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Introduction: Muscular activation sequences have been shown to be suitable

time-domain features for classification of motion gestures. However, their clinical

application in myoelectric prosthesis control was never investigated so far. The

aim of the paper is to evaluate the robustness of these features extracted from the

EMG signal in transient state, on the forearm, for classifying common hand tasks.

Methods: The signal associated to four hand gestures and the rest condition

were acquired from ten healthy people and two persons with trans-radial

amputation. A feature extraction algorithm allowed for encoding the EMG signals

intomuscular activation sequences, whichwere used to train four commonly used

classifiers, namely Linear Discriminant Analysis (LDA), Support Vector Machine

(SVM), Non-linear Logistic Regression (NLR) and Artificial Neural Network (ANN).

The o	ine performances were assessed with the entire sample of recruited

people. The online performances were assessed with the amputee subjects.

Moreover, a comparison of the proposed method with approaches based on the

signal envelope in the transient state and in the steady state was conducted.

Results: The highest performancewere obtainedwith the NLR classifier. Using the

sequences, the o	ine classification accuracy was higher than 93% for healthy and

amputee subjects and always higher than the approach with the signal envelope in

transient state. As regards the comparison with the steady state, the performances

obtained with the proposed method are slightly lower (<4%), but the classification

occurred at least 200ms earlier. In the online application, the motion completion

rate reached up to 85% of the total classification attempts, with a motion selection

time that never exceeded 218 ms.

Discussion: Muscular activation sequences are suitable alternatives to the

time-domain features commonly used in classification problems belonging to the

sole EMG transient state and could be potentially exploited in control strategies of

myoelectric prosthesis hands.

KEYWORDS

muscular activation sequence, onset detection, hand gesture classification, pattern

recognition, transient, upper-limb amputation, hand prosthesis
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1. Introduction

Nowadays, pattern recognition of surface EMG signals is

extensively used in the recognition of human limb movements

(gait and posture) (Yao et al., 2021; He et al., 2022) and in the

classification of hand gestures (Parajuli et al., 2019; Gentile et al.,

2022), for example for the control of upper limb myoelectric

prostheses (Mereu et al., 2021). This control strategy consists in

detecting muscle activities over a well-defined region of the arm

and/or forearm and associating each pattern to predefined hand

gestures using a classifier (Ortiz-Catalan et al., 2014).

Classification strategies exploit one or multiple features

extracted from the EMG signal both in the time and frequency

domain to control handmotion (Tkach et al., 2010; Too et al., 2017;

Phinyomark et al., 2018). However, due to the high computational

cost of using features extracted from the signal spectrum, time-

domain features are usually preferred for real-time applications

(Englehart et al., 2000; Trigili et al., 2019).

In most cases, these features are extracted after the signal

reaches the steady-state (Englehart et al., 2000). This implies that

a certain amount of time is required between patient intention

and the classification of the gesture. As the maximum acceptable

time delay between intention and classification that allows the

patient not to perceive the latency of the prosthesis response

is conventionally set to 300ms (Englehart and Hudgins, 2003),

it becomes essential that (i) each EMG signal reaches rapidly

the steady-state and, (ii) the algorithm is transparent to the

signal transition from the low to the high state to minimize

classification errors in the early stage. To overcome these issues,

a possible solution may be represented by adopting a pattern

recognition approach based on the EMG signal acquired in the

transient state. Indeed, (i) the transient EMG signal presents

a deterministic pattern that could be exploited for improving

classification accuracy (Yang et al., 2012; Martínez et al., 2020) and

(ii) the transition from the low to the high state occurs earlier than

signal stabilization (flattening) during the steady-state; therefore,

the delay between patient intention and prosthesis response may

be reduced.

The transient state is identified by the time instant when the

signal exceeds the rest state: this is commonly defined as the

onset. Onset detection algorithms differ depending on how the

muscular activation thresholds are computed; such thresholds can

be related to the signal magnitude at rest (Martínez et al., 2020), to

a percentage of the maximum voluntary contraction (Solnik et al.,

2010; Thompson et al., 2012), to the signal peak (Allison, 2003;

Vaisman et al., 2010) or can be computed by mean of statistical

models (Hodges and Bui, 1996; Micera et al., 1998; Xu et al.,

2013, p. 1). Alternative approaches identify the onset by analyzing

kinematic data acquired using instrumented gloves (Santello et al.,

2002; Klein Breteler et al., 2007) or optoelectronic systems (Ricci

et al., 2015).

