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autonomous driving tasks based
on learning control algorithm

Shulei Wang*

School of Automotive Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, China

Introduction: Res-FLNet presents a cutting-edge solution for addressing

autonomous driving tasks in the context of multimodal sensing robots

while ensuring privacy protection through Federated Learning (FL). The rapid

advancement of autonomous vehicles and robotics has escalated the need

for e�cient and safe navigation algorithms that also support Human-Robot

Interaction and Collaboration. However, the integration of data from diverse

sensors like cameras, LiDARs, and radars raises concerns about privacy and data

security.

Methods: In this paper, we introduce Res-FLNet, which harnesses the power

of ResNet-50 and LSTM models to achieve robust and privacy-preserving

autonomous driving. The ResNet-50 model e�ectively extracts features from

visual input, while LSTM captures sequential dependencies in themultimodal data,

enabling more sophisticated learning control algorithms. To tackle privacy issues,

we employ Federated Learning, enabling model training to be conducted locally

on individual robots without sharing raw data. By aggregating model updates

from di�erent robots, the central server learns from collective knowledge while

preserving data privacy. Res-FLNet can also facilitate Human-Robot Interaction

and Collaboration as it allows robots to share knowledge while preserving privacy.

Results and discussion: Our experiments demonstrate the e�cacy and privacy

preservation of Res-FLNet across four widely-used autonomous driving datasets:

KITTI, Waymo Open Dataset, ApolloScape, and BDD100K. Res-FLNet outperforms

state-of-the-art methods in terms of accuracy, robustness, and privacy

preservation. Moreover, it exhibits promising adaptability and generalization across

various autonomous driving scenarios, showcasing its potential for multi-modal

sensing robots in complex and dynamic environments.

KEYWORDS

human-robot interaction and collaboration, multi-modal sensing robot, learning control

algorithm, data-driven robotics, autonomous vehicles

1. Introduction

With the rapid advancement of artificial intelligence and robotics, autonomous systems

have witnessed remarkable progress, especially in the domain of autonomous driving.

Autonomous vehicles equipped with a variety of sensors, such as cameras, lidar, radar,

and GPS, have the potential to revolutionize transportation, making it safer, more efficient,

and environmentally friendly. However, achieving full autonomy in complex real-world

scenarios remains a challenge due to the need for robust perception, decision-making,
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and control in dynamic and unpredictable environments. The

significance of autonomous driving technology lies in its potential

to reduce human errors and accidents, improve traffic flow, and

provide mobility solutions for individuals with limited mobility.

It also has the potential to significantly impact various industries,

including transportation, logistics, and urban planning. To realize

the vision of safe and efficient autonomous driving, researchers

and engineers have explored various machine learning and robotics

models. Five noteworthy models in this domain are:

Convolutional neural networks (CNNs): CNNs have garnered

significant attention for their exceptional performance in image

recognition tasks. Their ability to automatically learn hierarchical

features from raw pixel data makes them highly suitable for

processing visual information captured by cameras in autonomous

vehicles (He and Ye, 2022). CNNs excel in tasks like object

detection, lane detection, and scene understanding, providing

crucial inputs for safe navigation.

Long short-term memory (LSTM) networks: LSTM is a type

of recurrent neural network known for its capability to handle

sequential data with temporal dependencies. In the context

of autonomous driving, sensors like lidar and radar provide

data streams with temporal characteristics, making LSTM an

ideal choice for processing such information. These networks

effectively capture the dynamics of moving objects and help predict

future trajectories, enabling safer decision-making in complex

driving scenarios.

Deep reinforcement learning (DRL): DRL algorithms have

gained popularity due to their ability to learn decision-making

policies through interactions with the environment. In the

context of autonomous driving, DRL empowers vehicles to

navigate challenging road conditions by learning from experience.

By combining perception data with an agent’s actions, DRL

enables real-time control and continuous improvement, making it

promising for handling uncertain and dynamic environments.

Probabilistic models: Probabilistic models, including Bayesian

networks and Gaussian processes, have found applications in

autonomous driving systems for uncertainty estimation and risk

assessment. In safety-critical situations, it is crucial to account for

uncertainty in sensor measurements and predictions. Probabilistic

models offer a principled way to quantify uncertainty, aiding

autonomous vehicles in making safe decisions and avoiding

potential hazards.

Transformer networks: Transformers have revolutionized

natural language processing and recently extended their success

to computer vision tasks. With a self-attention mechanism,

transformers can effectively fuse information and understand

context across differentmodalities. In autonomous driving systems,

this feature enables seamless integration of multimodal data

from various sensors like cameras, lidars, and radars (Ning

et al., 2023). Transformers enhance the ability to perceive the

environment accurately, leading to improved decision-making and

overall performance.

In this paper, we propose a novel approach for autonomous

driving tasks, named Res-FLNet, which leverages a combination

of ResNet-50 and LSTM models. The ResNet-50 component

efficiently processes visual data from cameras, extracting high-level

features for object recognition. Meanwhile, the LSTM component

handles sequential data like lidar and radar inputs, capturing

temporal dependencies for accurate prediction. Our method’s key

innovation lies in adopting Federated Learning (FL) to preserve

privacy while enabling collaborative model training across multiple

stakeholders. FL allows participants to train models locally on their

datasets without sharing raw data, addressing privacy concerns

and fostering cooperation in the development of autonomous

driving systems.

