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Introduction: Recent advancements in reinforcement learning algorithms have

accelerated the development of control models with high-dimensional inputs

and outputs that can reproduce human movement. However, the produced

motion tends to be less human-like if algorithms do not involve a biomechanical

human model that accounts for skeletal and muscle-tendon properties and

geometry. In this study, we have integrated a reinforcement learning algorithm

and a musculoskeletal model including trunk, pelvis, and leg segments to develop

control modes that drive the model to walk.

Methods: We simulated human walking first without imposing target walking

speed, in which the model was allowed to settle on a stable walking speed

itself, which was 1.45 m/s. A range of other speeds were imposed for the

simulation based on the previous self-developed walking speed. All simulations

were generated by solving the Markov decision process problem with covariance

matrix adaptation evolution strategy, without any reference motion data.

Results: Simulated hip and knee kinematics agreedwell with those in experimental

observations, but ankle kinematics were less well-predicted.

Discussion: We finally demonstrated that our reinforcement learning framework

also has the potential to model and predict pathological gait that can result from

muscle weakness.

KEYWORDS

human and humanoid motion analysis, motion synthesis, optimization, optimal control,

kinematics, CMA-ES, reflex-based control

1. Introduction

In recent years, reinforcement learning (RL) (Sutton and Barto, 2018) has emerged

as a promising approach for motion synthesis such as human walking where an agent

learns to adapt its behavior through interacting with the environment. Many optimization

techniques used to develop controllers for simulated locomotion are based on reinforcement

learning. RL algorithms have been applied in several studies to develop torque-driven

control for physically simulated articulated models. Peng et al. (2018) used RL to generate

a set of human movements including walking and running. Schulman et al. (2015)

simulated dynamic gaits using high-dimensional, general-purpose neural network function

approximators for both the policy and the value function in a variety of robot models.

Duan et al. (2016) presented a benchmark suite of continuous control tasks with a simple

humanoid based on a systematic evaluation of their effectiveness in training deep neural

network policies. Even though RL algorithms can successfully develop controllers capable of
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performing a versatile set of locomotion tasks, the resulting

behaviors generally appear less natural than normal human

movements (Heess et al., 2017; Rajeswaran et al., 2017; Peng

et al., 2018). More specifically, controllers trained with RL have

exhibited large upper body motion, abnormal gaits, and unrealistic

body posture (Heess et al., 2017). One of the reasons stems from

the absence of biomechanical models that take into account the

excitation and contraction of the muscles, the geometry and inertia

properties of the body segments, and the external forces from

the environment. Musculoskeletal models (Zajac, 1989; Thelen

et al., 2003) represent a sophisticated dynamical system comprised

of bones as articulating rigid bodies and muscles as actuators.

These models often account for the neural excitation of muscles

and also muscle contraction dynamics, which are determined by

muscles’ optimal lengths, shortening/lengthening velocities, and

activations. Muscle contraction generates muscle force which is

then transmitted to the bone through a compliant tendon. Muscle

force causes joint torques to the body segments, thus generating

human motions.

Musculoskeletal models can mainly be driven by three

locomotion control frameworks: trajectory tracking (Neilson and

Neilson, 1999; Fey et al., 2012), optimal control (Pandy et al.,

1995; Suzuki, 2010) and reflex-based control (Geyer and Herr,

2010). In trajectory tracking, the controller solves the optimization

problem by reducing the squared error between simulated and

predefined trajectories and the squared muscle activation over a

specific time interval, outputting the required muscle activation to

mimic the predefined movement (Silverman and Neptune, 2012).

Computedmuscle control is a popular approach to estimate muscle

activation that generates motion that in turn tracks the desired

trajectory (e.g., joint angles from experimental motion capture)

(Thelen et al., 2003). However, the method merely reproduces the

predefined trajectory and cannot predict responses to new inputs.

In optimal control, the controller solves the optimization problem

by minimizing a specific cost function (e.g., metabolic energy

expenditure or summed muscle activations) while achieving a task-

objective function such as a steady-state gait. This control method

is free from experimental data but requires sufficient domain

knowledge to craft a cost function and represent natural human

movement, which can alsomake it more computationally expensive

(Anderson and Pandy, 2001). Performance criteria in predictive

simulations with complex musculoskeletal models are frequently

based on energy (Minetti et al., 1994) or muscle activity (Miller

et al., 2012) minimization, but which criterion best represents

reality remains unclear, and its formulation may vary depending

on the musculoskeletal model. Recent review articles in predictive

simulations of human movement describe both the potential and

the challenges involved in realistic application in pathological

motion (De Groote and Falisse, 2021). Novel applications of

optimal control are emerging to predict optimal orthosis properties

for persons with gait pathology (Febrer Nafría et al., 2022). In

reflex-based control, the controller determines muscle activations

and hypothesized reflex pathways to generate joint torques that

drive the musculoskeletal model, mimicking human gait while

optimizing a cost function (e.g., minimal metabolic cost or

maximal walking distance). The muscle excitation is associated

with computed muscle length or muscle force feedback while

the reflex pathways accommodate leg mechanics to prevent joint

hyperextension and maintain gait stability (Seyfarth et al., 2001;