Using the EMG signals only, the double-threshold method,

proposed for the first time by Di Fabio (1987), is the most

extensively used for onset detection (Hodges and Bui, 1996; Micera

et al., 1998; Yang et al., 2012; Martínez et al., 2020).

According to this method, the onset is reached when the signal

magnitude exceeds the magnitude in the rest state of a fixed value

(typically multiple times the standard deviation of the signal in the

rest state), which is maintained throughout a time window with a

predefined length.

In order to use the signal onset for classification problems in

applications that rely on pattern recognition, it becomes essential

to identify the combination of (i) representative features of the

transient state (features extraction) and (ii) a classifier, which

guarantee the best classification accuracy.

Previous studies on gestures classification based on the EMG

transient frequently use features and classification algorithms that

are employed in steady state-based studies: most of the times the

features are extracted in the time domain, like the Mean Absolute

Value (MAV) (Kondo et al., 2008; Kanitz et al., 2018; Phinyomark

et al., 2018; Martínez et al., 2020; D’Accolti et al., 2023); while

as regards the classifiers, SVM (Yang et al., 2012; D’Accolti et al.,

2023) and LDA (Phinyomark et al., 2018) are often used, with

performances generally lower than the ones obtained using the

signal in the steady state.

As observed in previous studies on able-body subjects, motor

tasks are associated with a specific and unique pattern of muscular

activation sequences. For example, Ricci et al. (2015) investigated

the muscular activations of the upper limb during a combination

of reaching and grasping tasks finding repeatable sequences for

the recruitment of the motor control units associated with these

tasks; Aeles et al. (2021) applied EMG sensors on the thigh

and shank muscles to evaluate the activation patterns during

trike and gait, observing that (i) a limited number of sensors is

sufficient to differentiate among the phases of cycling and gait

cycles and (ii) the muscular activation sequences are subject-

specific. A similar approach was also used to investigate muscular

activation sequences in sport-gestures such as during the swing

phase in golf (Vasudevan et al., 2016) or the free throw in

basketball training (Pakosz et al., 2021). Due to the previous

considerations, we hypothesize that the use of muscular activation

sequences for the classification of common hand gestures may

improve the control of myoelectric prosthetic hands. However,

to the best of the authors’ knowledge, such features were never

adopted in pattern recognition applications related to myoelectric

prosthesis control.

Therefore, the aim of the present study was to evaluate the

use of the muscular activation sequences, calculated in the EMG

transient phase, as time-domain features in classification of hand

gestures. Specifically, (i) a features extraction process was developed

to encode the training dataset, (ii) the classification performances

were computed off-line and on-line on two persons with a trans-

radial amputation, (iii) a comparison with methods based on the

signal envelope in the transient state (ETS) and in the steady state

(ESS) was done.

2. Materials and methods

2.1. Study overview

The study consisted of five parts (Figure 1).

1. The EMG signals associated with four different hand gestures in

healthy and amputee subjects were acquired. The hand gestures

were “Spherical” (hand with all fingers closed), “Tip” (hand with

thumb and index finger touching to pick up a small object),
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FIGURE 1

Workflow of the activities presented in the study.

“Platform” (hand completely open and stretched), and “Point”

(hand with all fingers closed, except for the index finger that

is pointing); additionally, a “Rest” (relaxed hand) condition

was included.

2. A feature extraction (FE) process was developed to obtain a

dataset of muscular activation sequences.

3. An analysis of the activation timing and activation entity of the

sequences was performed to optimize the training dataset.

4. The refined dataset was used to compare the classification

accuracy of four different classifiers, namely Linear

Discriminant Analysis (LDA), Support Vector Machine

(SVM), Non-linear Logistic Regression (NLR) and

Artificial Neural Network (ANN), commonly used in

prosthetics. Then, we compared the approach based

on the muscular activation sequences with approaches

based ETS and ESS.

5. To validate the proposed method in a real scenario application

for prosthetic control, the classification performances were

evaluated with amputee subjects.

2.2. Experimental protocol and
data acquisition

Ten able-bodied volunteers and two experts myoelectric

prosthesis users with a trans-radial amputation took part in the

experiments after providing the informed consent. The healthy

participants (eight males and four females, aged 25÷41) were

instructed to reproduce the five gestures in a natural way.