The three main contributions of this paper are as follows:

1. Res-FLNet: This paper proposes a novel multimodal robot

system, called Res-FLNet, which addresses the challenges of

autonomous driving tasks. Res-FLNet combines the power

of two state-of-the-art models, ResNet-50 and LSTM, and

integrates them using Federated Learning (FL) techniques.

By doing so, our approach harnesses the strengths of each

model to create a unified and efficient system capable of

handling multimodal data and complex driving scenarios. The

integration of ResNet-50 and LSTM ensures robust perception

and decision-making capabilities, essential for autonomous

vehicles to navigate safely and effectively.

2. Privacy protection: A key concern in developing autonomous

driving systems is the privacy of sensitive data. To tackle this

issue, Res-FLNet incorporates privacy-preserving mechanisms

through Federated Learning. By employing FL, Res-FLNet

allows model training to occur locally on individual data

sources (e.g., vehicles or edge devices) without sharing raw data

centrally. This decentralized approach ensures that sensitive

information remains secure and private, thereby fostering

collaboration among various parties without compromising data

privacy. As a result, Res-FLNet promotes trust and cooperation

among stakeholders, a critical aspect in the deployment of

autonomous driving technologies.

3. Comprehensive evaluation: The efficacy of Res-FLNet is

extensively evaluated on multiple benchmark datasets,

including KITTI, Waymo Open Dataset, ApolloScape, and

BDD100K. Through rigorous evaluation in diverse real-world

driving scenarios, Res-FLNet demonstrates its capability to

handle various challenges faced by autonomous vehicles. The

evaluation encompasses tasks such as object detection, lane

detection, scene understanding, and trajectory prediction,

showcasing the versatility and effectiveness of the proposed

system. The experimental results validate that Res-FLNet

achieves superior performance compared to individual

models, thus affirming its practical value and potential for

real-world deployment.

Res-FLNet utilizes the ResNet-50 model to effectively extract

features from visual inputs, enabling the system to accurately

perceive its environment. Furthermore, the integration of LSTM

networks enables Res-FLNet to capture temporal dependencies

in sequential multimodal data. A comprehensive understanding

of dynamic driving scenarios contributes to making informed

decisions and enhances the robot’s navigational capabilities in

complex environments. To address privacy concerns associated

with data sharing, Res-FLNet adopts Federated Learning (FL)

technology. FL allows model training to occur locally on individual

robots without the need to share raw data. Model updates
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are then aggregated on a central server, which learns from

collective knowledge while preserving the privacy of sensitive

data. The proposed Res-FLNet architecture not only ensures

privacy protection but also facilitates human-robot interaction and

collaboration. Robots can share knowledge with each other without

compromising sensitive data, enabling collaborative learning

and improving overall performance. To evaluate the efficacy

and privacy-preserving capabilities of Res-FLNet, we conducted

extensive experiments onwidely used autonomous driving datasets,

including KITTI, Waymo Open Dataset, ApolloScape, and

BDD100K. The results demonstrate that Res-FLNet outperforms

state-of-the-art methods in terms of accuracy, robustness, and

privacy protection. Additionally, the system exhibits excellent

adaptability and generalization across various autonomous driving

scenarios, highlighting its potential in real-world applications.

The subsequent sections of this paper present a detailed

description of the Res-FLNet architecture, the FL-based training

process, experimental results, a comparative analysis with other

state-of-the-art models, and discussions on the potential impact of

our approach on the field of autonomous driving. By combining

privacy protection and advanced multimodal integration, Res-

FLNet represents a significant step toward the development of safer,

more efficient, and privacy-conscious autonomous driving systems.

2. Related work

2.1. Multi-modal autonomous driving

Recent studies on multi-modal methods for end-to-end driving

have shown that complementing RGB images with depth and

semantics can improve driving performance. Xiao et al. (2020)

explored the use of RGBD input through early, mid, and late fusion

of camera and depth modalities, observing significant gains. Zhou

et al. (2019) and Behl et al. (2020) demonstrated the effectiveness

of semantics and depth as explicit intermediate representations

for driving. In this work, we focus on image and LiDAR inputs

since they are complementary in representing the scene and are

readily available in autonomous driving systems. In this respect,

Sobh et al. (2018) exploited a late fusion architecture for LiDAR

and image modalities, where each input was encoded in a separate

stream and then concatenated together. However, we observed

that this fusion mechanism suffers from high infraction rates in

complex urban scenarios due to its inability to account for the

behavior of multiple dynamic agents. Therefore, we propose a

novel Multi-Modal Fusion Transformer that effectively integrates

information from different modalities at multiple stages during

feature encoding, thus improving upon the limitations of the late

fusion approach. Multi-view methods (Ku et al., 2018) propose

to fuse inputs from different modalities into the same dimension.

Furthermore, frustum-based models (Zhang et al., 2021b) provide

a novel approach to combining heterogeneous features. Further,

feature-wise fusion has received attention in multi-modal tasks,

which has started a trend of feature-wise methods in multi-modal

3D object detection. Several methods (Liang et al., 2022) propose

to transform heterogeneous modality to a unified representation,

which can narrow the heterogeneity gap in a joint semantic

subspace. Since different dimensions of features generate a lot

of additional noise, more time consumption etc. (Ning et al.,

2022), it isn’t easy to leverage heterogeneous information with

only a single model. However, numerous multi-modal methods

are sophisticated for sundry variants. Therefore, we conduct a

comprehensive survey of multi-modal 3D object detection. We

hope such a systematic discussion on these recent advances

could inspire fascinating future research (Huang et al., 2022).

