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Person-following is a crucial capability for service robots, and the employment

of vision technology is a leading trend in building environmental understanding.

While most existing methodologies rely on a tracking-by-detection

strategy, which necessitates extensive datasets for training and yet remains

susceptible to environmental noise, we propose a novel approach: real-time

tracking-by-segmentation with a future motion estimation framework. This

framework facilitates pixel-level tracking of a target individual and predicts their

future motion. Our strategy leverages a single-shot segmentation tracking neural

network for precise foreground segmentation to track the target, overcoming

the limitations of using a rectangular region of interest (ROI). Here we clarify that,

while the ROI provides a broad context, the segmentation within this bounding

box o�ers a detailed and more accurate position of the human subject. To further

improve our approach, a classification-lock pre-trained layer is utilized to form a

constraint that curbs feature outliers originating from the person being tracked.

A discriminative correlation filter estimates the potential target region in the

scene to prevent foreground misrecognition, while a motion estimation neural

network anticipates the target’s future motion for use in the control module. We

validated our proposed methodology using the VOT, LaSot, YouTube-VOS, and

Davis tracking datasets, demonstrating its e�ectiveness. Notably, our framework

supports long-term person-following tasks in indoor environments, showing

promise for practical implementation in service robots.

KEYWORDS

person-following robot, tracking by segmentation, mobile robot, visual tracking, deep

learning

1. Introduction

Person-following robots have emerged as a crucial application in various domains

due to their capacity for accurate and prompt target tracking. Existing methodologies

predominantly use classifiers that are constructed using the tracking-by-detection strategy,

often yielding a basic region of interest (ROI) that fails to comprehensively represent the

complex human form (Yoshimi, 2006; Cosgun et al., 2013; Cheng et al., 2019).

To augment the precision and responsiveness of these robotic applications, the present

research introduces a novel end-to-end Deep Neural Network (DNN) for person-following.

This approach enables pixel-level tracking of the target individual and integrates a real-time

future motion estimation function, facilitating the robot’s capacity to anticipate and swiftly

react to the individual’s movements (Lin et al., 2012; Cosgun et al., 2013; Cheng et al., 2019;

Koide et al., 2020; Hu et al., 2022).
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The proposed DNN is characterized by three main

components: (1) Person tracking via segmentation for real-

time tracking; (2) A classification-lock pre-trained feature layer to

mitigate the influence of environmental noise; and (3) A future

motion estimation module for rapid prediction of the individual’s

movements, thereby informing the control module.

The “tracking-by-segmentation” strategy incorporated in our

tracker allows for pixel-level tracking of the target, providing

a significantly more detailed target representation compared to

traditional ROI outputmethods. The classification-lock pre-trained

layer contributes to the recognition of discriminative models,

thereby strengthening the system’s tracking accuracy, particularly

in scenarios where the human appearance undergoes substantial

transformations (Held et al., 2016; Caelles et al., 2017; Gundogdu

and Alatan, 2018; Paral et al., 2019).

The tracker incorporates discriminative correlation filters and

a CL-pre-trained layer to provide resilience to common tracking

challenges, such as occlusion and dramatic changes in appearance.

Furthermore, the inclusion of a future motion estimation neural

network bestows the robot with the capability to anticipate the

target’s motion pattern, ensuring quicker and more effective

response times compared to standard trackers.

We conducted a comprehensive evaluation of our proposed

method through three major experiments. These include testing

our tracker on the VOT (Kristan et al., 2018), VOS (Xu

et al., 2018), and DAVIS (Perazzi et al., 2016) datasets, real-

world robot operations, and a practical following task in

an indoor environment. In all of these tests, our method

demonstrated superior performance, effectively detecting the speed

and direction of the target and minimizing rotation errors

during person-following.

The primary contributions of this research are as follows:

1. The “tracking-by-segmentation” approach significantly

enhances the accuracy and robustness of the tracking system.

2. The classification-lock pre-trained layer improves the system’s

ability to recognize discriminative models.

3. The incorporation of discriminative correlation filters and

a CL-pre-trained layer provides the tracker with resilience

to challenges such as occlusion and dramatic changes in

appearance.

4. The future motion estimation module facilitates quick and

effective responses.

5. Our approach operates independently of multiple human

tracking technologies.

6. The robustness and accuracy of our method even enable the

operation of a robot with a basic control method such as a PID

controller within a complex indoor environment.

To emphasize the practical implications and the unique

advantages of our approach, we have included a demonstration

of the operation of our method at the end of the paper. The

value of our work lies not only in the application of deep learning

to tracking, but also in the specific innovations and strategies

introduced. Through the strategic blend of classification-lock

tracking, future motion estimation, and the use of deep learning

techniques, we offer a novel solution to address the challenges

of robot person-following, thereby improving the accuracy and

robustness of the system.

2. Related works

The pursuit of robust and efficient person-following robots

necessitates a comprehensive understanding and leveraging of

visual tracking, object segmentation, and motion planning

strategies. This study introduces an innovative methodological

approach to improving the effectiveness of person-following robots

in terms of both accuracy and responsiveness. The proposed

solution is predicated on several critical components: a novel

visual tracker, a video object segmentation and tracking strategy,

a pixel-level classification-lock mechanism, the implementation

of discriminative correlation filters (DCF), and a future motion

estimation mechanism.

