
TYPE Original Research

PUBLISHED 27 November 2023

DOI 10.3389/fnbot.2023.1260999

OPEN ACCESS

EDITED BY

Silvia Tolu,

Technical University of Denmark, Denmark

REVIEWED BY

Erica Volta,

E.O. Galliera Hospital, Italy

Niclas Kaiser,

Umeå University, Sweden

Tony Belpaeme,

Ghent University, Belgium

*CORRESPONDENCE

Maryam Alimardani

m.alimardani@tilburguniversity.edu

RECEIVED 18 July 2023

ACCEPTED 23 October 2023

PUBLISHED 27 November 2023

CITATION

Alimardani M, Duret J, Jouen A-L and Hiraki K

(2023) Social robots as e�ective language

tutors for children: empirical evidence from

neuroscience. Front. Neurorobot. 17:1260999.

doi: 10.3389/fnbot.2023.1260999

COPYRIGHT

© 2023 Alimardani, Duret, Jouen and Hiraki.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Social robots as e�ective
language tutors for children:
empirical evidence from
neuroscience

Maryam Alimardani1*, Jesse Duret1, Anne-Lise Jouen2,3 and

Kazuo Hiraki2

1Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands,
2Department of General Systems Studies, The University of Tokyo, Tokyo, Japan, 3INSERM

UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France

The aim of the current study was to investigate children’s brain responses to

robot-assisted language learning. EEG brain signals were collected from 41

Japanese children who learned French vocabularies in two groups; half of

the children learned new words from a social robot that narrated a story in

French using animations on a computer screen (Robot group) and the other

half watched the same animated story on the screen but only with a voiceover

narration and without the robot (Display group). To examine brain activation

during the learning phase, we extracted EEG functional connectivity (FC) which

is defined as the rhythmic synchronization of signals recorded from di�erent

brain areas. The results indicated significantly higher global synchronization of

brain signals in the theta frequency band in the Robot group during the learning

phase. Closer inspection of intra-hemispheric and inter-hemispheric connections

revealed that children who learned a new language from the robot experienced

a stronger theta-band EEG synchronization in inter-hemispheric connections,

which has been previously associated with success in second language learning

in the neuroscientific literature. Additionally, using a multiple linear regression

analysis, it was found that theta-band FC and group assignment were significant

predictors of children’s language learning with the Robot group scoring higher

in the post-interaction word recognition test. These findings provide novel

neuroscientific evidence for the e�ectiveness of social robots as second language

tutors for children.

KEYWORDS

child-robot interaction (CRI), robot-assisted language learning (RALL),

electroencephalography (EEG), functional connectivity (FC), Phase-Locking Value

(PLV)

1 Introduction

Social robots have the potential to change the landscape of education as they are

being progressively integrated into learning environments (Belpaeme et al., 2018a; Van den

Berghe et al., 2019; Johal, 2020; Woo et al., 2021). Multiple studies have demonstrated the

effectiveness of humanoid social robots in promoting language learning among children; an

application domain known as Robot-Assisted Language Learning (RALL) (Randall, 2019;

Van den Berghe et al., 2019; Lee and Lee, 2022). In RALL studies, a social robot usually takes

the role of a tutor (Vogt et al., 2019) or a peer (Mazzoni and Benvenuti, 2015) in one-on-one

or group-based learning interactions to teach children new vocabulary and expressions
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in a second language (Randall, 2019). These studies often argue that

robots can be highly effective language instructors, particularly for

young children as opposed to adult learners (Lee and Lee, 2022),

because of their physical embodiment and social behavior that

not only increases engagement and motivation in this particular

user group, but also facilitates natural communication through

non-verbal gestures that ultimately improve learning gain among

children (de Wit et al., 2018; Schodde et al., 2019).

However, previous Child-Robot Interaction (CRI) studies

have predominantly employed self-reported questionnaires from

children (Kennedy et al., 2016), behavioral measures of task

engagement extracted from video recordings (Vogt et al., 2019;

De Haas et al., 2020; Lytridis et al., 2020) and post-interaction

vocabulary tests (De Haas et al., 2020; Alimardani et al., 2021) to

assess the children’s experience and learning gain during RALL.