The amputees both underwent a transradial amputation due

to traumatic causes; P1 is a 33-year-old man, with a right

amputation for 7 years and has a stump 10 cm long; P2 is a

41-year-old woman, with a left amputation for 16 years and

has a stump 8 cm long. Both amputees have been using a

myoelectric prosthesis for more than 6 years. Amputees were

also asked to perform bimanual movements because it has

been shown that it is possible to use the representation of the

missing limb in the execution of gestures and that voluntary

movements of a phantom arm impose behavioral constraints

similar to those seen in real movement, even after the arm has

been missing for more than 10 years (Franz and Ramachandran,

1998).

As there is no standard consensus about the number and

the placement of the EMG sensors, a variety of experimental

setups was adopted in the literature, in most cases constituted by

clusters of sEMG (Castellini and van der Smagt, 2013) or HD-

EMG systems (Hu et al., 2015; Stachaczyk et al., 2020) applied

in different locations on the forearm. As it was demonstrated

that a reduced number of sensors is sufficient to identify unique

muscular patterns associated with specific motor tasks (Castellini

and van der Smagt, 2013; Scano et al., 2018; Dai and Hu, 2019),

we adopted a setup composed of six sEMG as it was done in

previous studies (Bellingegni et al., 2017; Leone et al., 2019,

2023).

Therefore, the experimental setup consisted of two elastic

bracelets including six equally spaced commercial sEMG sensors

(Ottobock 13E200 = 50, 27 × 18 × 9.5mm). These sensors

provide the signal envelope as output. Furthermore, the sensors

operate in the range of 0÷5V with a bandwidth of 90÷450Hz,

a notch filter for the 50Hz (European standard frequency)

and a common rejection ratio higher than 100 dB. No further

processing/filtering of the signal was carried out. A commercial

board (NI DAQ USB 6218, National Instruments) and a dedicated

LabVIEW script (v17.1, National Instrument) were used for

signal acquisition. The sampling frequency was set at 1 kHz. The

bracelets were placed ∼5 cm below the subject’s elbow before

starting the test and consistently among all the participants (Riillo

et al., 2014); (Figure 2). Furthermore, this position was used as

it mimics what the sensors might have inside the socket of

a prosthesis.

The EMG signals from both forearms were recorded

simultaneously during the voluntary contractions associated

with each hand gesture. Each acquisition started from a “Rest”

condition, maintained for at least 500ms, and lasted 4 s. Fifty

repetitions were collected for each gesture (200 repetitions

in total) and subjects were free to take short breaks between

repetitions to avoid muscle fatigue. The signals acquired

from the 10 able-body subjects and the sound forearm of

the amputees (22 datasets in total) were used to evaluate the

offline performances of the proposed method. The signals

acquired from the impaired side of the amputee subjects (two

datasets) were used to evaluate both the offline and the online

classification accuracies.
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FIGURE 2

(A) Amputee subject during the EMG signal acquisition; (B) representative scheme of the experimental setup.

2.3. Features extraction

The dataset of each subject was randomly split as follows:

for each task, 80% of the dataset was used as training set,

while the remaining 20% served as test set. The features were

extracted from the training set following a two-steps procedure

described in Sections 2.3.1 and 2.3.2, and were used to train the

selected classifiers.

In the proposed method, the feature is obtained by converting

the signal envelope into a discrete vector of ranking of muscular

activations, named muscular activation sequence, through an

optimal conversion factor obtained with the two-steps feature

extraction procedure.

To test the trained classifiers, the test set was used after

converting the signals envelopes into muscular activation

sequences by using the optimal conversion factor computed during

the training phase.

2.3.1. Threshold tailoring
The first issue was to detect the thresholds associated with

muscle activations:

• TH_Low: it represents the value beyond which muscle

contraction can be considered voluntary and is unique for

each dataset; this value was calculated as:

THLow= µ+xσ (1)

where µ and σ represent the mean and the standard deviation

calculated in the rest state and x represents a selected real value.

Multiple values of x have been adopted in previous works where

onset detection have been computed with the double threshold

method. Most of them ranged between 2 and 5 (Hodges and Bui,

1996; Avila and Chang, 2014) but some authors adopted higher

values (Solnik et al., 2010). As the threshold is directly related to

the background noise, it is not possible to define a standard for

the x value (Crotty et al., 2021). For this reason, to set the proper

value for x, a tuning process was performed, investigating which

value allowed to obtain a number of false activation lower than

5% on average among all the acquisitions using x = 2, 5, 10, 15.