Traditionally, person-following robots have used region of

interest (ROI) to represent a person’s position within a scene.

However, this representation can be unstable due to the different

poses a person may assume, leading to significant ROI fluctuations

and inaccuracies. Although Deep Neural Networks (DNNs) have

been implemented in visual trackers such as Caelles et al. (2017),

Wang et al. (2019), Lukezic et al. (2020), and Koide et al. (2020)

that produce high frames per second (FPS) ROI trackers, these

systems may not adequately track the target during substantial

pose variations. There have been efforts to create a more robust

representation of a person’s position in 3D space using plane and

height estimation techniques (Chou and Nakajima, 2017; Jiang

et al., 2018; Zou and Lan, 2019; Hu et al., 2022). Still, they

predominantly yield an approximation of the person’s position.

In the field of object segmentation and tracking within

videos, video object segmentation (VOS) has been harnessed for

delineating moving objects (Koide and Miura, 2016; Caelles et al.,

2017; Voigtlaender and Leibe, 2017; Yang et al., 2018; Voigtlaender

et al., 2019; Lukezic et al., 2020; Wu et al., 2021). Nonetheless,

these methods often rely on computationally-intensive and time-

consuming deep neural networks, posing challenges for mobile

robots. Typically, the first frame is used as a reference target, with

subsequent frames matched to this initial target. This strategy is

susceptible to issues when tracking fast-moving objects or those

that undergo significant appearance changes. Some researchers

have proposed a two-stage tracking-by-segmentation framework,

but such a method is heavily reliant on the ROI generation

results and can struggle to adapt to dynamic scenes. To mitigate

these shortcomings, we propose a one-stage architecture that

directly outputs the clustered mask, which has proven effective in

preliminary tests.

A significant challenge for person-following robots is target

selection, particularly when the appearance of the target individual

changes. To address this, we have introduced a pixel-level

classification-lock strategy, forcing the tracker to generate the

human appearance as a discriminative model. We propose to lock

the human shape as a discriminative target within the tracker

using a classification-lock pre-trained featuremap. Themap utilizes

SegNet to initiate the neural network and assists the tracker

in constructing a discriminative model of the target individual
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FIGURE 1

The architecture of the proposed tracker. The discriminative geometric model (DGM) in Figure 2 outputs the foreground posterior (FP). Figure 3

shows the discriminative correlation filter (DCF), which produces a clustered foreground (CF). Figure 4 depicts the upsampling mechanism.

(Szegedy et al., 2017; Gao et al., 2018; Li et al., 2018; Wang et al.,

2018; Howard et al., 2019; Zhang et al., 2021).

In scenarios where there are multiple instances within the

same scene, it becomes difficult for the person-following robot to

distinguish the foreground from the background. To resolve this

issue, we used the well-established architecture of discriminative

correlation filters to construct a probability map of the target’s

anticipated position in the scene in the following frame. This
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approach enabled the proposed tracker to focus on a distinct target

among similar foreground noises, effectively handling overlapping

situations during tracking (Wang et al., 2019; Koide et al., 2020;

Zhan et al., 2020).

Future motion planning is another crucial aspect for person-

following robots to pre-emptively plan their navigation path. Most

existing robots, however, react to a person based on position

information from the previous few frames. This strategy entails

significant computational costs and inefficiencies due to the

unpredictability of human motion. We proposed that human

motion within a person-following robot scene can be predicted

based on the pose, even from a single frame. To achieve this, we

fed the output mask of the tracker into a future motion estimation

neural network, which reused the pre-trained base net to acquire

the target’s features. This network then encoded the object into

binary features to output the direction and pose information of the

target (Zhang et al., 2021).

Our proposed method was subjected to rigorous evaluation

through three distinct experiments: performance assessment on

the VOT and DAVIS datasets, real-world robot operations, and a

real-time tracking task in an indoor environment. In all of these

scenarios, our approach exhibited superior performance compared

to other state-of-the-art methods. It demonstrated its robustness

in detecting the target’s speed and direction and reducing rotation

errors during person-following tasks. Furthermore, it displayed

resilience in overcoming common challenges such as overlap,

changes in appearance, lighting conditions, and scale variations.

The proposed method, therefore, facilitates long-term person-

following in complex environments at high frame rates on

mobile platforms, thus eliminating the need for multiple human

tracking technologies.

3. The proposed tracker

This section provides a comprehensive overview of the

proposed tracking system. The general framework of the tracker,

as shown in Figure 1, comprises four integral components: a

single-shot segmentation tracker, a discriminative correlation filter

DNN, a feature merging and upsampling mechanism, and a future

motion DNN.

In our method, the foundation was laid by the Single-Shot

Segmentation Tracking Neural Network (SSTNN). The SSTNN

operates on a “tracking by segmentation” approach, which allows

the network to track targets at the pixel level. This strategy

provides a fine-grained description of the target, a significant

leap from conventional region of interest (ROI) output methods.

SSTNN, with its fully convolutional architecture, processes the

images in one pass and generates pixel-wise segmentation maps.

The precisely delineated boundaries around the target, facilitated

by this segmentation, provide the tracking mechanism with

increased accuracy.