Although questionnaires offer insights into a child’s perception of

the robot, they are not always ideal as preschoolers cannot fill out

surveys on their own and their response might be influenced by

the presence of an experimenter. On the other hand, analysis of

children’s behavior from video recordings requires considerable

effort from human annotators and while post-interaction language

tests provide a direct assessment of the learning performance, they

do not account for individual differences in the learning process.

An alternative approach to subjective and behavioral measures,

is the usage of neuroscientific methods to quantify brain responses

during CRI. For instance, using electroencephalography (EEG),

Alimardani et al. (2021) showed that the presence of a social

robot could induce higher levels of engagement in children’s brain

signals as quantified by frequency-domain features in the central

regions of their brain. In another study (Goulart et al., 2019), EEG

signals were collected from a group of children, diagnosed with

Autism Spectrum Disorder (ASD), who interacted with a social

robot. The study found a more pronounced beta-band activity in

the children’s frontal brain region when they interacted with the

robot, which was presented as evidence for activation of language

and social behavior functions that are usually impaired in this

group of children. Although only tested with adult population, EEG

brain signals have also been employed in human-robot interaction

studies to measure user attention in a learning context (Szafir and

Mutlu, 2012; Kompatsiari et al., 2018; Charpentier et al., 2022;

Vrins et al., 2022).

Among non-invasive neuroimaging techniques, EEG provides

a portable, temporally accurate and cost-effective method for

research into neural processes and hence is considered as the most

practical tool for measuring brain activity changes of children

while they engage in a learning task (Xu and Zhong, 2018).

Particularly in the context of second language learning, the CRI

field can take inspirations from past studies that have examined

EEG brain patterns of children associated with language production

and comprehension tasks (Maguire and Abel, 2013; Gaudet et al.,

2020) to investigate the impact of technology-assisted learning on

children’s brain.

When discussing neuroscience of language learning, the

traditional view holds that language processing is lateralized in

the left hemisphere, however, recent research suggests that the

right hemisphere also plays a critical role in successful language

acquisition and hence a more distributed network is activated

particularly in the early stages of second language learning (see

the review by Qi and Legault, 2020). One of the measures that

is often employed in neuroscientific literature as an indicator of

language development is functional connectivity (FC), which refers

to the degree of synchronization between different brain regions

as a consequence of their interaction and communication (Gaudet

et al., 2020; Yoon et al., 2021). In a systematic review of EEG-

based functional connectivity reports related to language functions,

Gaudet et al. (2020) observed that theta band oscillations were

associated with language development and that a larger FC across

brain regions in the theta band was indicative of better language

functions in early childhood. Additionally, multiple studies have

demonstrated that a learner’s attainment of newwords is dependent

on the left and right inter-hemispheric FC (Veroude et al., 2010;

Gaudet et al., 2020; Sander et al., 2023), providing evidence that

both hemispheres interact for a successful language acquisition.

Based on these past reports, we identified the literature gap

for neuroscientifically-grounded research in the field of CRI. If

social robots are effective language tutors, then they should be

able to activate brain networks that have been previously identified

by neuroscience literature of language acquisition (Gaudet et al.,

2020). Therefore, the current study aimed to (1) measure EEG

functional connectivity in children’s brain activity when they

learned new vocabularies in a foreign language from a social

robot as opposed to a non-social technology, and (2) probe the

relationship between children’s brain activity changes during the

learning phase and their recall of the words afterwards. Two

groups of Japanese children participated in a second language

learning task facilitated by different technology forms; one group

watched an animated story in French language on a computer

screen (Display group) and the other group watched the same

animation narrated by a NAO robot that employed gestures to

augment the storytelling (Robot group). The Display group served

as the control group for comparison with the Robot group. EEG

brain activity was recorded from both groups during the learning

task and Phase-Locking Value (PLV) between all electrode pairs

was extracted as a metric of FC (Leeuwis et al., 2021; Yoon et al.,

2021). Additionally, children’s learning performance was evaluated

in a post-interaction word recognition test. We hypothesized that

changes in EEG functional connectivity would be stronger among

children who learned a new language from a social robot than those

who learned the words from the computer screen. Additionally,

we expected that the level of FC across brain regions would be

related to the learning performance of children as evaluated by the

post-interaction word test.