Günther et al., 2004). The reflex-basedmodel does not require input

from a predefined movement and can perform a natural walking

motion by interacting the muscles and reflex pathways with the

physics-based environment. Geyer and Herr (2010) presented a 2D

human model controlled by reflex that can perform stable walking

through interaction with the ground, while it tolerates ground

disturbances and adapts to slopes without parameter interventions.

Their approach can also predict some individual muscle activation

patterns from experimental data. They further extended the model

to a 3D locomotion study and compared neural controls for 3D-

related motions by adding degrees of freedom at the hips in the

frontal plane (Song and Geyer, 2013). Song and Geyer (2015)

further developed this model by incorporating a higher layer,

longer latency control that can alter some of the reflex gains. The

added layer can adjust the desired foot placements and identify

which leg to switch into swing control during double support. In

a similar manner, Eilenberg et al. (2010) used an adaptive muscle-

reflex controller for powered ankle-foot prostheses to adapt to

environmental disturbances such as speed transients and terrain

variation. Clinical trials have been successfully conducted with

a transtibial amputee walking on level ground, ramp ascent,

and ramp descent conditions. Thatte et al. (2018) implemented

a reflex-based control policy on five subjects walking with a

powered knee and ankle prosthesis and found that the level-

ground walking torque and angle profiles from the prosthesis

are similar to those of a weight and height-matched subject with

intact limbs. Sharbafi et al. (2018) developed a control algorithm

of an exoskeleton with one biarticular actuator based on a reflex-

based human walking model that employs leg force to adjust

hip compliance.

This study aims to use model-based RL methods to develop

control modes that can produce realistic human walking in a

musculoskeletal model driven by 18 muscle-tendon units. The

main novel contribution of this study is the RL-based approach

to solve the control parameters in a complex musculoskeletal

model, as well as the design of the reward functions that can

generate stable walking gaits reasonably similar to those of able-

bodied persons in terms of joint kinematics and muscle activation

patterns at different walking speeds or even with muscle weakness.

While inspired by the work of Song and Geyer (2015), we apply a

different reward function in that we introduced a pelvis component

to encourage the model to walk naturally with a reasonable

pelvis tilt angle. We formulated the human walking problem as a

standard Markov decision process (MDP). We modeled the policy

with a reflex-based controller to output muscle excitation that

eventually activates the muscles. The MDP problem was solved

and the controlled parameters were optimized with derivative-

free covariance matrix adaptation evolution strategy (CMA-ES).

We then generated gait without imposing target walking speed,

i.e., allowing the model to settle on a stable walking speed. We

also generated gait with a range of imposed target walking speeds.

All simulations were performed without reference data from

motion capture. We finally demonstrated the model’s potential to

predict pathological gaits, in this case, gait that may result from

muscle weakness.
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2. Methods

We used an integrated OpenSim-RL (Kidziński et al., 2018)

platform which embedded OpenSim (Delp et al., 2007) and

OpenAI Gym (Brockman et al., 2016) to simulate muscle-driven

forward movement in a physics-based simulation environment.

Experimental data were collected and used solely for comparison

with simulation outcomes.

2.1. Reinforcement learning

The goal of reinforcement learning is to train an agent to

complete a task. The agent receives observations and a reward

from the environment and sends actions back to the environment.

In the current study, the environment is a musculoskeletal model

that has 9 joint degrees of freedom and 18 muscles (Figure 1).

The observations contain movement information such as joint

position, velocity, ground contact, etc. The actions are the muscle

excitations of each muscle. The agent contains two components: a

policy and a learning algorithm. The policy produces actions based

on the observations from the environment. The learning algorithm

continuously updates the policy parameters based on the actions,

observations, and reward.