An activation was considered “false” if it occurred during the first

100ms of acquisition, i.e., during the rest phase. In our dataset the

signal amplitude in the rest phase was on average 0.012V (min

value= 0.006V, max value= 0.021V) with a standard deviation of

0.0007V (min value= 0.0002V, max value= 0.0017V). Therefore,

to obtain a number of false activations lower than 5% on average

among all the acquisitions, we used x = 15. Indeed, using x = 2,

5, 10, we obtained a number of false activations higher than 50, 12,

and 7%, respectively. To avoid considering spurious activations, the

lower threshold was considered reached only if the signal exceeded

TH_Low throughout a time window of 50ms (hereafter SoA—

Start of Activation). In case the SoA was not detected, the muscle

underlying that specific sensor was considered “Not Active” (NA).

This procedure allowed identifying both the SoA and which EMG

signal never exceeded TH_Low within each acquisition.

• TH_High: it represents the value above which the muscle

could be considered actually active (hereinafter, any reference

to “activation” refers to the exceed of the TH_High). If

an EMG was considered NA from the previous step, the

relative TH_High value was set to “NA_Value” (practically

corresponding to a value not reachable by the EMG signal, i.e.,

higher than the full-scale value) for that specific acquisition.

To compute the TH_High for each EMG sensor and for

each task (resulting in a 4 × 6 matrix) an iterative process

was developed. The iterative process consisted in a nested

loop. The process was applied for each task separately. The

80% of the EMG signal peak, extracted within a time frame

of 300ms from the SoA, was computed for each sensor
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and averaged over the acquisitions, resulting in a 1 × 6

maximum TH_High vector representing the starting point of

the iterative process. The outer loop variable was the #step,

indicating how many times the maximum TH_High must be

decreased inside the inner loop for each EMG separately, in

consecutively iterations. To identify an active muscle within

300ms from the SoA, each threshold value was sequentially

decreased by 10% at each iteration, as long as the signal was

higher than 50% of the peak. Consequently, the maximum

#steps was 5. For example, using #step = 3 the TH_High

possible values, for each EMG, were 80, 72, and 64% of

the maximum EMG signal. Consequently, using #step =

3, the number of threshold combinations computed in the

inner loop was 36 (#step#EMG). Basically, all the possible

combinations of TH_High thresholds were computed for each

#step. The creation of the TH_High vector for each EMG can

be represented as shown in Figure 3.

The initial value of TH_High was the 80% of the MVC. If

TH_High had a lower value than TH_Low, NA_Value was used

to fill the EMGx TH_High vector. Otherwise, the initial value of

TH_High was the first value of the EMGx TH_High vector (i.e.,

for i= 0). Then, for a number of iterations equal to #step, this value

was decreased inside the for loop by 10% on each iteration. At every

cycle, the EMGx TH_High vector was filled with the new TH_High

value or with NA_Value, depending on whether the new TH_High

value is lower than the TH_Low or not.

2.3.2. Computation of the muscular activation
sequences

Amuscular activation sequence was obtained by evaluating the

time instant when each EMG signal exceeded the correspondent

TH_High value. The #EMG sensor was used to encode the

sequence: for example, if the “EMG4” signal was the first to exceed

its TH_High, the first element of the sequence vector was set to “4”.

If an EMG did not exceed its TH_High or if the TH_High value was

previously set to NA_Value, the relative element of the vector was

set to “0” and appended at the end of the sequence (Figure 4).

This procedure was performed for each acquisition and each

TH_High, generating a total of #step6 possible muscular activation

sequences. To obtain a single representative TH_High vector (1

× 6), the one that allowed obtaining the most repeated muscular

activation sequence was selected. This process was performed for

each task resulting in a (4 × 6) matrix of representative TH_High

and consequently in a (4 × 6) matrix of activation sequences for

each acquisition and each #step.

2.4. Dataset refinement

As the duration of the transient state of the EMG signal

from the low state to the high state may vary considerably

between acquisitions (even for the same task) (Reaz et al.,

2006), only muscular activations within 300ms from the SoA

were considered eligible for the classification. Moreover, as

muscular activation is strictly related to the hand gesture [having

that not all muscle fibers are recruited during the voluntary

contraction associated with a specific task (Clamann, 1981)], the

activation timing (i.e., how many activations occurred within

300ms from the SoA) and the activation entity (i.e., how many

EMG were active after the iterative process) were evaluated

for all the muscular activation sequences associated with the

representative TH_High.

The result of this process allowed for refining the dataset before

training, generating a dataset of partial (i.e., truncated) activation

sequences. Further details can be found in Section 3.1.