2 Methods

2.1 Participants

Forty-one Japanese children participated in this experiment (22

boys, 19 girls,Mage = 5.53, SDage = 0.15). The children had no prior

exposure to the French language. Upon admission to the study,

they were randomly assigned to one of the experimental groups:

Display group (n=21) or Robot group (n=20). Children in the

Display group listened to an animated story in French that was

displayed on a computer screen in front of them (Figure 1A). The

other group watched the same animation on the screen but listened
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to the narration of the story by a NAO robot that gestured toward

the screen whenever the target word appeared in the animation

(Figure 1B). The study was approved by the Ethics Committee of

the University of Tokyo. Before the experiment started, the parents

of the children received information about the study and signed a

written consent form.

2.2 Experiment procedure

After children received instructions about the task, they were

seated in front of a computer screen in a shielded experiment

room. The experimenter adjusted the EEG cap and checked the

electrode-scalp impedance to ensure good contact and sufficient

signal quality.

The entire recording took about 7 mins. Before the learning

phase started, there was an introduction phase of 15 seconds in

which the children were greeted either by the robot or by a pre-

recorded voice. Next, the learning phase started, during which

children listened to an animated story in French and were expected

to learn three target words (pig, house andwolf in French). For both

Robot and Display groups, animated illustrations of the story were

presented on the screen that matched the narrative. For instance,

when the word “la maison” (i.e., French word for “house”) was

verbalized, a picture of a house was shown in the animation.

The only difference between the conditions was the presence of a

NAO robot in the Robot condition, which narrated the story and

presented a rich variety of behavior to support the storytelling. The

robot was able to play audio sounds (e.g., laughs or onomatopoeia

representing a pig’s growl or a wolf ’s howling) and presented

pointing or iconic gestures whenever a target word appeared on

the screen. For instance, whenever the target word “la maison”

appeared in the narrative, the robot pointed to the animated house

on the screen (Figure 1C). Children watched the story only once

but were frequently exposed to the three target words they were

supposed to learn from the story.

Once the learning phase was over, the children participated in

a word recall test. In this testing phase, children heard a French

word in an earphone and were supposed to select the associated

picture from two choices on the screen (Figure 1D). There were 24

questions in total; half of them included one of the target words

tested against another target word or against a completely newword

(a distracter), and the other half included images of only distractor

words (e.g., duck, bear, chicken, rabbit). The percentage of all

correct answers given for either target or non-target words was then

obtained as an indicator of the children’s learning performance.

2.3 EEG recording

The brain signals were acquired by a 64-channel EEG cap

(Electrical Geodesics Inc., US) suitable for experiments with

children. The recording sampling rate was set at 250Hz. Since the

central EEG electrode (Cz) was used as the reference electrode

during the recording, this channel was reconstructed later via re-

referencing, yielding a total of 65 channels. To reduce volume

conductivity among neighboring electrodes, only 12 out of the 65

channels were selected for further analysis. These were electrodes

Fp1, Fp2, F3, F4, C3, C4, T7, T8, P3, P4, O1, and O2 which cover

pre-frontal, frontal, central, temporal, parietal and occipital brain

regions in both hemispheres as shown in Figure 2A.

The EEG signals were pre-processed in MATLAB (version

R2020b). This included manual rejection of bodily movements,

removal of low/high frequency noise components using a

bandpass filter of 4–30Hz, and finally application of Independent

Component Analysis (ICA) for removal of eye-blink artifacts

(see details in Alimardani et al., 2021). Next, using the Hilbert

Transform in the Python HyPyP library (Ayrolles et al., 2021),

EEG signals were transformed into the time-frequency domain and

decomposed into three frequency bands of theta (4–8Hz), alpha

(8–13Hz) and beta (13–30Hz) for functional connectivity analysis.