2.2. Musculoskeletal model

The musculoskeletal model in this paper is a simplified 2D

model adapted from Delp et al. (1990), with 6 internal degrees of

freedom: flexion/extension at the hips, the knees, and the ankles,

and 18 Hill-type muscle-tendon units: iliopsoas (ILPSO), gluteus

maximus (GMAX), hamstrings (HAM), rectus femoris (RF), vasti

(VAS), biceps femoris short head (BFSH), gastrocnemius (GAS),

soleus (SOL), and tibialis anterior (TA) for each leg. Muscle

parameters and moment arms are according to Delp et al. (1990),

and tendons were assumed as non-compliant. OpenSim’s forward-

dynamics approach was used, in which the musculoskeletal system

has muscle excitations as inputs and outputs the body motions

(q, q̇, and q̈) (Figure 2). Since muscle cannot activate or relax

instantaneously, there is a delay between muscle excitation,

muscle activation, and the development of muscle force. This

delay is modeled by the model activation dynamics (Zajac,

1989). The musculotendon dynamics (Anderson and Pandy, 1993)

describe the translation of muscle activation to muscle force.

The musculoskeletal geometry determines the muscles’ moment

arms. Joint moments are determined from muscle forces and

moment arms. Finally, through multibody dynamics (Kane and

Levinson, 1983), accelerations, velocities, and angles for each joint

are computed.

2.3. Markov decision processes (MDP)
formulation

We formulated the forward-dynamics simulation of the

musculoskeletal model as an MDP < S ,A,R > which consists

of the set of body states S , possible muscle excitation A, and

the expected rewards Ra
s,s′ received when going from state s to

s′ (s, s′ ∈ S) after performing action a. The body states S

are joint position, velocity, ground contact, etc. We considered

that the agent accumulates rewards through interacting with

the environment. The agent follows its actions according to a

deterministic policy π :S → A which indicates how action

a is chosen in state s. Our goal was to find an optimal

policy π such that the expected future reward is maximized.

In our case, the policy was modeled by a gait controller

based on a reflex-based framework (Song and Geyer, 2015)

for human locomotion that maps the body states to muscle

excitation.

2.4. Reward design

A forward-dynamics simulation was run by integrating the

musculoskeletal model’s dynamic equations starting from a user-

specified initial state. Muscle states were set by equilibrating

the force between the muscle and tendon at an activation

based on the excitations calculated by the gait controller. Then,

new states at a small time interval (0.01s) were determined by

numerical integration until the desired simulation timewas reached

or the pelvis of the human model fell below 0.6 m. During

simulation, the agent gathered survival rewards (Ralive) and footstep

rewards (Rsteps). The total reward is high when the human model

locomotes at desired velocities with minimum muscle effort and

pelvis tilt.

r = Ralive + Rsteps

=

t∑

i

ralive+

steps∑

j

(wstepsrsteps − wvelJvel − wpelJpel − wmulJmul)

(1)

where t is the total simulation timestep, ralive is the survival

reward for each timestep i [i.e., ralive is the sum of the timesteps

(0.01s) if the simulation does not fail], wsteps,wvel,wpel,wmul

are the weights for the step reward and velocity, pelvis tilt,

and muscle effort costs. The values of these weights were

determined by trial and error tests and finally set to 10, 60,

20, and 1, respectively. The survival reward Ralive encourages

the model to search for solutions to stay alive throughout

the simulation. The footstep reward Rsteps evaluates gait

behaviors within footsteps rather than at discrete instances

of time, for example, to allow the model’s walking speed

to vary within a footstep, similar to how humans walk.

Specifically, rsteps was designed to encourage the model

to take footsteps but not unnecessarily small steps. Jvel
penalizes movements that deviate from target speed. Jpel
penalizes large pelvis tilt during locomotion. Jmul minimizes

muscle excitations and distributes the load to muscles more

efficiently. Thus, the rewards and costs within footsteps are
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FIGURE 1

An illustration of the RL flow.

FIGURE 2

Forward dynamics that depict the production of human movement. q, q̇, and q̈ are vectors of the generalized coordinates, velocities, and

accelerations, respectively.

defined as:

rsteps =

tstep∑

ii

1t

Jvel = |

tstep∑

ii

(vpel − vtgt)1t|

Jpel =

tstep∑

ii

θ2pel1t

Jmul =

tstep∑

ii

muscles∑

k

e2k1t

(2)

where tstep is the number of simulation timesteps in

one footstep, ii is the iith timestep in one footstep, 1t

is the simulation interval 0.01s, vpel and vtgt are the

velocity of the pelvis and the target velocity respectively,

θpel is the pelvis tilt, ek is the muscle excitation of the

kth muscle.