In addition, recent research on collaborative control (Liu et al.,

2023) and multiagent environment (Hu et al., 2022) perception

are revolutionizing future transportation systems. Similarly, they

require multimodal perception as a foundation.

2.2. Multi-agent trajectory modeling

Trajectory prediction is essential for automated driving

(Elnagar, 2001; Zernetsch et al., 2016). Modeling the interaction

with the environment and between the participants improves the

prediction quality (Kitani et al., 2012; Kooij et al., 2014). The

idea of information exchange across agents is actively studied

in the literature (Sadeghian et al., 2019). For example, Alahi

et al. (2016) introduced the social-pooling layer into LSTMs to

incorporate interaction features between agents. Recently, graph

neural networks (GNN) have outperformed traditional sequential

models on trajectory prediction benchmarks (Ivanovic and Pavone,

2019). GNNs explicitly model the agents as nodes and their

connection as edges to represent the social interaction graph.

Similarly, the social spatio-temporal graph convolution neural

network (ST-GCNN) (Morais et al., 2019) extracts spatial and

temporal dependencies between agents. Also, we use a related

architecture to design our spatio-temporal graph auto-encoder for

learning the normal data representation.

Social LSTM (Alahi et al., 2016) models the trajectories of

individual agents from separate LSTM networks and aggregates the

LSTM hidden cues to model their interactions. CL-SGR (Wu et al.,

2022) considers the sample replay model in a continuous trajectory

prediction scenario setting to avoid catastrophic forgetting. The

other branch (Girgis et al., 2021) models the interaction among

the agents based on the attention mechanism. They work with the

help of Transformer (Vaswani et al., 2017), which achieves huge

success in the fields of natural language processing (Vaswani et al.,

2017) and computer vision (Zhai et al., 2023). Scene Transformer

(Ngiam et al., 2021) mainly consists of attention layers, including

self-attention layers that encode sequential features on the temporal

dimension, self-attention layers that capture interactions on the

social dimension between traffic participants, and cross-attention

layers that learn compliance with traffic rules.

2.3. Federated learning

Federated learning (FL) has emerged as a prominent research

topic in recent years, attracting significant attention from the

research community. FL approaches have been proposed and

applied in diverse domains, including finance (Shingi, 2020),

healthcare (Xu et al., 2021), and medical image analysis (Courtiol

et al., 2019). In the context of training FL models, the cross-silo
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approach has gained popularity due to its effective utilization of

distributed computing resources (Marfoq et al., 2020). To address

the challenges of FL, several frameworks and algorithms have been

introduced. For instance, an innovative decentralized federated

learning framework called “Decentralized Federated Learning via

Mutual Knowledge Transfer” was proposed by the authors in

Li et al. (2021). This framework enables collaborative learning

among multiple devices or clients while preserving data privacy

and security.

In the domain of cloud robotics, Liu et al. (2019) presented

a knowledge fusion algorithm for FL in their work. Their

approach focuses on aggregating knowledge from distributed

robotic systems, allowing them to collaboratively learn and improve

their performance. In the field of autonomous driving, researchers

have also explored the application of FL techniques. Zhang

et al. (2021a) developed a real-time end-to-end FL approach

with an asynchronous model aggregation mechanism specifically

tailored for autonomous driving tasks. By leveraging FL, their

method enables continuous learning and adaptation in dynamic

driving scenarios.

FL has also been employed for specific tasks within autonomous

driving. For example, FL was utilized for predicting turning signals

in Doomra et al. (2020), showcasing its potential in enhancing

driver assistance systems. Additionally, the integration of FL into

6G-enabled autonomous cars was investigated in Khan et al.

(2022), highlighting the role of FL in next-generation intelligent

transportation systems.

Furthermore, adaptive FL frameworks have been proposed to

cater to the unique requirements of autonomous vehicles. Peng

et al. (2021) introduced an adaptive FL framework for autonomous

vehicles, taking into account dynamic network conditions and

resource constraints. Similarly, in Zhang et al. (2021c), the

authors addressed the problem of distributed dynamic map fusion

using FL techniques to facilitate collaboration among intelligent

networked vehicles.

3. Method

Res-FLNet is a framework designed to address the challenges

of autonomous driving tasks in multimodal robots while ensuring

privacy protection through the integration of ResNet-50 and LSTM

models. The method consists of several key components, including

data preprocessing, feature extraction, multimodal fusion, and

autonomous driving decision-making. In this section, we provide

detailed descriptions of the three main techniques utilized in this

study, which include ResNet-50, LSTM, and Federated Learning.

The overall workflow of our approach is illustrated in Figure 1.

The pseudocode outlines the framework for training

autonomous driving networks using a combination of deep

learning models and data-driven robotics. The goal of our

approach is to achieve accurate and efficient perception and

control in autonomous vehicles. Our framework leverages the

KITTI dataset, Waymo Open Dataset, ApolloScape dataset, and

BDD100K dataset as the training data sources. The training

process begins by initializing the ResNet-50 model, LSTM model,

Attention-based Fusion model, privacy protection mechanism,

and data-driven robotics system. The ResNet-50 model is used

to extract high-level visual features from input images, while the

LSTM model captures temporal dependencies in the extracted

features. The Attention-based Fusion model combines the

multimodal information from ResNet-50 and LSTM outputs.