2.4 Functional connectivity analysis

The term functional connectivity (FC) refers to the relationship

between two brain regions as a result of their interaction and shared

neural patterns. There are different approaches for measuring

FC from EEG oscillations that are collected from different

electrode sites (Bastos and Schoffelen, 2016). For this study,

we employed Phase-Locking Value (PLV), which estimates phase

synchronization between two signals according to Equation 1:

PLV (t)=
1

N

∣

∣

∣

∣

∣

N
∑

n=1

ejϕ(t)

∣

∣

∣

∣

∣

(1)

In this equation, t is the time interval, N is the number of

samples and ϕ is the phase difference between two signals. PLV

produces values in the range of 0 (absence of synchronization) to

1 (complete phase locking) for every pair of EEG channels (see an

example in Figure 2B).

The current study employed 12 EEG electrodes from the

recordings and hence 66 possible pairs were established for

PLV calculation in the three frequency ranges of interest

(theta, alpha and beta). To aggregate these pairs, we considered

3 connectivity scales: Global, Intra-hemispheric and Inter-

hemispheric connectivity (Figure 3). For Global connectivity, we

took the average of PLV values from all 66 pairs as a holistic

metric of connectivity across all brain regions (Figure 3A). Intra-

hemispheric connectivity was obtained by averaging the PLV values

across the connections in each hemisphere separately; that is 15

connections in the left hemisphere and 15 connections in the right

hemisphere (Figure 3B). Finally, Inter-hemispheric connectivity

was obtained by averaging PLV values across the connections

between the 6 mirrored electrodes in the left and right hemispheres

(Figure 3C).

Since EEG metrics are susceptible to individual and

environmental factors, we conducted a baseline correction to

PLV values at each scale. That is, for every participant, we split

the 7-min recording into the first 15-second greeting phase (the

baseline) and the remaining learning phase and subtracted the

mean PLV in the baseline from the mean PLV in the learning

phase. This way, a baseline corrected PLV (hereinafter referred to as

1PLV) was computed per participant enabling a non-confounded

comparison of brain activity changes induced by the learning
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FIGURE 1

Overview of the experiment setup. Participants were divided into two groups, each experiencing one experimental condition; (A) the Display group

watched an animated story with a pre-recorded narration in French on a computer screen; (B) the Robot group watched the same animation, but the

story was narrated by a NAO robot; (C) the robot performed pointing or iconic gestures whenever a target word (e.g., la maison meaning a house)

appeared in the story; (D) after the interaction, word learning was assessed in both groups through a word recall test.

FIGURE 2

(A) Twelve EEG electrodes (indicated in red) covering prefrontal (Fp1 and Fp2), frontal (F3 and F4), central (C3 and C4), temporal (T7 and T8), parietal

(P3 and P4), and occipital (O1 and O2) regions were selected for functional connectivity analysis. (B) An example illustration of PLV values during one

second of interaction with the robot. Darker colors of red indicate higher PLV value and hence stronger connectivity between brain regions.
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FIGURE 3

Example illustration of EEG functional connectivity scales examined in this study; (A) Global connectivity was obtained by computing the average PLV

across all possible connections between 12 EEG electrodes, (B) Intra-hemispheric connectivity was computed by only averaging the connections in

one hemisphere and (C) Inter-hemisphere connectivity was estimated by averaging the PLV across homologous electrodes in the left and right

hemispheres.

FIGURE 4

Boxplots showing the Global functional connectivity per frequency band in each group. A significantly higher Global FC in the theta band was

observed in the Robot group. *p < 0.05.

task in each experimental group. In sum, for every participant,

mean 1PLV were obtained at three connectivity scales in three

frequency bands which were then compared between groups using

statistical tests.

2.5 Statistical analysis

To clarify differences between the experimental conditions, the

obtained 1PLV values and participants’ scores on the word recall

test were compared between the two Robot and Display groups.

For all variables a group comparison was conducted using either

a student’s t-test or the non-parametric equivalent Mann-Whitney

U test following the Shapiro-Wilk test of normality. The only

exception was for the Intra-hemispheric 1PLV values where two

factors needed to be considered; Group (between-subjects factor:

Robot vs. Display) and Hemisphere (within-subjects factor: Left

vs. Right). For this variable, a 2 × 2 mixed factorial ANOVA was

employed to determine the impact of experimental condition and

target hemisphere on connectivity changes. Where the assumption

of normality was violated, we used permutation-based ANOVA

(N = 10,000 simulations) using Manly’s approach of unrestricted

permutations (Manly, 2006).