2.5. Covariance matrix adaptation evolution
strategy (CMA-ES)

We used CMA-ES (Hansen et al., 2003), which represents

the population by a full-covariance multivariate Gaussian, to

solve the MDP problem including 37 control parameters for the

gait controller and 12 parameters for the model’s initial states.

The control parameters are the target angles of the trunk, knee,

and ankle, force feedback, length feedback, velocity feedback,

proportional-derivative feedback and co-stimulation of the

muscles. These 12 initial states are the forward speed, rightward
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input: body states (S) such as joint position,

velocity, ground contact, etc.

output: muscle excitation of each muscle

foreach generation do

initialize N populations in parallel;

initialize different control parameters and

initial states for populations;

foreach population do

set initial states for the MSK;

set control parameters for the reflex-based

model;

foreach step of population do

if not finished then

produce muscle excitation from the

reflex-based model;

transform muscle activation to muscle

force;

generate joint moments from muscle

force;

compute new body states and reward;

reward + = reward;

else

break the population;

end

end

end

use the state leading to the maximum reward to

seed next generation;

end

Algorithm 1. Training algorithm structure and description.

speed, pelvis height, trunk lean angle, hip abduction/adduction,

hip flexion/extension, knee flexion/extension, and ankle

dorsiflexion/plantarflexion for both sides (Song and Geyer,

2015). We set the population size to be 16 for each generation

and ran for 1,000 generations for every trial. The parameters

were updated every 16th simulations whenever a higher reward

was encountered. In every generation, the CMA-ES will generate

16 simulations with different values of control parameters in

parallel. Based on the highest reward achieved in these simulations,

the model will then seed the control parameters for the next 16

simulations. The generation number was set large enough that the

MDP problem could usually be solved at the end of each trial. To

accelerate the optimization process, we established a common E2

virtual machine with 8 vCPUs and 32 GB memory on the Google

cloud platform to run parallel optimizations with the same initial

parameters. The best solution from the previous generation was

used to seed the next generation of optimizations (Algorithm 1).

2.6. Evaluation

We evaluated the performance of our simulation in 3 aspects:

generating gaits without a prescribed gait speed, simulating gaits

in a range of speeds, and simulating gait impairment with reduced

maximum isometric force (MIF) of SOL and GAS at a speed of

1.45 m/s. Experimental data from 8 able-bodied adults walking

at several different speeds were used for visual comparison with

the simulation results (Appendix). To evaluate the agreement

of the simulated walking pattern at its natural speed 1.45 m/s

to the observed gait kinematics at a mean speed of 1.41 m/s,

correlation coefficients (R) between simulated and observed gait

were computed for hip, knee, and ankle kinematics.

To generate gaits without a prescribed gait speed, we removed

the velocity cost Jvel from the reward function and set the control

parameters and initial states to random values. The simulation

time for each simulation was set to be 20 s. We then found

the solution with CMA-ES with parallel computing. The steady

walking speed developed during the simulation was 1.45m/s. Films

illustrating the incremental learning process can be viewed in the

Supplementary material.

To generate simulations of gait at a range of target speeds from

1.1 to 1.8 m/s, we first solved the MDP problem in the prediction

horizon of 10s using CMA-ES with parallel computing in GCP at

a target speed of 1.45 m/s. In the initial optimization, the control

parameters and initial states were randomly assigned, which means

we assumed no prior knowledge of the problem, and the initial

position of the model was not in consideration. After the first MDP

was solved, the optimized parameters were used to seed the next

optimization of the neighbor speeds until the lowest or highest

speeds, e.g., from 1.45 to 1.27m/s, then from 1.27 to 1.10m/s.

To generate gait impairment with simulated muscle weakness

of SOL and GAS, we used the solution previously solved at 1.45

m/s as the initial parameters for the controller. The MIF of SOL

and GAS were set to 80 or 60% of the original value wherein only

one muscle strength was reduced per simulation. The problem was

solved via 4 simulations of impaired gait.

3. Results

We present the salient results of gait kinematic and kinetics,

specifically the sagittal plane hip, knee, and ankle angles, the vertical

ground reaction force (vertical GRF) and the muscle excitations

for all evaluations. The gait cycle, including descriptions of foot

rockers, is described here according to Perry and Davids (1992).

Only the simulations with the highest reward were presented. All

simulated data are presented only for the model’s right side and

normalized to one gait cycle except for the vertical GRF normalized

to the stance phase. The number of simulated gait cycles varied

between 10 and 15 depending on the walking speed, and results are

shown as the ensemble average of these 10–15 gait cycles ± one

standard deviation. Each optimization problem took between 12

and 18 h to complete.