The classification-lock (CL) pre-trained layer was introduced

to ensure the model’s resilience to drastic changes in the target’s

appearance. This layer was meticulously trained to identify human

shapes and forms, acting as an insurance policy against the

potential anomalies introduced by dramatic changes in the target’s

appearance. By constraining the model of the target to the human

form, the CL pre-trained layer safeguards the tracking process

from being derailed due to significant appearance deviations

across frames.

The discriminative correlation filter (DCF) acts as the

workhorse of our tracking mechanism. DCFs are trained to

differentiate between the target and its surroundings. They

collaborate with the SSTNN, refining the tracking focus to prevent

the mistracking of similar targets and efficiently manage occlusion

scenarios. DCFs contribute to improving foreground-background

differentiation, thereby increasing tracking accuracy.

These elements, when working in concert, result in robust

tracking performance. The SSTNN creates a precise and accurate

representation of the target through segmentation. The CL

pre-trained layer ensures the consistency of this representation

across frames, even in scenarios with substantial appearance

changes. Simultaneously, the DCF separates the target from its

surroundings, intensifying the tracking focus. Together, they form

an adaptive, accurate, and robust tracking system capable of

overcoming common challenges in person-following tasks.

3.1. Single shot segmentation tracking

Achieving robust target segmentation in a visual tracking DNN

necessitates spatial constraints via feature-based discriminative

classification. The single shot segmentation tracking neural

network introduces a discriminative geometric model (DGM) that

employs two feature sets to generate feature vectors related to the

target person (foreground) and the background.

The ResNet 50, pre-trained with ImageNet, serves as

the backbone neural network, providing robust features for

segmentation. As our proposed method is designed for person-

following tasks, we fine-tuned the pre-trained basenet with a

semantic segmentation DNN, which is pre-trained on a human

appearance dataset. We aimed to lock the classification of the

target as a person by utilizing a classification-lock pre-trained

layer. The dimensional space was decreased using 3× 3× 128 and

3× 3× 64 convolutional layers (with batch normalization and Relu

as defaults).

As depicted in Figure 2, the foreground and background

models were initialized in the first frame by extracting the

foreground feature vectors from the target regions (XF) and their

surrounding neighborhoods for the background (XB). A region

searching algorithm was employed during tracking to compare the

extracted foreground and background features with the XF and XB

of the DGM, utilizing cosine similarity to determine the similarity

channels F and B for tracking.

During tracking, the region searching algorithm was used to

compare the extracted foreground and background features to the

XF and XB of the DGM with cosine similarity to determine the

similarity channels F and B for the following. The formula is defined

as follows:

SFij

(
yi, x

F
j

)
=

〈
ỹi, x̃Fj

〉
(1)

where each feature yi extracted at pixel i is compared to all feature

pixels xFj ∈ XF in the similarity SFij channel. Here, (̃•) represents the
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FIGURE 2

Architecture of the discriminative geometric (DGM) model.

L2 normalization. The final foreground similarity at each pixel Fi is

obtained by averaging the top-K similarities at that pixel.

Fi = TOP

((
SFij

}
j=1 :NF

,K

)
(2)

where TOP is a top-K averaging operator for a set ofNF similarities.

The background similarity channel Bi uses the same formula based

on the feature vectors xBj ∈ XB. Through this architecture, the

framework leverages features from previous frames to maintain

target tracking. With the knowledge from previous frames, the

proposed method can manage part/whole occlusion scenarios

during tracking, utilizing information from neighboring frames to

output the foreground posterior (FP).

3.2. Discriminative correlation filter DNN
and classification-lock strategy

While the discriminative geometric model (DGM) achieves

target-background differentiation via similarity comparison, it can

fail under three circumstances: (1) when there is an occlusion in the

scenes; (2) when the appearance of objects undergoes significant

transformation; and (3) when similar instances are present in the

scene. This is largely due to DGM’s inability to distinguish between

similar instances and its sole reliance on online learning, which is

devoid of classification constraints.

To navigate these obstacles, we have incorporated a

classification-lock tracking module. The classification-lock

(CL) strategy is a core element of our proposed methodology,

designed to counter the common problem of losing track during

significant changes in the target’s appearance. This strategy employs

a CL-pre-trained layer that is tailored to the semantic segmentation

of the human figure, maintaining the tracking focus regardless of

dynamic alterations in the environment. The CL strategy helps

to ensure consistent, accurate tracking in real-world scenarios by

preventing the system from deviating due to drastic appearance

transformations. This module constructs a geometric model that is

constrained to a human shape, employing a CL-pre-trained layer

and discriminative correlation filters. This allows for an effective

adaptation of the target’s discriminative features, ensuring accurate

tracking despite changes in appearance.

As seen in Figure 3, the architecture of the Discriminative

Correlation Filter (DCF) DNN was configured to ensure that

the target’s shape was representative of a human form. We

utilized the CL pre-trained layer to fine-tune the shape within

the semantic segmentation of a person’s appearance. This layer is

connected to the module through a 1 × 1 × 128 convolutional

layer. The DCF module was then utilized, equipped with PeLU

nonlinearity and a correlation response, as Kart et al. (2019).

The position with the maximum correlation was deemed to

be the most similar to the target position. However, given

that this method operates on pixel-level features, a probability

map generated by a Euclidean distance transform was employed

to establish the probable region of the clustered foreground

(CF) target.