To examine the relationship between functional connectivity in

each frequency band and the word recall scores, a Multiple Linear

Regression (MLR) analysis was employed to model the relationship

using four independent variables (IV); three continuous variables

(Global 1PLV in theta, alpha and beta frequency bands) and one

categorical variable (experimental groups with Display group as

the reference). To assess the goodness-of-fit of the model and

its respective predictors, the full model (consisting of all IVs)

was compared to four reduced models, each excluding one IV

at a time. The coefficient of determination (R2) and the adjusted

R2 are reported as a measure of variability explained and the

variable’s added value to the model. Additionally, to assess the

predictive quality of the model, Cross-Validation using Leave-

One-Out (LOOCV) was conducted and the Root Mean Squared

Error (RMSE) was obtained. ANOVA tests were then conducted to
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examine whether the full model significantly differed in the sum of

squared residuals (SSR) from the reduced models. The full model’s

regression can be defined as Equation 2:

y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε (2)

where y is the target variable “word recall test score”, X1, X2, X3

and X4 are the predictor variables, β0, β1, β2, β3, β4 and ε are the

coefficients and the error term, respectively.

3 Results

3.1 Global functional connectivity

Figure 4 shows the distribution of Global functional

connectivity obtained in three frequency bands for each

experimental group. Global FC was obtained by averaging

1PLV values from all possible 66 connections across 12 EEG

electrodes. A one-tailed student’s t-test indicated that the Robot

group had significantly higher theta band synchronization than the

Display group (t(39) = 1.798, p = 0.04). No significant differences

were found between the groups with respect to the alpha band

(t(39) = −1.407, p = 0.916) and beta band (t(39) = 0.153, p = 0.44)

connectivity.

3.2 Intra-hemispheric functional
connectivity

To examine Intra-hemispheric FC between groups, mixed (2×

2) ANOVAswere used to test themain effect of experimental Group

(Robot vs. Display) and target Hemisphere (Right vs. Left) on intra-

hemispheric 1PLV values in each frequency band. The results are

summarized in Table 1. As can be seen in this table, no significant

main effect and subsequently no interaction was observed between

variables in any of the frequency bands.

3.3 Inter-hemispheric functional
connectivity

The Inter-hemispheric FC was computed by averaging the

1PLV values across 6 connections between homologous EEG

electrodes. The obtained mean values were compared between

Robot and Display groups using a student’s t-test for theta band

and Mann-Whitney U-tests for alpha and beta bands due to non-

normal distribution of values in these two bands. The results are

summarized in Table 2. The tests indicated that Inter-hemispheric

FC in the theta band was significantly larger in the Robot group (M

= 0.003, SD = 0.022) than the Display group (M = −0.010, SD =

0.026), t(39) = 1.722, p = 0.047. However, no significant difference

was observed in the alpha band (MdnRobot = −0.001, MdnDisplay
= −0.019, U(39) = 151, p = 0.939), and the difference in the beta

band was only marginally significant (MdnRobot = 0.003,MdnDisplay
=−0.004, U(39)= 273, p= 0.052).

TABLE 1 Mixed ANOVA results for Intra-hemispheric functional

connectivity per frequency band.

Sum sq Df F P-value

Theta (N = 10,000)

Group 5× 10−4 1 1.518 0.223

Hemisphere (L/R) 1× 10−4 1 0.394 0.535

Group:Hemisphere 9× 10−4 1 2.444 0.123

Residual 0.0278 78 – –

Alpha

Group 0.0039 1 2.563 0.113

Hemisphere (L/R) 19× 10−6 1 0.041 0.841

Group:Hemisphere 75× 10−6 1 0.158 0.692

Residual 0.0371 78 – –

Beta (N = 10,000)

Group 1× 10−4 1 5.351 0.591

Hemisphere (L/R) 4× 10−4 1 0.163 0.129

Group:Hemisphere 3× 10−5 1 0.301 0.685

Residual 0.1401 78 – –

N, number of permutations; L, left; R, right; Sum sq, sum of squared residuals.

TABLE 2 Comparison of inter-hemispheric functional connectivity

between robot and display group in each frequency band.