3.1. Simulated gait without prescribed
speed

Without a prescribed speed, the model settled on a walking

speed of 1.45 m/s; the simulated hip, knee, and ankle joint

angles are illustrated (Figure 3). Experimental kinematics from

able-bodied subjects walking at a comfortable speed, which was
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on average 1.41 m/s, is also illustrated. Hip and knee kinematics

matched reported experimental observations reasonably well with

correlation coefficients R = 0.97 and R = 0.96, respectively, with

a somewhat better agreement in swing than in stance, but ankle

kinematics were different from observed kinematics (R = 0.09).

In the simulated ankle kinematics, the gait cycle began with a

heel rocker (plantarflexion with heel contact during approximately

0–8% of the gait cycle), but the ankle rocker (dorsiflexion via

FIGURE 3

Simulated (blue) and experimental (yellow) sagittal plane kinematics

of the hip, knee, and ankle at the simulated walking speed of 1.45

m/s and an average experimental walking speed of 1.41 m/s,

respectively. Positive joint angles indicate flexion/dorsiflexion.

Correlation coe�cient R is indicated.

tibial advancement over the ankle with whole-foot contact during

approximately 8–30% gait cycle), forefoot rocker (dorsiflexion

with forefoot contact during approximately 30–50% gait cycle)

and toe rocker (rapid plantarflexion with forefoot/toe contact

during approximately 50–60% of the gait cycle) were absent in the

simulation. Instead, the ankle was dorsiflexed at foot contact, and

continued to plantarflex more or less constantly until toe-off.

3.2. Simulated gait over a range of
prescribed speeds

All simulations produced stable gait patterns at the five

prescribed walking velocities between 1.1 and 1.8 m/s in the

prediction horizon of 10 s. Simulated knee kinematics were more

realistic at higher walking speeds than at lower speeds. The stance

phase became relatively shorter as walking speed increased (toe-off

shifted from 70 to 56% of the gait cycle). This temporal shift was

more noticeable in the simulation. The joint kinematics showed

expected trends as speed increased; peak flexion and extension in

the hip and ankle increased with higher walking speeds as well

as peak knee flexion in loading response (Figure 4). The timing

of peak plantarflexion in pre-swing and peak knee flexion in

swing was shifted temporally, reflecting the earlier toe-off. These

kinematic trends agree reasonably well with observed trends in

experimental data for subjects walking at 0.78 to 2.04m/s.

Several features of the simulated vertical GRF are common to

the experimental GRFs; in both, the first vertical peak increases and

the minimum vertical GRF at mid-stance decreases with increasing

walking speed (Figure 5). However, the expected second vertical

GRF peak during pre-swing was not as prominent in simulated

walking as in experimental data, and while it should increase with

increasing speed, the simulated second vertical GRF peak actually

decreased with increasing speed. This behavior has been observed

by Keller et al. (1996) who indicated that walking at a higher speed

can result in a lower second vertical GRF peak than at lower speeds.

FIGURE 4

(A) Simulated and (B) experimental sagittal plane kinematics of the hip, knee, and ankle at di�erent walking speeds. For the simulated data, walking

speeds range from 1.1 to 1.8 m/s. For the experimental data, average walking speeds range from 0.78 to 2.04 m/s.
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FIGURE 5

Vertical GRF of simulated walking (A) at di�erent speeds ranging from 1.1 to 1.8 m/s and experimental walking (B) at di�erent speeds ranging from

0.99 to 1.83 m/s.

FIGURE 6

Muscle excitation during simulated walking at di�erent speeds ranging from 1.1 m/s to 1.8 m/s in the iliopsoas (ILPSO), gluteus maximus (GMAX),

hamstrings (HAM), rectus femoris (RF), vasti (VAS), biceps femoris short head (BFSH), gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA).

Computed muscle excitations indicate GMAX, HAM, and

VAS activation during early stance and SOL and GAS activation

during mid- and terminal stance (Figure 6). Excitation of major

muscles such as ILPSO, GMAX, HAM, SOL, and TA increased with

increasing walking speed.

3.3. Simulated gait with muscle weakness
at 1.45 m/s

When GAS muscle weakness was simulated, the hip tended

to extend more and the ankle tended to plantarflex more in pre-

swing (Figure 7).With decreasing GAS strength, the SOL excitation

increased and the GAS excitation decreased (Figure 8).