Through this architecture, the DGM provided discriminative

segmentation features based on a few previous frames to segment

the discriminative target in the foreground. Meanwhile, the DCF

provided the focus of the tracking to avoid mistracking similar

targets and manage occlusion scenarios. The CL-pre-trained layer

restricted the discriminative target against appearance changes,

ensuring accurate and consistent tracking.

3.3. Feature merging and upsampling

In the tracking process, our system encapsulated the distinctive

model of the tracked individual into a feature map of minimal
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FIGURE 3

Architecture of the discriminative correlation filter (DCF) DNN.

FIGURE 4

Architecture of feature merging and upscaling.

size, necessitating a mechanism to restore the original size of

the segmented feature map. A schematic representation of this

procedure, which includes both feature merging and upscaling, is

provided in Figure 4.

At first, features derived from the discriminative correlation

filter (DCF) and the discriminative geometric model (DGM), both

of which are secured by a classification-lock pre-trained layer, were

combined. To interpret the newly merged feature map, we used a 3

× 3× 128 convolutional layer.

Following this, a succession of upscaling processes were

executed, with each step using a deconvolution layer with an

upscale size of 2, which was subsequently followed by a 3 × 3

convolution layer. This convolution layer is characterized by a

progressively decreasing depth. Furthermore, it is essential to note
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FIGURE 5

Architecture of future motion estimation.

that each convolution and deconvolution layer is accompanied by

a Rectified Linear Unit (ReLU) and batch normalization (BN).

Finally, at the peak scale, the neural network generated an

output via a 1 × 1 convolution layer, which was then followed by

a Softmax function. This function enables the representation of the

foreground target at the pixel level. Upon reaching this stage, the

single shot segmentation tracker’s operation comes to a conclusion,

providing as its output the tracked individual encapsulated within

a boundary.

3.4. Future motion estimation

With the boundary of the target individual now isolated,

our next step involved predicting the target’s future movement

for the control module. In this process, we employed a

future motion (FM) deep neural network (DNN) dedicated

to improving future estimation. This network is unique in

its ability to exceed two specific classifications: direction and

action. Specifically, the FM neural network handles an image

where only the individual is present in the scene. The structure

of our proposed FM network is visually demonstrated in

Figure 5.

Starting with the input segmentation mask, the mask region

on the RGB image was utilized to crop it. This was done by

extracting the top left, top height, width, and height parameters.

After cropping, the area was resized to 224 by 224, ready for input

into the ResNet50. From here, we employed the pooling 5 layers

to fine-tune our future estimation neural network. A 1 × 1 × 256

convolutional layer served to adapt the features originating from

the base network. Following this, the features were decoded using

three fully connected layers.

We used two ordinal regressions to illustrate the directions and

actions of the target. The future direction of the target was broken

down into eight directions:

N (c0), NE (c1), E (c2), SE (c3), S (c4), SW (c5), W (c6), and

NW (c7). Nonetheless, directly representing eight directions is

FIGURE 6

Architecture of the clockwise model.

a challenging task for the feature map. To counteract this,

we applied a binary classification to determine the direction,

utilizing true and false descriptions. For direction estimation,

f0, f1, f2, f3, with the numbers 1 and 0 symbolizing

the direction.

As shown in Figure 6, directions NE, E, SE, and S are

labeled 1, with all other directions labeled 0. The final

direction is determined by summing the f values to estimate

the final direction of the target, based on a cyclic order. In

addition to direction, we implemented the same rule for

speed estimation. This involves two binary classifiers used to

estimate the motion status of the individual—whether they

are moving fast, slow, or stationary. At this stage, we have

successfully laid out the framework for person-following and

future motion estimation.
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4. Experiment

This section delineates the testing of our proposed framework’s

performance and efficiency. Initially, the tracker was evaluated

utilizing the public object tracking benchmarks (Perazzi

et al., 2016; Kristan et al., 2018), and compared with other

contemporary trackers. Next, the efficiency of future motion

estimation was assessed with and without the tracker. Lastly,

the framework was implemented on a real robot platform for

long-term person-following.

4.1. Implementation details

The models were trained on a desktop computer equipped with

an AMD Ryzen 9 3900X CPU, 64 GB of memory, and a Titan RTX.

The same computer was also employed for dataset evaluation. The

model trained on this platformwas then tested on the mobile robot.

Considering the high-resolution dataset, the input size for tracking

was selected as 768× 512. For testing on themobile robot platform,

the input size was set at 384× 256 to ensure high FPS.

4.1.1. Tracker
For visual tracking, we employed ResNet 50 as the backbone

network to provide pre-trained features. The YouTube-VOS

dataset (Xu et al., 2018) t was used as the training segmentation

sequences, where a training sample is generated by following a pair

of images with correspondingmasks within the last 25 frames of the

video. The tracker was trained using 64 image pairs over 80 epochs

with 5,000 iterations per epoch. The Adam optimizer, starting with

a learning rate of 10−3 that decays by 0.5 every five epochs, was

used. The training loss was defined by the cross-entropy between

the predicted and ground-truth segmentation masks.

4.1.2. Classification-lock
The classification-lock DNN was trained using image pairs

from the YouTube-VOS containing human shapes, along with

some of our own labeled images. A total of 2,625 images were

annotated. We followed the SegNet architecture, which provides

end-to-end training for the network to segment humans in the

scene. The Adam optimizer was used, starting with a learning rate

of 10−4 that decays by 0.5 every five epochs. The training loss was

defined similarly to the tracker.