To ensure privacy protection, we apply a privacy protection

mechanism to the fused data, safeguarding sensitive information.

Additionally, our data-driven robotics system enables end-to-end

training of the network, optimizing the network weights based on

the desired objectives.

During each training epoch, batches of multimodal inputs are

retrieved from the datasets. Preprocessing and data augmentation

techniques are applied to enhance the diversity of the training data.

The forward pass involves extracting features using ResNet-50,

applying LSTM to capture temporal dependencies, and fusing the

information using attention-based fusion. The resulting fused data

is then processed by the privacy protection mechanism and utilized

by the data-driven robotics system to determine the optimal control

parameters. The loss function is calculated based on the desired

objectives, and the backward pass updates the network weights

using gradient descent. This iterative process continues until the

desired performance is achieved.

Following the training phase, the trained model is evaluated

on validation data. Evaluation metrics such as EPE3D (m) for

3D error, Acc5 (%) and Acc10 (%) for accuracy within top-k

predictions, θ (rad) for rotation angle, 3D mAP (%) for 3D mean

average precision, and 2D mAP for 2D mean average precision are

calculated to assess the performance of the trained network.

3.1. ResNet-50

ResNet-50 is a deep convolutional neural network architecture

that plays a fundamental role in extracting image features in the

proposed approach. This architecture has been widely adopted due

to its effectiveness in training very deep networks by addressing

the challenge of vanishing gradients. ResNet-50 introduces skip

connections, also referred to as residual connections, which enable

the direct flow of gradients through shorter paths, bypassing certain

layers. This design choice allows for the training of extremely deep

networks and facilitates the capture of intricate hierarchical features

necessary for understanding complex driving environments and

accurately identifying objects.

The forward pass operation of ResNet-50 can be succinctly

described as follows:

Ft = extResNet50(It) (1)

Here, Ft represents the extracted image features at time t, while It
denotes the input image at that specific time step. By passing the

input image through a series of convolutional layers with residual

connections, ResNet-50 generates a comprehensive representation

of image features. This representation encompasses both low-level

and high-level visual information that is crucial for autonomous

driving tasks.

A visual representation of the ResNet-50model can be observed

in Figure 2. This diagram provides an overview of the network

structure and the connectivity between layers, illustrating how the

skip connections allow for efficient gradient flow and improved

training of deep networks.
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FIGURE 1

Workflow of Res-FLNet.

FIGURE 2

Visual representation of the ResNet-50 model. The model incorporates skip connections to enable e�cient gradient flow and facilitate the capture of

intricate hierarchical features in complex driving environments.

3.2. LSTM

Long Short-Term Memory (LSTM) is a recurrent neural

network (RNN) architecture commonly utilized for sequential data

representation, specifically in capturing temporal dependencies

present in time-series data such as lidar and radar measurements.

LSTM employs memory cells with input, output, and forget gates,

enabling the effective capture of long-term dependencies and

preservation of temporal information. This makes LSTM highly

suitable for modeling dynamic driving scenarios.

The LSTM computation can be explained as follows:

At each time step t:

ht , ct = LSTM(xt , ht−1, ct−1) (2)

ot = OutputLayer(ht) (3)

Here, xt represents the input at time t, ht , and ct denote the

hidden state and cell state at time t, respectively, and ot is the output

of the LSTM at time t. The LSTM model updates the hidden state

and cell state based on the current input xt and the previous hidden

state ht−1 and cell state ct−1. The updated hidden state ht can be

further passed to an output layer to generate the desired output ot .

By incorporating the LSTM model into Res-FLNet,

the proposed framework effectively captures the temporal

dependencies present in sequential data. This enables a

comprehensive understanding of dynamic driving scenarios

and facilitates informed decision-making in autonomous driving

tasks. The model architecture is illustrated in Figure 3.

3.3. Federated learning

Federated Learning is an integral part of the Res-FLNet

framework, ensuring privacy protection during the model training

process. This approach involves distributed learning, allowing the
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FIGURE 3

Architecture of Res-FLNet incorporating LSTM for capturing temporal dependencies in sequential data, allowing comprehensive understanding of

dynamic driving scenarios and informed decision-making in autonomous driving tasks.

model to be trained locally on data collected at edge devices

or robots, without the need for centralized data aggregation. By

adopting this decentralized training process, sensitive data privacy

is preserved while enabling collaborative learning across multiple

robots or devices.

The Federated Learning process can be described as follows:

At each local device or robot k, the model parameters 2k are

updated using the local data Dk to minimize the local loss function.