When SOL muscle weakness was simulated, the hip tended

to flex more during swing, and the ankle plantarflexed less; the

ankle did not reach a plantarflexed position when SOL strength

was reduced to 60% MIF (Figure 9). The kinematic pattern shifted

temporally to the left. With decreasing SOL strength, the SOL

excitation decreased and the GAS excitation increased (Figure 10).

4. Discussion

In this study, we show that human walking can be reproduced

with a musculoskeletal model realistically by solving the MDP

problem using CMA-ES. The successful reproduction of human

walking can be attributed to the reflex-based controller that mimics

simple feedback laws based on sensory data accessible at the

spinal cord, such as muscle length, speed, force, and foot contact

information and the specialized reward function that can guide the

model to achieve physiologically realistic waking.We experimented

with different reward components, and found that adding pelvic

tilt makes the model converge to the target speed faster and

produce better joint kinematics. Pelvic tilt plays a critical role in

determining the alignment of the spine, hips, and lower limbs,

which in turn affects muscle activations, joint forces, and stability.
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FIGURE 7

Sagittal plane angles of the hip, knee, and ankle during simulated

walking at a speed of 1.45 m/s in 3 conditions: normal GAS strength,

GAS strength decreased to 80% MIF, and GAS strength decreased to

60% MIF.

FIGURE 8

Muscle excitation of GAS and SOL during simulated walking at a

speed of 1.45 m/s in 3 conditions: normal GAS strength, GAS

strength decreased to 80% MIF, and GAS strength decreased to 60%

MIF.

Incorporating it into simulations enhances the realism of the model

by accurately representing how the pelvis’s orientation impacts the

rest of the body’s kinematics and kinetics. Particularly, the pelvis

tilt component in the reward function can guide the model to

maintain an upright upper body position, and increase muscle

activation to achieve higher walking speed as required. Without

this component, the model would conveniently tilt the upper body

and use gravity to accelerate the speed, ultimately leading to either

a fall or a less natural walking position. The controller adopted

in our model outputs muscle excitation signals that correspond

reasonably well with reported muscle activation during normal

gait (Perry and Davids, 1992). These excitation signals could

FIGURE 9

Sagittal plane angles of the hip, knee, and ankle during simulated

walking at a speed of 1.45 m/s in 3 conditions: normal SOL strength,

SOL strength decreased to 80% MIF, and SOL strength decreased to

60% MIF.

eventually generate biologically plausible torque patterns, whereas

other controllers often employ inefficient or even impossible

torque patterns for humans (Wang et al., 2012). However, not

all muscle activities from our simulation (Figure 6) agree well

with observed muscle activity during human gait, and do not

corroborate previous literature using similar models (e.g., Geyer

and Herr, 2010; Song and Geyer, 2015). This disagreement can at

least in part be attributed to the complexity of rigid differential

equations, combined with the sensitivity of movement simulations

to changes in muscle excitations and kinematics, which makes

predicting and optimizing movement patterns challenging. This

is a common issue in fields that merge biomechanics, robotics,

and physics simulations where accurate representation of dynamic

systems is crucial. To overcome this issue, Falisse et al. (2019) used

direct collocation to solve optimal control to reduce the sensitivity

of the cost function. However, their simulated kinematics did not

entirely agree with those observed experimentally. They suggest

co-contraction can play a stabilizing role during walking, which

does agree with our simulation. The computed gait kinematics,

vertical GRF, and muscle excitations were compared and evaluated

under a variety of target walking speeds. We even computed

solutions with simulatedmuscle weakness of the plantarflexors SOL

and GAS, to demonstrate the potential use of the simulations in

clinical applications.

In the simulation without a prescribed gait speed, the model

converged to a steady walking speed of 1.45m/s, even with various

random control parameters and initial states. This indicates that

the model is robust enough to not be influenced by prior guesses

of the system. Our result corroborates findings by Umberger

et al. (2003) whose model eventually developed a constant walking
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FIGURE 10

Muscle excitation of GAS and SOL during simulated walking at a

speed of 1.45 m/s in 3 conditions; normal SOL strength, SOL

strength decreased to 80% MIF, and SOL strength decreased to 60%

MIF.

speed, provided that the objective functions, e.g., a minimal error

between simulated and reference trajectory and minimal muscle

effort, were optimized. Ackermann and Van den Bogert (2010)

and Miller et al. (2012) used a “predictive” approach without

tracking experimental data, in which the data-tracking solution

had to serve as an initial guess for the control variables. A major

benefit of our approach is that the forward simulation is free from

any reference data such as captured motion and GRF data, even

for setting initial control variables. As for other RL approaches

used to produce human-like walking with a musculoskeletal model,

Song et al. (2021) report a simulated gait pattern that did not

resemble a natural gait pattern. Similar to Song et al., the simulated

ankle kinematics from our study did not agree well with observed

ankle kinematics during experiments. For example, our simulation

did not display ankle, forefoot or toe rockers. Our simulated

gait did exhibit some expected phases, such as heel rocker and

dorsiflexion during swing to achieve foot clearance (Figure 3). Our

simulation also exhibited knee flexion during loading response,

though somewhat less than observed data. We speculate that the

model’s knee joint reaction force is much higher than in reality.