Frequency
band

T/U statistic p-value Statistical test

Theta 1.722 0.047
∗ Student’s t-test

Alpha 151 0.939 Mann-Whitney U

Beta 273 0.052 Mann-Whitney U

Significant comparisons are marked in bold with ∗ .

3.4 Correlation between brain activity and
language learning

Children’s learning performance on the post-interaction word

recall test was slightly higher in the Robot group (mdn = 0.839)

as compared to the Display group (mdn = 0.708), however this

difference was not significantly different (U = 146, p= 0.07).

To assess the relationship between group’s learning

performance and their brain activity, a Multiple Linear Regression

analysis was calculated to predict children’ performance on the

word recall test based on 4 variables (i.e., Global FC in theta, alpha

and beta bands and the experimental group). All assumptions

for a Multiple Linear Regression were met. Since no significant

interaction was observed between group and 1PLV in any of the

frequency bands, the interaction terms were excluded from the

analysis. In addition to the full model, four reduced models each

excluding one predictor were regressed and their goodness-of-fit

was compared to the full model using RMSE as error measure and

R2 as the measure of the model’s contribution to prediction of

test scores.

The summary results of the models are provided in Tables 3,

4. A significant regression equation was found for the model
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TABLE 3 Model summary comparison.

Model SSR R2 R2 adj. Df
(res.)

Df
(mod.)

RMSE

Full

model

0.463 0.413 0.326 27 4 0.144

Excluding

theta

0.544 0.31 0.236 28 3 0.152

Excluding

alpha

0.467 0.408 0.344 28 3 0.137

Excluding

beta

0.504 0.362 0.293 28 3 0.145

Excluding

group

0.544 0.31 0.236 30 1 0.148

The best-fit model is the model that includes group, theta and beta functional connectivity

(marked in bold).

SSQ, Sum of Squared Residuals; adj., Adjusted; Df, degrees of freedom; res., residuals; mod.,

model; RMSE, Root Mean Squared Error.

TABLE 4 ANOVA results comparing residuals between full model and

reduced models.

Model SSR Df 1SS F p

Full model 0.463 28 – – –

Theta 0.544 27 −0.082 4.76 0.038
∗

Alpha 0.467 27 −0.004 0.241 0.628

Beta 0.504 27 −0.041 2.373 0.135

Group 0.544 27 −0.081 4.738 0.038
∗

Significant predictors that were removed from the reduced models are marked in bold with ∗ .

TABLE 5 Output of the regression for the best-fit models.

E�ect Estimate SE 95% CI p

LL UL

Intercept 0.714 0.033 0.645 0.782 0.000

Theta 3.391 1.572 0.170 6.611 0.040

Beta −5.105 3.014 –11.278 1.068 0.101

Group 0.115 0.048 0.017 0.212 0.023

Degrees of freedom (residuals)= 28, degrees of freedom (model)= 3. CI, confidence interval;

LL, lower limit; UL, upper limit.

excluding alpha band functional connectivity (F(3,28) = 6.429, p

= 0.002), with adjusted R2 of 0.344. Participant’s predicted word

test score was equal to 0.714 + 3.391 (theta FC) − 5.105 (beta FC)

+ 0.115 (group), where group was coded as 1 = Robot and 0 =

Display (see Table 5). The Robot group scored 11.5% higher on

average than the Display group. In sum, functional connectivity in

the theta band and experimental group were significant predictors

of the children’s scores in the word recall test.

4 Discussion

The aim of the current study was to explore the effect of robot-

assisted language learning (RALL) on children’ brain activity and

to elucidate the relationship between children’s brain responses

during the learning phase with their learning performance

afterwards. EEG activity was collected from two groups of children

who learned a new language either from an embodied social

robot or using a computer screen. To assess the impact of the

used technology on children’s brain responses, changes in EEG

functional connectivity (FC) was computed as a measure of

communication between different brain regions, which has been

previously associated with language learning and development

(Gaudet et al., 2020). Results indicated that children who learned

a new language from a social robot demonstrated a significantly

larger change of FC in the theta frequency band, particularly across

inter-hemispheric connections (between electrodes of the left and

right hemispheres).Moreover, children’s learning gain, asmeasured

through a post-interaction word test, could be predicted by their

theta band FC and the experimental group they were assigned

to, with children in the Robot group achieving a higher score in

the test.