4.1.3. Future motion estimation DNN
This network was trained on a labeled instance dataset that

extends the one used for the classification-lock pre-trained DNN

by adding speed and direction labels. This DNN utilized the SGDM

optimizer with 0.9 momentum, a 0.1 dropout rate, and 150 epochs,

starting with a learning rate of 10−4and a decay rate of 0.1 every

10 epochs.

4.2. Visual tracking evaluation

First, we tested the proposed tracker on the open source

datasets VOT16/18, YouTube-VOS, and DAVIS video datasets to

qualitatively evaluate its results. As the experiments are intended to

be used in the person-following robot environment, we employed

the evaluation merit in Zhang et al. (2019), which uses the

scale and location errors to represent the quantitative results.

We compared the proposed tracker with GOTURN (Gundogdu

and Alatan, 2018), CFCF (Held et al., 2016), PRDIMP (Danelljan

et al., 2020), and Siamese (Chen et al., 2020) in the selected

video datasets. One issue remained: the compared methods and

evaluation merits were in the bounding box output, but the

proposed tracker was in the segmentation output. To allow

it to be compared with the above methods, all segmentation

masks were generated by a bounding box with min x, max y,

width, and height, so as to generate a bounding box on the

scene. To evaluate the results of segmentation, we compared

the tracker with the state-of-the-art methods, SiamMask (Wang

et al., 2019), and D3S (Lukezic et al., 2020) in the Davis video

dataset with IoU, which is a common segmentation merit. It

should be noted that only human-related sequences were used for

the evaluation.

The results of our experiments are documented in Table 1 and

Figure 7. Here, MP denotes the mean average precision rate with

respect to location error, and MS represents the mean average

accuracy concerning scale error. NCL and WCL indicate the

absence and presence of a classification-lock pre-trained layer,

respectively, while FPS refers to frames per second, with “p”

representing the location and scale error distances in pixels.

These experiments were designed in response to the operational

requirements of a person-following robot, which needs to track

an individual situated in the center of its field of vision and

maintain a distance contingent on the person’s scale. Thus, an

accurate MS and MP are crucial for pinpointing the target

within the scene. The results vindicate the effectiveness of the

segmentation-based trackers.

Without the classification-lock pre-trained layer, our proposed

method showed location errors of 0.42, 0.65, and 0.81 across 5–20

p location error distances. This significantly outperformed ROI-

based trackers, especially as location error distances decreased.

In stark contrast, traditional methods like TLD and CMT

demonstrated extremely poor accuracy (around 0.1 in MP < 5 and

MS < 5), despite achieving over 100 FPS. The segmentation tracker,

with its more detailed human shape representation, allowed for

more accurate target positioning.

In terms of scale error comparison, our proposed tracker

without the classification-lock pre-trained layer achieved scale

distance errors of 0.32, 0.51, and 0.82 from 5 to 20 p, akin to

those achieved with ROI-based methods. This can be attributed

to unavoidable segmentation noise during the generation of

the foreground and background discriminative models, leading

to similar accuracy in scale error distances. However, upon

employing the classification-lock pre-trained layer, the accuracy

of the proposed method improved significantly, with MP values

increasing to 0.47, 0.73, and 0.86 from 5 to 20, and MS values

rising to 0.35, 0.60, and 0.85, respectively, from 5 to 20. This
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FIGURE 7

Visualization of the results in the VOT and Davis datasets.

underscores the benefits of using a human shape feature map to

lock the classification for long-term tracking, providing robustness

in person-following scenarios.

The visual evidence in Figure 7 also confirmed the proposed

tracker’s ability to overcome common person-following challenges.

These include handling multiple foreground targets, drastic

changes in appearance and background, changing scale,

occlusions, and complicated background noise. The proposed

tracker effectively navigated these challenges, mainly due to the

classification-lock pre-trained layer, which provided the pre-trained

human shape, minimizing appearance as an outlier factor.

As shown in Table 2, we also applied general merits from

VOT 2016/18 and LaSOT to assess our method using only human

items. These results further support the efficiency of the proposed

method, as evidenced by our superior scores in EAO, accuracy, and

robustness. In contrast, traditional methods such as TLD and CMT
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TABLE 1 Performance metrics for VOT 16 and 18 person objects.

Method MP (5 p) MP (10 p) MP (20 p) MS (5 p) MS (10 p) MS (20 p) FPS

TLD 0.07 0.38 0.56 0.13 0.52 0.62 352.4

CMT 0.13 0.40 0.51 0.23 0.48 0.55 98.1

SPM 0.24 0.53 0.68 0.28 0.51 0.60 132.7

ATOM 0.18 0.51 0.72 0.23 0.48 0.67 29.0

GOTURN 0.15 0.52 0.77 0.20 0.43 0.63 164.0

ASRCF 0.24 0.57 0.76 0.22 0.45 0.72 27.1

CFCF 0.32 0.59 0.82 0.37 0.62 0.83 2.8

PRDIMP 0.34 0.57 0.84 0.35 0.57 0.81 43.2

SiameseRPN 0.28 0.62 0.83 0.36 0.55 0.79 37.7

Ours (NCL) 0.42 0.65 0.81 0.32 0.51 0.82 18.2

Ours 0.47 0.73 0.86 0.35 0.60 0.85 17.8

TABLE 2 Results of VOT 2016/2018 with only human items.