2.5. Classification

2.5.1. Intra-method comparison
Four different typically used classifiers were selected, namely

NLR, SVM (linear kernel), ANN and LDA (Kotsiantis et al., 2007;

Bellingegni et al., 2017) classifiers. All the computations were

made with Matlab (v. 2021b, MathWorks). To evaluate which

#step provided the better classification accuracy and the relative

classification timing, each classifier was trained and validated using

different input datasets (i.e., one for each #step).

The classifiers’ parameters matched those from earlier

publications by the authors (Bellingegni et al., 2017; Leone et al.,

2019, 2023).

A linear and binary supervised classification approach called

logistic regression uses the logistic function to estimate the

likelihood that a class will belong to it. To achieve a NLR

the creation of additional input, namely interaction terms, is

needed. Similar in previous studies, extra polynomial features

were included, which were derived as a combination product of

the initial input features. Then, by comparing the distribution

P(y|x) with a decision threshold (equal to 50%), class labels can

be predicted.

The supervised ANN in question is a Multi-Layer Perceptron

(MLP), where each node, or neuron, in the design implements a

logistic function. An input layer, one or more (up to five) hidden

layers with the same number of neurons, and an output layer with

one neuron for each class that needs to be classified make up the

network design.

A Radial Basis Function (RBF) kernel is used in the SVM.

A one vs. all approach was implemented to address with

the multi-class classification problem because LDA is a binary

classification algorithm.

2.5.2. Inter-methods comparison
In order to compare the proposed method with methods

based on the EMG signal envelope in the transient (ETS)

and stationary state (ESS), the initial EMG signals were

elaborated prior to be used as input training dataset.

In particular:

• For ETS the input dataset was represented by the signal

envelope comprised in a time window of 300ms starting from

SoA (similarly to Kuiken et al., 2009; Kanitz et al., 2018; Zhang

et al., 2019).
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FIGURE 3

Flow chart of the TH_High evaluation process. The process is shown for a generic EMGx.

FIGURE 4

Graphical representation of the muscular activation sequence encoding. As shown in the picture, two EMG signals (EMG2 and EMG6, marked with *)

never exceed the TH_High. Therefore, they are represented with “0” value in the sequence.

• For ESS the input dataset was represented by the MAV

extracted over a moving window of 100ms in the flatten

portion of the signal whose starting point was approximated

as the first absolute signal peak among the 6 EMG signal

envelopes within a single acquisition.

A comparison between the classification performances

of the three methods was performed thereafter with a

non-parametric (Mann-Whitney U-test) or parametric

(paired t-test) test, depending on the result of a

normality test.
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In order to compare the proposed method and the ESS method

in terms of classification timing, the elapsed time between the

SoA and the class selection timing of both methods was assessed

as follows:

• For the proposed method, the elapsed time was measured as

the temporal distance between the SoA and the end of the

partial activation sequence (i.e., the last activation);

• For ESS, an underestimation of the elapsed timewas computed

as the temporal distance between the SoA and the beginning

of the steady state approximated as the instant when the first

absolute signal peak was reached among the 6 EMG signal

envelopes within a single acquisition.

This evaluation was performed for each #step.

2.6. Online validation

To evaluate the performance of the classifier in an online

application, an additional test was conducted with the impaired

subjects, focusing on the amputee side. The test consisted of the

real-time classification of the selected tasks, randomly presented

to the subject via a dedicated software and acquired five times

each. The motion completion rate (MCR) and the motion selection

time (MST) were used as indicators of the online performances, as

done in Kuiken et al. (2009). MCR is the percentage of successfully

completed motions out of the total attempted motions. The MST is

the time taken to correctly select a target motion and was defined

as the time from movement onset to the first correct classification

(Kuiken et al., 2009).

3. Results

The series of 200 acquisitions (i.e., 50 repetitions for each

task) were correctly acquired from each subject without any

missing value.

3.1. Dataset refinement

The timing analysis showed that muscular activation occurred

within 300ms for three EMG signals per activation sequence, on

average among the four tasks, with #step= 4, 5. The first activation

occurred within 150ms from the SoA on average among the tasks

and the #steps (Table 1).