Since the reward function in our method does not penalize the joint

reaction force, this can cause unnatural kinematics if a large joint

reaction force is present.

In simulations over a range of walking speeds, our model

was capable of developing stable gaits at different speeds with the

prescribed walking speed in the reward function. We were able to

predict expected temporal shifts toward the shorter stance phase

with increasing walking speeds, as well as expected increases in

hip and ankle sagittal plane motion and reduced gait variability at

higher speeds (Figure 4). Our findings of gait variability agree with

experimental findings by Terrier and Schutz (2003) who reported

low intra-subject gait variability at preferred and high speeds, but

higher variability at low walking speed. Schwartz et al. (2008)

reported in an experimental study increases in maximum knee

flexion during swing with higher walking speeds, which we did not

see in our simulations. We attribute this to the small excitation

of the knee flexor BFSH in the model. Ong et al. (2019) found a

similar trend in their musculoskeletal simulations. The increased

ankle plantarflexion at fast walking speeds suggests the control

framework responded accordingly to find a solution to adjust the

gait kinematics to a fast walking pace. The vertical GRF shows

a local vertical GRF peak in loading response at all speeds and

a greater standard deviation at 1.1 m/s than at higher speeds

(Figure 5), which suggests that the control framework could more

easily converge to steady gait solutions in medium and fast walking

speeds than at slow speeds. In the muscle excitation predicted in

our simulations (Figure 6), the hip extensors GMAX and HAM

were activated in loading response, i.e., when the hip extended to

advance the trunk over the support limb. The hip flexor ILPSO was

activated during pre-swing and initial swing, resisting hip extension

during stance and reversing the hip into flexion during swing. The

knee extensors VAS and RF activated eccentrically to restrain knee

flexion in loading response. The ankle plantarflexors GAS and SOL

were activated during mid-stance, late stance, and preswing, i.e.,

when their activity is expected to first control tibial advancement

then to propel the leg into swing. The dorsiflexor TA was active

throughout swing, to contribute to foot clearance. The expected TA

activity in loading response to prevent foot drop was, however, not

predicted in our simulation. The expected hamstrings activation in

late stance to decelerate the knee extension was also not predicted

in our simulation.

In simulations in which muscle weakness in GAS and SOL

was modeled, the produced gait kinematics were slightly different

that with full muscle strength, wherein simulated SOL weakness

influenced all kinematics, particularly ankle kinematics, more than

GAS weakness (Figures 7, 9). This is likely attributable to the

muscle parameters in the musculoskeletal model; the uniarticular

SOL is stronger than the biarticular GAS in the model, i.e., the

modeled SOLMIF is higher than themodeled GASMIF. Themodel

could more easily compensate for GAS weakness with minimal

kinematic changes than for SOL weakness. According to van der

Krogt et al. (2012) who simulated how muscle weakness can be

compensated by synergies in normal walking, GAS weakness led

to increased SOL activation, and SOL weakness likewise led to

increased GAS activation. Compensations for the weakness of

individual muscles included increases in activation in unimpaired

muscles, but not necessary increases in the impaired muscle’s

activation, corroborating our findings in muscle activation in

Figures 8, 10. While Ong et al. (2019) found decreased walking

speed when weakness in plantarflexor muscles was simulated,

attributed to reduced push-off force in pre-swing, our simulation

indicates that the prescribed walking speed can still be maintained,

as long as the synergistic ankle plantarflexor can compensate for

the weak muscle. Unlike the study by Falisse et al. (2019) in

which gait was simulated with muscle weakness by imposing gait

symmetry over a complete gait cycle and reserve actuators to

prevent the simulation from falling, our model did not assume

periodicity of the gait cycle and included no reserve actuator

or residuals to guarantee that the model could still achieve

steady walking. Nevertheless, the model still managed to perform

locomotive behaviors without non-physical compensatory forces

commonly seen in other physics-based environments. It is worth

pointing out that our simulations with weakness were created

to demonstrate how this model can be applied to study optimal
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phenomena in walking with or without muscle weakness; while

accurate and individualized representation of pathological gait is

on the horizon, it will require individualized muscle parameters,

accurate reproduction of internal and external forces, and possibly

subjective factors that affect how a person interacts with the

external environment.