EAO Accuracy Robustness

TLD 0.245 0.44 0.381

CMT 0.251 0.47 0.354

CMT + SegNet 0.135 0.40 0.532

SPM 0.353 0.54 0.271

ATOM 0.425 0.51 0.211

GOTURN 0.267 0.47 0.265

ASRCF 0.375 0.54 0.215

CFCF 0.354 0.56 0.225

PRDIMP 0.320 0.49 0.235

SiameseRPN 0.391 0.57 0.245

SIAMMask 0.463 0.64 0.210

D3S 0.503 0.67 0.154

SIAMRPN+ SegNet 0.328 0.45 0.288

Ours (WT) 0.510 0.68 0.144

Ours 0.538 0.70 0.140

fail miserably, showing significantly lower scores. Our proposed

method, even without the classification-lock strategy, achieved

impressive results, with an EAO of 0.510, accuracy of 0.68, and

robustness of 0.144. These metrics are further improved with the

classification-lock strategy, obtaining an EAO of 0.538, accuracy of

0.70, and robustness of 0.140.

Similar findings are reflected in the LaSOT dataset. Traditional

trackers TLD and CMT continue to underperform, while

DNN-based trackers with ROI output, such as SPM, ATOM,

PRDIMP, and SiameseRPN, significantly outperform them. This

highlights that traditional trackers and DNN-based trackers

with ROI outputs struggle to handle complex human poses,

while our proposed method significantly improves human

tracking results.

TABLE 3 Results of LaSOT with only human items.

Precision Norm. Prec. Success (AUC)

TLD 40.8 48.2 45.5

CMT 42.7 47.8 44.9

CMT+SegNet 35.0 41.8 42.1

SPM 52.0 56.1 51.7

ATOM 51.3 54.8 49.9

PRDIMP 56.6 60.2 53.5

SiameseRPN 57.5 62.8 56.9

SIAMMask 59.1 64.3 60.2

D3S 61.3 66.0 58.2

SIAMRPN + SegNet 47.9 52.1 48.7

Ours (WT) 62.9 68.3 61.7

Ours 65.1 70.2 62.4

TABLE 4 Performance metrics on Davis with only human items.

Method mIoU (%) FPS

SiamMask 72.3 63.0

CMT + SegNet 35.1 25.0

SiamRPN + SegNet 42.0 16.8

D3S 76.8 35.6

Ours (384× 256) 80.2 36.4

Ours-HP (384× 256) 78.0 108.6

Ours (768× 512) 84.5 17.8

Ours-HP (768× 512) 83.1 65.7

To further delve into the merits of tracking-by-segmentation

methods, we examined the Davis and YouTube-VOS datasets.

As shown in Tables 3–5, here, our tracker attained 84.5 and

81.0% mIoU in Davis and YouTube-VOS respectively, vastly
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TABLE 5 Performance metrics on YouTube-VOS with only human items.

Method mIoU (%) FPS

SiamMask 67.2 63.2

CMT + SegNet 40.5 23.5

SIAMRPN + SegNet 43.5 17.5

D3S 72.5 35.7

Ours (384× 256) 76.3 36.2

Ours-HP (384× 256) 74.5 112.3

Ours (768× 512) 81.0 17.9

Ours-HP (768× 512) 79.9 68.6

outperforming D3S and SiamMask. Although the FPS of our

method is lower, it is mainly due to the doubling of the

input resolution. With the same input size (384 × 256), our

method obtained a mIoU of 80.2%/76.3% and an FPS of

36.4/36.2, surpassing the state-of-the-art methods. Employing

TensorRTX with half-precision settings, our method attained real-

time functionality on robots while suffering only a 2% reduction

in accuracy.

When considering the unique strengths and applicability of

our “tracking-by-segmentation” approach, it is paramount to

understand that this technique delivers superior performance in

capturing precise representations of a target’s appearance, an aspect

that is crucial in person-following tasks.

Unlike ROI-based methods, which often struggle to accurately

capture the target’s distinctiveness within the scene, our approach

adeptly addresses this challenge. This is achieved by taking

advantage of segmentation rather than relying solely on the basic

bounding boxes used by most current methods.

The advantage is not merely a technical nuance but results in

a substantial improvement in the practical performance of person-

following tasks. The segmentation method provides a more refined

understanding of the target’s shape and characteristics, enabling

the system to maintain effective tracking even when dealing with

significant variations in appearance, scale, and pose.

Furthermore, the unique strength of our method lies in

its adaptability and robustness to complex environments, which

pose a significant challenge to traditional ROI-based methods.

Our approach ensures consistent performance in scenarios

like handling occlusions, changes in lighting, or background

noise, resulting in improved tracking accuracy and overall

system stability.

As our comprehensive set of experiments on various

challenging datasets suggests, our approach outperforms

its counterparts. The “tracking-by-segmentation” technique

represents a paradigm shift in dynamic tracking for person-

following robots. This comparison aims to illustrate the

substantive contribution of our method compared to existing

state-of-the-art solutions.