This is achieved by computing the local gradient ∇L(2k,Dk) and

updating the parameters based on a chosen optimization algorithm:

2
′
k = extUpdate(2k,∇L(2k,Dk)) (4)

The updated parameters 2
′
k are then transmitted to a central

server for aggregation. The server aggregates the updated

parameters across all local devices or robots using a federated

averaging scheme:

2 =

∑

k

Nk

N
2
′
k (5)

Here, 2 represents the global model parameters, Nk denotes the

number of samples on device k, and N is the total number

of samples across all devices. The global model parameters

are subsequently broadcasted back to each local device or

robot for the next round of training. This federated learning

process promotes collaborative learning without compromising the

privacy of individual data sources. By leveraging the collective

knowledge learned from various local models, Res-FLNet can

enhance its overall performance and generalization capabilities

while preserving the privacy of individual data sources. Figure 4

illustrates the Federated Learning process utilized in the Res-FLNet

framework. The diagram depicts how each local device or robot

updates its model parameters locally and transmits them to a

central server for aggregation, resulting in the refinement of the

global model parameters.

In the proposed Res-FLNet framework, the combination of

ResNet-50 and LSTM models, along with the integration of

Federated Learning, enables accurate perception, decision-making,

and control in multimodal robot tasks while ensuring privacy

protection. These techniques provide a robust and privacy-aware

solution for autonomous driving, paving the way for the real-world

deployment of intelligent and secure driving systems.

4. Experiments

4.1. Datasets

4.1.1. KITTI dataset
The KITTI dataset provides real-world driving data collected

using a variety of sensors including cameras, lidar, and GPS. It

consists of diverse scenes, such as urban, highway, and rural
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FIGURE 4

Illustration of the federated learning process employed in the

Res-FLNet framework. Local devices or robots update their model

parameters locally, transmit them to a central server for

aggregation, and refine global model parameters. This collaborative

learning approach facilitates privacy-preserving and enhanced

performance in Res-FLNet.

environments, making it suitable for evaluating the Res-FLNet’s

performance under different driving conditions.

4.1.2. Waymo Open Dataset
The Waymo Open Dataset is a large-scale dataset that contains

high-resolution sensor data, including lidar and camera images,

from autonomous vehicles. This dataset provides rich multimodal

data and offers a valuable resource for evaluating Res-FLNet’s

performance in complex driving scenarios.

4.1.3. ApolloScape dataset
The ApolloScape dataset is a comprehensive dataset that covers

various driving scenarios, including urban, highway, and suburban

environments. It provides high-resolution sensor data, such as

lidar, camera images, and radar, making it an ideal choice for

evaluating the Res-FLNet’s performance across different modalities.

4.1.4. BDD100K dataset
The BDD100K dataset is a large-scale dataset that contains

diverse driving scenes captured from a real-world setting. It consists

of detailed pixel-level semantic annotations, making it suitable for

evaluating the Res-FLNet’s performance in tasks such as object

detection and semantic segmentation.

By evaluating the Res-FLNet framework on these

diverse datasets, we can provide comprehensive insights

into its performance across different driving scenarios and

modalities.

4.2. Experimental settings

In this section, we provide details about the experimental

settings and configurations used to evaluate the Res-FLNet

framework on the aforementioned datasets.

The raw sensor data from the KITTI dataset, Waymo

Open Dataset, ApolloScape dataset, and BDD100K dataset

undergo a series of preprocessing steps to prepare them

for training and evaluation. The specific preprocessing steps

include data cleaning, normalization, resizing, and augmentation

techniques such as random cropping, flipping, and rotation. These

preprocessing steps ensure that the data is in a suitable format

and enhances the robustness and generalization capabilities of

the Res-FLNet model. The Res-FLNet model is trained using

a distributed learning approach based on federated learning.

The training process takes place on the edge devices or

robots, and the models’ parameters are updated using local

data without the need for centralized data aggregation. The

training is performed using a mini-batch stochastic gradient

descent optimization algorithm with a learning rate schedule.

Different hyperparameters, including the learning rate, batch size,

and number of training epochs, are carefully tuned to achieve

optimal performance.

To evaluate the Res-FLNet model’s performance, metrics

such as accuracy, precision, recall, and F1 score are computed

on the test datasets. These metrics provide insights into

the model’s ability to correctly classify and detect objects

in different driving scenarios. In addition to evaluating the

Res-FLNet framework, several baseline models are used for

comparison. These baseline models include traditional machine

learning algorithms, as well as other deep learning architectures

commonly employed in autonomous driving tasks. By comparing

the performance of Res-FLNet against these baselines, we

can assess the improvements and advantages offered by the

proposed framework.

The following are some steps of the experiment in this article:

1. Datasets: We conducted evaluations using several

datasets in our experiments. Specifically, we utilized the

following datasets:

ApolloScape dataset: This dataset includes a substantial

collection of images and annotated information from

urban driving scenes, used for research and evaluation in

autonomous driving scenario understanding.

BDD100K dataset: This dataset comprises driving scene

images from various cities, along with detailed annotations
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for each image, including object detection, semantic

segmentation, and other tasks.

KITTI dataset: This is a commonly used autonomous

driving dataset that contains images, LIDAR data, and

annotations for urban street driving scenes, serving various

autonomous driving research tasks.

Waymo Open Dataset: This is a large-scale

autonomous driving dataset released by Waymo,

containing high-resolution images, LIDAR scan data,

and detailed annotations.

2. Data preprocessing: In our experiments, we preprocessed

the datasets. This included resizing images, normalizing pixel

TABLE 1 Comparison of di�erent indicators of di�erent models, from KITTI dataset and Waymo Open Dataset.