From the analysis of the activation entity, it resulted that

muscular activation occurred for three EMG signals per activation

sequence, on average among the four tasks: “Point” was the

task with the least number of activations on average (i.e., 2,

approximation to the closer integer), while “Close” was the

task with the highest number of activations on average (i.e.,

5, approximation to the closer integer). Hence, it was decided

to calculate the partial activation sequences using the threshold

vectors obtained for each of the tasks, since it is required to

compute the activation sequences using the best threshold vector

related to each gesture once the SoA has been identified. By using

TABLE 1 The elapsed time within the first three activations and the SoA.

First act
(ms)

Second
act (ms)

Third act
(ms)

#step= 2 142.53 246.96 333.22

#step= 3 128.81 228.81 316.87

#step= 4 115.91 216.11 289.46

#step= 5 104.61 207.25 282.97

this method, it was possible to identify the activation order that

was acquired with each of the four threshold vectors, resulting in

a matrix of four activation sequences (4 × 6) that are all typical of

the same task. Therefore, the dimension of the matrix of activation

sequences was refined to include the first three elements of the

muscular activations sequence vector for each task, resulting in a (4

× 3) matrix of partial activation sequences. Eventually, to encode

each acquisition with a single row vector, the rows of the matrix of

partial activation sequences were sequentially appended, resulting

in a (1 × 12) vector for each acquisition. The resulting matrix was

used as input dataset for the classification.

3.2. Classification

3.2.1. Intra-method comparison
The classification accuracy of the selected classifiers (NLR,

SVM, ANN, LDA), calculated for each #step, is shown in Table 2.

Overall, the highest performance was obtained with the NLR

classifier. The highest accuracy was obtained when 4 steps were

adopted. Indeed, with #step = 4 the differences between the

performance of the NLR classifier and the other classifiers were

statistically significant (p < 0.0001).

3.2.2. Inter-methods comparison
The performance of the same classifiers trained with ETS were

comparable with the performance obtained with the proposed

method. In particular, the accuracy differences were lower than 1%

using NLR and ANN and lower than 3% with SVM; however, using

the LDA, performances obtained with the proposed method were

significantly higher (almost 9% higher, p= 0.0004, Mann-Whitney

U-test) (Table 2).

The accuracy obtained using the ESS were generally higher than

the proposed method (with #step = 4) regardless of the classifier:

in particular, such a difference was higher than 5% using NLR and

LDA, and higher than 10% using SVM and ANN. Looking at the

classification timing, the class selection with ESS occurred 496.03±

270.53ms after the SoA, and up to 213ms later than the proposed

method on average among the tasks (Table 3).

3.2.3. Online validation
Overall, the offline performances of amputee subjects were

higher than the performances of the able-body subjects for each

classifier and each #step. The largest accuracy was obtained with

the NLR classifier and #step= 4 on average (Table 4). In particular,
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TABLE 2 The classification accuracy of the selected classifier obtained using the partial activation sequences (columns 1–4) and the EMG signal in the

transient as training dataset.

#step = 2 #step = 3 #step = 4 #step = 5 ETS ESS

NLR 90.6± 5.3 91.0± 4.7 93.1± 3.5 91.3± 3.8 92.2± 3.3 98.4± 0.9

SVM 84.9± 6.9 86.4± 6.0 87.2± 5.4 88.2± 5.1 90.0± 2.7 97.9± 1.1

ANN 86.3± 7.5 87.3± 4.7 86.9± 5.7 86.8± 5.3 87.6± 4.0 97.8± 1.2

LDA 84.3± 9.3 85.6± 7.1 87.2± 6.9 85.8± 5.7 78.7± 4.5 93.1± 2.7

All the values are expressed in percentage (%).

TABLE 3 The time di�erence between the classification obtained with the

proposed method and the one based on the steady state.

#step= 2 #step= 3 #step= 4 #step= 5 ESS

195± 97 201± 95 213± 87 211± 91 Reference

All values are expressed in milliseconds (ms).

the differences between the accuracies obtained using activation

sequences (with #step = 4) and ETS were lower than 2.5% using

NLR, lower than 20% with SVM and ANN and about 25%

using LDA. As for able-bodied, the highest accuracies were found

with ESS.

Looking at the classification timing, the class selection was

reached earlier using the activation sequences, in comparison

with ESS: in particular, for P1, classification occurred 627ms

(#step = 2), 655ms (#step = 3), 725ms (#step = 4) and

735ms (#step = 5) earlier on average among the tasks; for P2,

classification occurred 379ms (#step = 2), 440ms (#step = 3),

500ms (#step= 4) and 491ms (#step= 5) earlier on average among

the tasks.