Finally, we compared the performance of our method using

different base network architectures, such as ResNet 50, ResNet

18, MobileNet V3, and Inception V4, on the Davis dataset. The

method using ResNet 50 achieved the most balanced performance

and was therefore selected as the base network. Overall, the

TABLE 6 BaseNet selection in DAVIS.

Method mIoU (%) FPS

ResNet 18 79.2 30.4

Inception V4 84.8 6.9

MobileNet V3 72.6 36.0

ResNet 50 84.5 17.8

proposed framework demonstrates robustness in overcoming

common challenges regarding person-following. Nevertheless, it

is essential to conduct real-world robot experiments to further

evaluate the performance of the proposed method, as shown in

Table 6.

Another concern is the basenet selection. We compared the

proposed method in ResNet 50, ResNet 18, MobileNet V3, and

Inception V4 in the Davis dataset. The results are shown in Table 3.

Themethod using ResNet 18 obtained 79.2%mIoU and can operate

at 30.4 FPS. Although the FPS of ResNet 18 is higher than that of

ResNet 50, the accuracy is 5% lower. The Inception V4 obtained

84.8% mIoU and 6.9 FPS. Although the accuracy is higher than

the proposed basenet, the FPS is too slow to operate on the

mobile platform. Mobilenet V3 obtained 72.6% mIoU and 36.0

FPS. Although the FPS is much faster than the proposed method,

its accuracy is the lowest among the compared methods. In the

evaluation, ResNet 50 obtained the most balanced performance, so

we selected ResNet 50 as the basenet.

4.3. Evaluation of a real-world robot
platform

We constructed and employed a mobile robot platform for

real-world robot experimentation. We evaluated the future motion

estimation experiment in conjunction with real-world person-

following tasks on this platform. The robot was built on an

underpinning and outfitted with eight independent suspensions

and steering wheels for all-terrain movement. The robot’s body

had a stable lifting capacity, ranging from 100 to 150 cm, to

adjust the camera’s view of the human subject. The robot’s visual

system utilized a ZED camera to gather both RGB and disparity

information from the scene. A laptop computer with an I7-9850H

CPU, 32 GB of DDR-4 memory, and a mobile RTX 2080 served as

the robot’s control unit. The overall person-following framework is

illustrated in Figure 8.

The robot subscribes to the nodes from the stereo camera,

encoding them into RGB and depth signals. These RGB signals are

then input into the tracking module to track the target. The module

provides two outputs: motion estimation and target boundary

masks. The extracted target mask is merged with the depth signal,

and the center of mass is chosen as the target’s position. The mean

value of the pixels of themask region on the depthmap is calculated

to determine the distance to the target. This position and depth

information is then fed to the control module, together with the

speed and direction data from the motion estimation.
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FIGURE 8

Framework of the robot platform.

In our system, we utilized a classic Proportional-Integral-

Derivative (PID) controller, due to its low computational overhead,

ease of implementation, and reliability in real-time control

on mobile platforms. While we acknowledge the potential of

methodologies like Shi et al. (2023a) and Shi et al. (2023b),

their real-time applications on limited-resource platforms remain

challenging. We applied the penalty from future motion estimation

(speed and direction) to adjust the robot’s rotation and speed.

Initialization was performed remotely, using a mobile phone

connected to the laptop computer to provide an initial bounding

box. The system did not incorporate a re-detection module as

the tracking-by-segmentation DNNs should, in principle, not lose

tracking. The robot was set to maintain a fixed distance of 1.5 m

from the target person, and it considered the task completed when

the distance was reduced to <0.5 m and the person was facing

the robot.

Subsequently, we assessed the future motion estimation feature

in the robot system. We used the precision rate to evaluate whether

the speed and pose were correct duringwhen it comes to real-

world robot deployment tracking based on a real person-following

video with 1438 frames. We compared our method with several

existing ones, such as the ones by HOG (Dalal and Triggs, 2005),

ACF (Dollár et al., 2014), Gao et al. (2018), and Kim et al. (2019).

Our method demonstrated considerable accuracy and performance

improvements over traditional methods, as shown in Table 7.

We attributed these improvements to the advantages our

method has over traditional ones with the future motion

estimation dataset (Kim et al., 2019). The comparative data is

detailed in Table 7, which demonstrates the varying levels of

accuracy between different methods. Traditional feature-based

methodologies typically employ a combination of a sliding window

approach and a classifier to determine speed and direction.

However, even though they can function at over 60 frames per

second (FPS) exclusively using the CPU, the accuracies they yield

in both speed and direction estimation are considerably lacking.

Notably, Histograms of Oriented Gradients (HOG) and Aggregate

Channel Features (ACF) methods fall into this category.

On the other hand, convolutional neural network (CNN)-

based techniques, such as those proposed by Gao et al. and

Kim et al. showcase improved accuracies surpassing 0.6 in both

TABLE 7 Evaluation of future motion estimation.

Method Speed Direction FPS

HOG 0.32 0.42 62

ACF 0.42 0.47 58

Kim et al. 0.60 0.61 51

Gao et al. 0.61 0.60 50

Ours 0.85 0.86 243

categories, and they achieve approximately 50 FPS when employing

the GPU. Nevertheless, these methods present their own set of

challenges when it comes to real-world robot deployment. Two

major obstacles can be identified: first, they consume considerable

GPU resources, which can adversely affect the functioning of

other operational components within the robot’s operating system.