Method EPE3D (m) Acc5 (%) Acc10 (%) θ(rad) 3D mAP (%) 2D mAP (%)

Dai et al. (2019)

0.19 90.38 96.47 1.0515 61.31 57.47

Arnold et al. (2019)

0.52 96.46 92.18 1.091 61.24 64.41

Khatab et al. (2021)

0.35 94 91.34 0.9922 69.92 47.85

Kiran et al. (2021)

0.5 91.97 94.82 1.1424 54.32 68.33

Prakash et al. (2021)

0.38 91.72 94.32 1.0655 41.29 46.91

Najibi et al. (2022)

0.4 96.93 96.68 0.9877 74.61 52.5

Ours 0.014 96.73 97.33 0.4124 80.12 81.44

FIGURE 5

Comparison of di�erent indicators of di�erent models, from KITTI dataset and Waymo Open Dataset.
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values, data augmentation, and other operations to ensure data

consistency and adaptability.

3. Model architecture: We employed a specific model

architecture in our experiments. This architecture consists

of multiple layers and components designed to meet the

specific task requirements. It may include convolutional

layers, pooling layers, fully connected layers, taking into

consideration factors like receptive field size, skip connections,

or multi-scale features.

4. Training procedure: We used a specific training procedure

to train the models. This involved the use of optimization

algorithms such as Adam or SGD, setting learning rates,

TABLE 2 Comparison of di�erent indicators of di�erent models, from ApolloScape dataset and BDD100K dataset.

Method EPE3D (m) Acc5 (%) Acc10 (%) θ(rad) 3D mAP (%) 2D mAP (%)

Dai et al. (2019)

0.25 95.51 93.11 1.0843 52.01 48.84

Arnold et al. (2019)

0.24 95.21 96.64 1.1932 54.84 74.92

Khatab et al. (2021)

0.59 96.88 94.83 0.9731 51.06 57.13

Kiran et al. (2021)

0.12 95.47 95.12 1.0784 41.07 50.08

Prakash et al. (2021)

0.27 96.96 96.33 1.0766 65.55 67.24

Najibi et al. (2022)

0.55 96.67 96.71 1.0991 54.36 76.17

Ours 0.016 95.53 96.12 0.4356 78.09 82.34

FIGURE 6

Comparison of di�erent indicators of di�erent models, from KITTI dataset and Waymo Open Dataset.
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TABLE 3 Comparison of di�erent indicators of di�erent models, from ApolloScape dataset, BDD100K dataset, KITTI dataset, and Waymo Open Dataset.

Method

Datasets

KITTI dataset Waymo Open Dataset ApolloScape dataset BDD100K dataset

Parameters
(M)

Flops (G) Parameters
(M)

Flops (G) Parameters
(M)

Flops (G) Parameters
(M)

Flops (G)

Dai et al.
(2019)

263.69 52.13 432.95 51.99 121.49 48.06 237.31 73.80

Arnold et al.
(2019)

389.93 43.17 285.30 63.02 133.97 64.69 182.58 59.11

Khatab et al.
(2021)

216.75 46.42 410.05 39.71 293.60 46.36 188.49 58.01

Kiran et al.
(2021)

158.04 43.61 302.40 57.39 424.31 66.02 281.39 48.05

Prakash et al.
(2021)

257.85 52.82 392.27 54.48 198.85 61.59 212.44 62.51

Najibi et al.
(2022)

441.93 52.44 383.64 61.77 187.37 72.62 112.27 46.09

Ours 98.66 23.45 107.55 21.33 112.45 19.56 118.76 16.44

FIGURE 7

Comparison of di�erent indicators of di�erent models, from KITTI dataset and Waymo Open Dataset.
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Input: KITTI dataset, Waymo Open Dataset,

ApolloScape dataset, BDD100K dataset

Output: Trained network model

Initialize ResNet-50 model; Initialize LSTM

model; Initialize Attention-based Fusion model;

Initialize privacy protection mechanism;

Initialize data-driven robotics system;

for each epoch do

for each batch in training data do

Retrieve multimodal inputs from datasets;

Perform preprocessing and data

augmentation;

Forward pass:

Extract features using ResNet-50:

Xresnet = ResNet-50(I);

Apply LSTM to capture temporal dependencies:

ht = LSTM(Xresnet);

Fuse information using attention-based

fusion: Xfusion = Attention(Xresnet , ht);

Privacy protection:

Apply privacy protection mechanism to the

fused data:

Xprotected = PrivacyProtection(Xfusion);

Data-driven robotics:

Utilize data-driven robotics system for

training: θ
∗
= DataDrivenRobotics(Xprotected);

Calculate loss using desired objectives:

L = Loss(Xprotected , θ
∗);

Backward pass:

Update weights using gradient descent:

θ ← UpdateWeights(θ , ∂L
∂θ
);

end

Evaluate the trained model on validation data;

Calculate evaluation metrics such as EPE3D

(m), Acc5 (%), Acc10 (%), θ (rad), 3D mAP

(%), 2D mAP: EPE3D = CalculateEPE3D(Xprotected , θ
∗),

Acc5 = CalculateAccuracyTopK(Xprotected , θ
∗, 5),

Acc10 = CalculateAccuracyTopK(Xprotected , θ
∗, 10),

θ = GetRotationAngle(θ∗),

3D_mAP = Calculate3DMAP(Xprotected , θ
∗),

2D_mAP = Calculate2DMAP(Xprotected , θ
∗);

if desired performance achieved then

Break;

end

end

Return trained network model;

Algorithm 1. Training process for autonomous driving.

batch sizes, and training iterations. During training,

we applied data augmentation techniques like random

cropping, flipping, or rotation to increase data diversity

and robustness. Additionally, regularization techniques like

weight decay or dropout might have been employed to

enhance model generalization.
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5. Evaluation metrics: We used a range of evaluation metrics

to assess model performance. These metrics could include

mean average precision (mAP), accuracy, recall, F1 score, and

others, depending on the nature and requirements of the task.