These findings are consistent with previous neuroscientific

evidence that highlight the importance of theta frequency band in

language processing and development in children and adolescents

(Meyer et al., 2019). Several studies have already indicated the

prominent role of theta-band connectivity in language learning

(Doesburg et al., 2016) and production (Ewald et al., 2012).

Additionally, theta-band connectivity is known to play an essential

role in healthy language development and memory retrieval

(Meyer, 2018; Gaudet et al., 2020). Such findings are congruent

with our observation of significant synchronization of EEG signals

across distributed brain regions in the theta frequency band and its

significant relationship with better word learning (as indicated by

the MLR analysis) particularly for the children who interacted with

a social robot.

On the other hand, the results regarding stronger theta band

inter-hemispheric connectivity in the Robot group are of interest

as they challenge the traditional view that the left hemisphere

primarily houses the neural signatures of language learning (Qi

and Legault, 2020). Recent studies provide evidence that both

hemispheres contribute equally to second language processing

(Gaudet et al., 2020) and that inter-hemispheric connectivity is

implicated in second language acquisition particularly in early

stages of learning (Sander et al., 2023). Based on these findings,

we can argue that the children group who learned a new language

from the robot experienced a stronger activation of brain networks

that have been previously associated with language development

and learning.

The findings of this study provide, for the first time, a

neuroscientifically grounded evidence for the effectiveness of social

robots in facilitating second language learning. Previous research

has constantly argued for the benefit of robot tutors in child-

robot interaction to support early language development, as well as

second language acquisition (Kennedy et al., 2016; Randall, 2019;

Van den Berghe et al., 2019; Vogt et al., 2019). These studies often

argue that the physical presence (embodiment) of a robot as well as

some of its anthropomorphic features and behavior can improve

the child engagement and tutoring outcomes (Alimardani et al.,

2021) because children do not learn language just by listening

and association; rather, through social interaction (Belpaeme et al.,

2018b; Li and Jeong, 2020).

The design of the current study entails limitations that should

be considered when interpreting the results. First, the study
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employed a between-subjects design which could have impacted

the outcomes due to the inherent individual differences that exist

in both brain activity and baseline language learning skills of

children. While we tried to counter this issue by incorporating a

baseline-correction in the EEG analysis, future research should try

to minimize the impact of individual differences by considering

within-subjects design, where for example the same child is exposed

to both technology forms in two different learning sessions.

Additionally, the children in the Robot group might have been

affected by the novelty effect (Belpaeme, 2020), causing a stronger

brain response due to their first-time exposure to a social robot.

Hence, it is encouraged that future research examines the validity

of these findings when the RALL interaction is repeated over

multiple sessions.

The application of neurophysiological methods as an objective

measure of human-robot interaction (HRI) is quite scarce in the

literature. Previous research has only produced a small number of

studies that highlight the benefits of neuroimaging tools such as

EEG for objective assessment of user experience during interaction

with a social robot (Alimardani et al., 2020, 2021, 2022; Roy et al.,

2020; Yoon et al., 2021). Particularly, in the context of child-robot

interaction and evaluation of pedagogical robots, the children may

not be able to reliably answer surveys and their learning success

could be dependent on various internal and external factors that

are not directly measurable or controlled for when employing

behavioral metrics (Belpaeme et al., 2013; Nakov and Alimardani,

2022). In such scenarios, the study of neurophysiological responses

via wearable sensing technology could provide a more reliable

metric of robot’s impact on children’s interaction and learning

processes (Leite et al., 2013; Alimardani et al., 2021). Additionally,

neurophysiological measurements allow for real-time monitoring

and adaptation of robot behavior in order to maintain a learner’s

attention and engagement (Alimardani and Hiraki, 2020; Prinsen

et al., 2022; Vrins et al., 2022). Thus, the outcome of this

study on validating EEG brain activity measures associated with

language learning (such as FC) offers promising opportunities for

future research to design robot tutors that can personalize timing,

feedback strategies, and lesson content for each individual learner

using their neurophysiological data.
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