Second, the accuracy they provide is not consistently reliable, which

in turn complicates the decision-making process for robot control.

Another fundamental shortcoming lies in target localization.

These methods necessitate the identification of potential target

positions and regions before classifying speed and direction,

which substantially delays response times. In contrast to these

methodologies, our approach relies on continuous tracking derived

from tracking-by-segmentation results. This strategy significantly

reduces computation time and guarantees a high level of speed

and direction estimation as only a few proposals are required

for detection.

Our method achieves superior accuracy rates of 0.85 for both

speed and direction, operating at a higher frame rate of over 240

FPS. This evaluation reinforces the conclusion that our approach is

the most suitable for person-following robots, given their superior

performance and efficiency.

In the att ached demo videos, we have performed a comparative

evaluation of the use of traditional trackers such as CMT, ROI-

based trackers based on DNNs (SiamRPN), general tracking-by-

segmentation trackers (D3S), and our method on a real-world

robot movement. The CMT failed due to loss of tracking caused

by sensitive background. The SiamRPN also failed due to the
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FIGURE 9

Rotation and stop sample.

limitations of ROI in accurately describing human appearance.

D3S also encountered issues due to low FPS and false positive

appearance boundaries during tracking. In contrast, our method

with the classification-lock strategy maintained the focus on

the human target and provided a robust tracking result to the

controller. Demo is shown on Figure 9.

Our system’s effective handling of the robot’s rotation is

largely due to the incorporation of future motion estimation.

When the robot is tracking the target, it is not uncommon for

the target to make abrupt changes in direction. Without future

motion estimation, these sudden changes can cause the robot

to overcompensate in its rotation, often leading to inefficient

movement or even losing sight of the target altogether.

However, with the future motion estimation implemented in

our model, the robot is able to predict these sudden turns. This

allows the robot to adjust its rotation more smoothly, resulting in

less drastic rotations and closer adherence to the target’s path. The

importance of this feature is highlighted in Figure 10, which shows

a marked difference in the degree of rotation when future motion

estimation is employed compared to when it is not.

Furthermore, our future motion estimation DNN provides an

accurate motion estimation indicator for the control module. This

facilitates more optimal motion tracking, as it equips the robot with

the ability to accurately anticipate the target’s motion and plan its

route accordingly.

Moreover, the tracking module consistently tracks the target

despite changes in appearance, rotation, and in scale. This is

demonstrated in the accompanying videos, where the robot is

shown successfully following the target even as it moves, rotates,

changes shape, and experiences varying lighting conditions in a

complex environment. This combination of the tracking module

and future motion estimation ensures robust, efficient tracking in

real-world conditions.

In the second video, we can observe that the robot robustly

tracks the person even when the individual frequently overlaps

with another person. This is because the tracking-by-segmentation-

based tracker allows for pixel-level tracking, which is not affected

by overlapping, and still maintains focus on the correct target to

ensure robust following.

Through the two videos, we demonstrated that the proposed

method robustly tracks the target person in a complex indoor

environment, overcoming various challenging influences. The

results support our assertion that the classification-lock strategy

combined with tracking-by-segmentation keeps the tracker’s focus

on the human, ensuring reliable tracking results for the controller.

This makes our method particularly well-suited for person-

following tasks on real-world robot platforms.

5. Demo

The detailed demo can be found at:

https://1drv.ms/u/s!AgR9F-D39FR-zBROVPTb2D-AzLgO?e=

AddEMi.

6. Conclusions and discussion

Throughout this manuscript, we have detailed an innovative

approach to person-following robots that interweaves aspects of
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FIGURE 10

Person-following video.

visual tracking, object segmentation, pixel-level classification-lock

strategy, and future motion prediction to achieve remarkable

performance improvements.

Our proposed framework significantly outperforms existing

solutions on the VOT, LaSot, YouTube-VOS, and Davis datasets,

especially in the context of human tracking. The novel introduction

of the classification-lock strategy, reinforced by a pre-trained layer

within the architecture, has resulted in a significant improvement

in tracking accuracy. This is further underscored by the tracker’s

precision in handling the complex nature of person-tracking.

The future motion estimation aspect of our deep neural

network (DNN) has provided convincing evidence of its capability

to offer precise estimations during tracking. This foresight,

particularly in anticipating rotations, has significantly improved

the robot’s ability to adapt and respond to changes in both the

environment and the target’s behavior.

We also conducted real-world robot testing, which showcased

the tracker’s impressive ability to maintain continuous tracking,

even in the face of common challenges like occlusion. This

practical validation highlights the robustness and applicability of

our proposed solution in complex environments.

However, we acknowledge that an exploration of potential

challenges and subtleties in more dynamic environments, such as

industrial or outdoor settings, remains to be done. Future research

may focus on enhancing the robustness of our tracking system

under different conditions and striking an optimal balance between

prediction accuracy and computational efficiency.

In conclusion, our research offers a groundbreaking approach

that fuses tracking-by-segmentation with future motion estimation

to dramatically increase the robustness and efficiency of person-

following tasks in indoor service robots. This pioneering work,

combined with our reflections on the methodology in comparison

with existing approaches and suggestions for future research

directions, contributes to the body of knowledge in this field and

could set a new standard for future studies.
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