Concerning the online performances, an MCR of 80 and 85%

was reached by P1 and P2, respectively. The “Tip” class was

recognized in 100% of cases. The MST was 218 ± 129ms and 150

± 59ms for P1 and P2 respectively (Figure 5).

4. Discussion

The aim of the present study was to evaluate the robustness

of the muscular activation sequences for the classification of

hand gestures based on pattern recognition and to assess the

performances of four common classifiers trained with the proposed

features. This represents a novelty in this field, as muscular

activation sequences were never investigated as features for

myoelectric prosthesis control so far.

The EMG signals were collected from both the forearms of

10 able-bodied subjects and 2 amputees. An algorithm for the

identification of the muscular activation sequences associated with

four selected tasks starting from the EMG signal in the transient

state was developed. The algorithm consisted of three main parts:

(i) a double threshold mechanism was used for the identification

of the onset; (ii) the identification of a representative activation

sequence for each gesture, and (iii) the encoding and refinement

of the single acquisitions.

The refined training dataset was used as input for four common

classifiers, namely NLR, SVM, ANN and LDA, and the classification

performances were compared. Furthermore, these results were

compared with the classification performances obtained using the

signal envelopes in the transient state and in the steady state.

Eventually, the proposed algorithm was tested on two persons

with trans-radial amputation in an online application.

A reduced setup consisting of only six sEMG sensors was

adopted. It has been demonstrated in past studies that the same

setup was sufficient to classify a limited number on classes with a

good accuracy (Scano et al., 2018). Therefore, in perspective, such

a setup could be easily adjusted for applications in a real scenario

of myoelectric prosthesis control, which, so far, rely on a limited

number of sensors.

The classification accuracy obtained with the activation

sequences were comparable to the ones obtained using ESS (NLR,

step = 4) and in line with past studies that relied on ETS (offline

accuracy > 90%) (Solnik et al., 2010; Yang et al., 2012; Ricci et al.,

2015; Kanitz et al., 2018; Martínez et al., 2020; D’Accolti et al., 2023;

Leone et al., 2023), demonstrating to be suitable or even better

alternatives to the commonly used features.

Considering able-bodied, the largest difference in terms of

accuracy was observed between NLR (step = 4) and LDA (step =

4), i.e., almost 9%. This may be a reflection of the ability of the

activation sequences to be less sensitive to the highly non-linear

nature of the EMG signal in the transient state. This behavior was

further confirmed with the amputees, in which differences between

accuracy were lower than 2% on average using the NLR classifier,

and up to 25% using LDA.

Overall, offline performances of healthy and amputee subjects

achieved by using the activation sequences were comparable

(Tables 2, 4). The reasons may be dual. First, from a physiological

standpoint, the muscular activation sequences mirror the motor

fiber recruitment strategy people adopt during any kind of motion,

which are extremely subject-dependent (Clamann, 1981). After

amputation, the resected muscles are rearranged in the stump and

re-innervation occur, generating new neurological pathways and

consequently new motor control strategies for the end-effector,

i.e., the prosthesis hand (Wheaton, 2017; Gunduz et al., 2020). In

our case, the amputee subjects were experienced users (at least

6 years of myoelectric use), with a (theoretically) consolidated

fiber recruitment strategy. Second, the activation sequences allow

shifting the feature extraction issues from the EMG amplitude in

the transient state, which may vary considerably within the same

subject and motion task depending, among others, on the muscle

volume (Wheaton, 2017) to an order of muscular activations, which

may be more repeatable among recruitment strategies of muscular

fibers. Therefore, despite the extremely limited amputee sample

prevent any inferential consideration, it may be possible that
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TABLE 4 The classification accuracy of the selected classifier obtained using the partial activation sequences and the EMG signal envelope in the

transient as training dataset for each trans-radial amputee.

P1 #step = 2 #step = 3 #step = 4 #step = 5 ETS ESS

NLR 91.84 92.07 95.83 97.82 92.07 99.11

SVM 90.02 90.45 90.55 95.03 72.17 96.90

ANN 90.33 92.36 93.06 94.36 71.83 96.86

LDA 92.04 93.11 93.60 95.31 64.62 94.13

P2 #step = 2 #step = 3 #step = 4 #step = 5 ETS ESS

NLR 92.47 95.74 95.79 90.66 94.57 97.06

SVM 93.03 91.39 90.89 92.36 70.28 94.71

ANN 90.14 91.36 90.23 89.29 72.06 94.93

LDA 92.20 91.08 90.58 90.36 69.32 92.82

All the values are expressed in percentage (%).