There are some limitations in the current study. Our simulation

was not able to accurately represent realistic ankle kinematics;

we speculate that more realistic kinematics may be achieved

through computing and incorporating joint reaction forces in the

cost function and with a more sophisticated contact model. The

musculoskeletal model used in the simulation was also limited

in that it is a 2D planar model and can thereby not represent

the full characteristics of gait. In the current study, the gait

controller was based on a reflex-based framework (Song and

Geyer, 2015), though modified to not activate hip abductors

and adductors; we restricted motion to the sagittal plane only,

as the reinforcement learning algorithm could not converge to

identify optimal control parameters in 3D. This warrants future

implementation using a 3D musculoskeletal model that at least

accounts for more degrees of freedom such as hip ab/adduction and

hip rotation, which can stabilize the hip in the frontal plane and

allow foot clearance with a less sagittal plane hip range of motion.

We only present limited simulations of walking in the present

study, whereas simulation of different conditions such as inclined

or uneven surfaces, which require further adjustments of the

OpenSim-RL environment, can further challenge the robustness of

the RL approach. Computational efficiency is another limitation

and was not prioritized in this study; the aim of our approach

was instead to build a bridge between musculoskeletal modeling

and reinforcement learning. Direct collocation could tremendously

reduce the computational cost, but it normally optimizes for one

footstep and its implementation in this simulation to encode

“robustness” in the solutionmay be challenging, whereas the single-

shooting with CMA-ES in our study optimized for multiple steps as

it naturally does.

5. Conclusion

We present a model-based RL approach to simulate realistic

human walking in a musculoskeletal model, first allowing the

model to settle on a stable speed, then given faster and slower

target speeds. The computed kinematics, ground reaction forces,

and muscle excitation patterns and trends correspond reasonably

well with those from reported normal gait, as indicated by good

correlation of hip and knee kinematics and by similar trends over

a range of walking speeds, with exception to ankle kinematics,

which were not realistic in simulations. We further generated

pathological gaits that result from ankle plantarflexor muscle

weakness using the same approach. Our simulation results illustrate

that the proposed approach can reliably find solutions to perform

steady locomotion that are not sensitive to the initial guess of the

control parameters and states. The simulations were achieved in

the absence of reference motion data from motion capture. With

the proposed RL framework, neuromechanical simulations can

be developed to model versatile human movements and predict

human motor behavior.
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Appendix

Eight able-bodied adults (5 men/3 women, mean ± standard

deviation age: 37.8 ± 9.6 years old, height: 1.76 ± 0.10 m,

body mass: 76.6 ± 14.4 kg) participated in this experiment.

The experiments were approved by the Swedish Ethical Review

Authority (Dnr. 2020-02311), and all participants provided written

consent. Participation was voluntary and could be terminated

at any time during the experiment. For each subject, cadence

was recorded while subjects walked on a treadmill at 70,

85, 100, 115, and 130% of their preferred walking speed

(PWS) in randomized order. The PWS was determined by the

participant’s gender, age, and height (Bohannon, 1997). Then,

subjects walked along a 10-m pathway in an instrumented

motion lab at five speeds by matching their cadences from

the treadmill at each speed. Marker positions (100 Hz) and

ground reaction force (1,000 Hz) were measured using optical

motion capture (Vicon V16) and strain gauge force platforms

(AMTI, Watertown, MA, USA), respectively. Full-body marker

placement was implemented based on the Conventional Gait

Model with the extended-foot model (CGM 2.4). Joint kinematics

were calculated based on marker coordinates using the Inverse

Kinematics (IK) Tool in Opensim (Delp et al., 2007). Between

5 and 10 gait cycles per person and speed were analyzed,

and the side, i.e., left or right, was chosen at random for

each person.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1244417
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modeling
	1. Introduction
	2. Methods
	2.1. Reinforcement learning
	2.2. Musculoskeletal model
	2.3. Markov decision processes (MDP) formulation
	2.4. Reward design
	2.5. Covariance matrix adaptation evolution strategy (CMA-ES)
	2.6. Evaluation

	3. Results
	3.1. Simulated gait without prescribed speed
	3.2. Simulated gait over a range of prescribed speeds
	3.3. Simulated gait with muscle weakness at 1.45 m/s

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References
	Appendix