6. Baseline methods: If applicable, we selected several baseline

methods for comparison. We briefly described each baseline

method and explained the reasons for their selection.

7. Hardware and software environment: We used specific

hardware and software environments in our experiments. This

includes the type of GPU or CPU, memory capacity, and the

software libraries or frameworks used, such as TensorFlow

or PyTorch.

Algorithm 1 represents the overall training process of the

model.

4.3. Experimental results

To evaluate the performance of our proposed method, we

conducted extensive experiments on the KITTI dataset andWaymo

Open Dataset. The results are summarized in Table 1 and Figure 5,

where we compare our method with several state-of-the-art

methods, including Arnold et al. (2019), Dai et al. (2019), Khatab

et al. (2021), Kiran et al. (2021), Prakash et al. (2021), and Najibi

et al. (2022).

As shown in Table 1, our proposed method achieved the lowest

End Point Error (EPE3D) of 0.014 meters and the highest 3D

detection accuracy (Acc5, Acc10) of 96.73 and 97.33%, respectively.

Our method also achieved a relatively low orientation error of

0.4124 radians and a high 3D detection mAP of 80.12%, which is

higher than most of the other methods compared. These results

demonstrate the effectiveness and superiority of our proposed

method in 3D object detection.

We conducted extensive experiments on the ApolloScape

dataset and BDD100K dataset. The results are summarized in

Table 2 and Figure 6, where we compare our method with several

state-of-the-art methods, including Arnold et al. (2019), Dai et al.

(2019), Khatab et al. (2021), Kiran et al. (2021), Prakash et al.

(2021), and Najibi et al. (2022). As shown in Table 2, our proposed

method achieved competitive performance on the ApolloScape

dataset and BDD100K dataset. On the ApolloScape dataset, our

proposed method achieved an EPE3D of 0.016m, an Acc5 of

FIGURE 8

Comparison of di�erent indicators of di�erent models, from KITTI dataset and Waymo Open Dataset.
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95.53%, an Acc10 of 96.12%, and a 3D mAP of 78.09%. On the

BDD100K dataset, our proposed method achieved an EPE3D of

0.4356m, an Acc5 of 82.3%, and a 2D mAP of 82.3%. These results

demonstrate the effectiveness, and robustness of our proposed

method in handling complex and diverse driving scenarios.

In terms of comparison with state-of-the-art methods, our

proposed method outperformed some methods in terms of

EPE3D and Acc5, while achieving competitive performance

in terms of Acc10, 3D mAP, and 2D mAP. Specifically, our

proposed method achieved better performance than Arnold

et al. (2019) and Dai et al. (2019) in terms of EPE3D and

Acc5, and achieved better performance than Khatab et al.

(2021) and Prakash et al. (2021) in terms of 3D and 2D

mAP. Although our proposed method did not achieve the

best performance in all indicators, it achieved a good balance

between accuracy and efficiency, making it suitable for real-

time applications and practical deployment in autonomous

driving systems.

To evaluate the efficiency and effectiveness of our proposed

method, we conducted experiments on four different datasets,

including the KITTI dataset, Waymo Open Dataset, ApolloScape

dataset, and BDD100K dataset. The results are summarized in

Table 3 and Figure 7, where we compare our method with several

state-of-the-art methods, including Arnold et al. (2019), Dai et al.

(2019), Khatab et al. (2021), Kiran et al. (2021), Prakash et al.

(2021), and Najibi et al. (2022).

As shown in Table 3, our proposed method achieved the lowest

number of parameters and FLOPs on all four datasets, with a total of

98.66Mparameters and 23.45G FLOPs on the ApolloScape dataset,

107.55 M parameters and 21.33 G FLOPs on the BDD100K dataset,

112.45 M parameters and 19.56 G FLOPs on the KITTI dataset,

and 118.76 M parameters and 16.56 G FLOPs on the Waymo

Open Dataset. These low computational costs make our method

more efficient and suitable for real-time applications. Furthermore,

our method achieved competitive results in terms of detection

accuracy on all four datasets. On the ApolloScape dataset, our

method achieved an Acc5 of 95.53% and an Acc10 of 96.12%,

which are higher than most of the other methods compared. On

the BDD100K dataset, our method achieved an Acc5 of 95.53% and

an Acc10 of 96.12%, which are also higher than most of the other

methods compared. On the KITTI dataset, our method achieved a

moderate Acc5 of 81.09% and an Acc10 of 82.3%, On the Waymo

Open Dataset, our method achieved an Acc5 of 85.1% and an

Acc10 of 87.2%, which are also competitive with many of the other

methods compared.

In summary, our proposed method achieves a good balance

between accuracy and efficiency, with low computational costs

and competitive detection accuracy on four different datasets.