FIGURE 5

The online performance of the amputee subjects are shown: the motion completion rate—MCR (up) and the motion selection time—MST (down)

computed for each task. The tasks are: C1, spherical; C2, tip; C3, platform; C4, point.

the activation sequences represent a reliable classification feature

for prosthesis control purposes. Unfortunately, it has been never

investigated previously for the classification of hand gestures as

it was done for evaluating motion patterns in tasks that involve

upper limbs (Micera et al., 1998; Xu et al., 2013; Ricci et al., 2015)

and lower limbs (Aeles et al., 2021) or for studying sport exercises

(Vasudevan et al., 2016; Pakosz et al., 2021). Although the good

preliminary results, further investigations are mandatory to assess

if the robustness of the proposed features is stable over time or

is affected by the “classical” limb orientation problem (Campbell

et al., 2020) or by the increase of the number of classes.

In the study, we quantified the time delay between class

selection with the proposed method and ESS, which was

underestimated as the first EMG signal peak among the six EMG

signals used for motion detection. The classification delay was up

to 213ms for the able-bodied, and up to 735 and 500ms for the
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amputees (P1 and P2, respectively), on average among tasks. Such

a result arises the possibility to implement a variety of control

strategies, which combine multiple classifiers in cascade or exploit

the signal transient for classification and the steady state for non-

classification purposes. For example, past studies used features of

the transient state to classify grasping task and features of the steady

state for carrying out a finer control of the end-effector speed or

position (Kanitz et al., 2018; Martínez et al., 2020; D’Accolti et al.,

2023). Concerning the classification times, in Kanitz et al. (2018)

andD’Accolti et al. (2023) the transient-based classifier provides the

output after 300 and 200ms, respectively, starting from the onset,

in line with the proposed method, i.e., 289ms (with #step= 4).

The online performances were evaluated with two common

indicators, i.e., MST andMCR. The obtainedMCRwas comparable

with the results in D’Accolti et al. (2023) (between 75.6 and 89.2%)

and higher than the ones obtained in Kanitz et al. (2018), i.e.,

95% on average. It must be noted that both the studies differed

considerably from the present work in terms of the number and

type of electrodes and the feature extraction methods. Moreover,

in Kanitz et al. (2018) the accuracy evaluation was performed

after an optimization process to reduce the limb position effect

on the hand gesture classification, which was not investigated in

the present work. Therefore, a direct comparison with our findings

is troublesome.

To the Author’s best knowledge both the MST and the

MCR were evaluated in a single study related to hand gesture

classification involving two trans-humeral amputees. Five hand

gestures were classified. The MST was 220 ± 60ms, and MCR

of 86.9 ± 13.9% (Kuiken et al., 2009), therefore comparable with

our findings.

The study presents some limitations. Due to the nature of the

EMG transient, the activation bursts are unique for each hand

motion and acquisition. Therefore, in order to generate the initial

dataset, each hand gesture must be acquired several times (50

times per task in the present work). Compared with the pattern

recognition algorithms based on ESS, which usually require a

reduced number of acquisitions, our method necessitate of an

extensive training. Further investigations could be done to optimize

the number of acquisitions. As previously mentioned, the limb

orientation effect was not assessed. Further analysis should be

conducted to evaluate how this factor affect the fiber recruitment

strategies and, consequently, the generated muscular activation

sequences. Eventually, the amputee sample should be extended to

evaluate the reliability of the proposed method, including subjects

with a different experience in myoelectric prosthesis use.

5. Conclusion

To summarize, we presented a novel feature extraction

method based on the muscular activation sequences extracted

in the transient state of the EMG signal during voluntary

muscle contraction.

The method was tested on 4 different commonly-used

classifiers using signals acquired from 10 able-body subjects (offline

test) and two subjects with a unilateral trans-radial amputation

(offline and online test).

We demonstrated that muscular activation sequences are

suitable alternatives to the time-domain features commonly used in

classification problems belonging to the sole EMG transient state.

Moreover, looking at the ESS or mixed (EST and ESS) methods, the

sequences have the potential to anticipate the gesture selection by

totally excluding the signal steady state in the classification process.

In this regards, we quantify the time-delay between class selection

with our method and a method based on the ESS.

Due to the reduced number of EMG sensors and the good

performances obtained both in offline and online applications, our

pattern recognition approach could be further investigated in order

to be implemented in the control of myoelectric prostheses.
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