948–6957. doi: 10.1109/TVT.2022.3167038

Zhang, H., Xi, R., Wang, Y., Sun, S., and Sun, J. (2021). Event-triggered
adaptive tracking control for random systems with coexisting parametric
uncertainties and severe nonlinearities. IEEE Trans. Automat. Contr. 67, 2011–2018.
doi: 10.1109/TAC.2021.3079279

Zhao, Y., Qi, X., Ma, Y., Li, Z., Malekian, R., and Sotelo, M. A. (2020).
Path following optimization for an underactuated usv using smoothly-convergent
deep reinforcement learning. IEEE Transact. Intell. Transport. Syst. 22, 6208–6220.
doi: 10.1109/TITS.2020.2989352

Zhong, G., Cao, J., Chai, X., and Bai, Y. (2021). Design and performance analysis
of a triphibious robot with tilting-rotor structure. IEEE Access 9, 10871–10879.
doi: 10.1109/ACCESS.2021.3050182

Frontiers inNeurorobotics 19 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1219170
https://doi.org/10.1016/j.oceaneng.2020.108179
https://doi.org/10.1016/j.oceaneng.2021.109179
https://doi.org/10.1109/TIE.2019.2914631
https://doi.org/10.1016/j.oceaneng.2022.111996
https://doi.org/10.1016/j.isatra.2020.04.010
https://doi.org/10.1109/3477.484436
https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.1016/j.ast.2022.107818
https://doi.org/10.1109/TIE.2020.2979561
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1109/TTE.2021.3123646
https://doi.org/10.1109/TAC.2019.2912517
https://doi.org/10.1080/00207721.2020.1803438
https://doi.org/10.1007/s11771-016-3082-4
https://doi.org/10.1007/s12555-019-0262-7
https://doi.org/10.1016/j.oceaneng.2018.02.007
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.3390/math10163009
https://doi.org/10.1109/LRA.2022.3154033
https://doi.org/10.1109/TIE.2018.2854602
https://doi.org/10.1007/s12555-020-0773-2
https://doi.org/10.1155/2019/2064131
https://doi.org/10.3390/aerospace9070332
https://doi.org/10.3390/app12125935
https://doi.org/10.1109/TII.2019.2930471
https://doi.org/10.1109/TIE.2018.2890500
https://doi.org/10.1109/TVT.2021.3086824
https://doi.org/10.1109/TFUZZ.2020.2966185
https://doi.org/10.1016/j.mechatronics.2021.102574
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1007/s11227-022-04959-6
https://doi.org/10.1007/s12555-021-0526-x
https://doi.org/10.1109/TVT.2022.3167038
https://doi.org/10.1109/TAC.2021.3079279
https://doi.org/10.1109/TITS.2020.2989352
https://doi.org/10.1109/ACCESS.2021.3050182
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Active fault-tolerant anti-input saturation control of a cross-domain robot based on a human decision search algorithm and RBFNN
	1. Introduction
	2. Related work and mathematical models
	2.1. HDSA's related work
	2.2. Mathematical model of the CDR

	3. Active fault tolerance control algorithm and human decision search algorithm
	3.1. RBFNN-based active fault-tolerant control algorithm
	3.2. Human decision search algorithm
	3.2.1. Decision updates for decision makers
	3.2.2. Decision updates for executors
	3.2.3. Decision updates for adventurers

	3.3. Yaw controller and linear velocity controller

	4. Simulation results
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