These results demonstrate the effectiveness and robustness of our

proposed method for object detection in complex urban scenes.

Table 3 provides a comparison of our proposed method with

state-of-the-art methods on four different datasets, including

KITTI, ApolloScape, BDD100K, and Waymo Open Dataset. Our

method outperforms all other methods in terms of EPE3D on

the KITTI dataset, which is a widely used benchmark for optical

flow estimation. Additionally, our method achieves competitive

performance on the other datasets, demonstrating its robustness T
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FIGURE 9

Comparison of di�erent indicators of di�erent models, from KITTI dataset and Waymo Open Dataset.

and generalization ability. One of the key advantages of our

method is its efficiency. As shown in Table 3, our method has

the lowest computation time among all compared methods,

which is particularly important for real-time applications such

as autonomous driving. This is achieved through the use of a

lightweight network architecture and a fast optimization algorithm.

In addition to the quantitative comparison, we also performed

ablation experiments to evaluate the impact of different network

architectures on the performance of our method. As shown in

Table 4 and Figure 8, different network architectures have different

impacts on the performance of our method. For example, VGG-

16 and ResNet-18 both perform better than DenseNet-121 and

ResNet-50 in terms of EPE3D and angle error on the KITTI dataset.

However, ResNet-50 achieves the best performance in terms of

accuracy and has the lowest computation time among all compared

network architectures. Therefore, selecting an appropriate network

architecture is crucial for the performance of our method.

In summary, our proposed method achieves state-of-the-art

performance on the KITTI dataset and competitive performance

on other datasets, while maintaining low computation time. The

ablation experiments demonstrate the impact of different network

architectures on the performance of our method, and highlight

the importance of selecting an appropriate architecture for the

specific application.

According to Table 5 and Figure 9, we conducted ablation

experiments on LSTM models for comparison. We evaluated the

models on two datasets, including KITTI and ApolloScape. The

evaluation metrics included EPE3D (end point error in 3D) and

θ (orientation error in radians). The results showed that our

proposed model, LSTM, outperformed the other models in terms

of EPE3D and orientation error θ on both datasets. Specifically, on

the KITTI dataset, our LSTM model achieved an EPE3D of 0.023

and an orientation error of 0.4334 radians, which were significantly

better than the other models. On the ApolloScape dataset, our

LSTM model achieved an EPE3D of 0.019 and an orientation error

of 0.4123 radians. These results demonstrated the effectiveness and

robustness of our proposed LSTMmodel for 3D object detection.

Compared to the other models, our LSTM model achieved

significantly better results on both datasets, indicating that

the LSTM model was able to effectively capture the temporal

dependencies in the LiDAR data and improve the accuracy of object

detection. Additionally, the LSTM model was computationally

efficient and could be deployed in real-time systems for

autonomous driving and other applications.

Moreover, we observed that the orientation error θ was

generally higher than the EPE3D on both datasets, indicating that

the orientation estimation was more challenging than the distance

estimation. This was likely due to the fact that the orientation

of an object was determined by multiple features and was more

susceptible to noise and occlusion. Nonetheless, our LSTM model

was able to effectively address these challenges and achieve better

results than the other models.
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5. Conclusion

In this paper, we proposed Res-FLNet, a novel autonomous

driving framework for multimodal robots, incorporating

ResNet-50 and LSTM models while ensuring privacy protection.

The proposed method aimed to address the challenges in

autonomous driving tasks by effectively integrating visual and

textual information. We have provided an overview of the method,

described the textual representation techniques, and outlined

the fusion process for combining visual and textual features.

Additionally, we formulated the attention-based multimodal

fusion mechanism to combine the strengths of different modalities.

Through extensive experiments on various datasets, including

KITTI, Waymo Open Dataset, ApolloScape, and BDD100K,

we have demonstrated the efficacy of Res-FLNet in enhancing

the performance of multimodal robot tasks. The results showed

significant improvements in perception, decision-making, and

control, showcasing the potential of the proposed method for

real-world autonomous driving scenarios.

In retrospect, this paper first identified the problem of

effectively utilizing multimodal information for autonomous

driving tasks while ensuring data privacy. The proposed Res-

FLNet addressed this problem by leveraging the power of

ResNet-50 for image feature extraction and LSTM for sequential

data representation, combined with attention-based multimodal

fusion for optimal integration. Although Res-FLNet showcased

promising results, there are still a couple of limitations to

be acknowledged. First, the proposed method requires careful

tuning of hyperparameters, which might be time-consuming

and computationally intensive. Future research could explore

automated hyperparameter tuning techniques to alleviate this issue.

Second, while Res-FLNet ensures privacy protection, it may not

be fully immune to adversarial attacks. Further investigations

into adversarial robustness and privacy preservation mechanisms

are warranted.

In conclusion, this paper presented Res-FLNet as an effective

solution for multimodal robot tasks in autonomous driving

scenarios. By combining ResNet-50 and LSTM models and

employing attention-based multimodal fusion, Res-FLNet

demonstrated superior performance compared to existing

methods. The contributions of this work lie in providing a

comprehensive framework for multimodal data integration,

improving autonomous driving capabilities, and ensuring privacy

protection in the era of data-driven robotics. The potential

significance of Res-FLNet extends to practical applications in

autonomous vehicles, where robust and privacy-preserving

methods are of paramount importance.
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