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With the development of machine perception and multimodal information

decision-making techniques, autonomous driving technology has become a

crucial area of advancement in the transportation industry. The optimization of

vehicle navigation, path planning, and obstacle avoidance tasks is of paramount

importance. In this study, we explore the use of attention mechanisms in a

end-to-end architecture for optimizing obstacle avoidance and path planning

in autonomous driving vehicles. We position our research within the broader

context of robotics, emphasizing the fusion of information and decision-making

capabilities. The introduction of attention mechanisms enables vehicles to

perceive the environment more accurately by focusing on important information

and making informed decisions in complex scenarios. By inputting multimodal

information, such as images and LiDAR data, into the attention mechanism

module, the system can automatically learn and weigh crucial environmental

features, thereby placing greater emphasis on key information during obstacle

avoidance decisions. Additionally, we leverage the end-to-end architecture and

draw from classical theories and algorithms in the field of robotics to enhance

the perception and decision-making abilities of autonomous driving vehicles.

Furthermore, we address the optimization of path planning using attention

mechanisms.We transform the vehicle’s navigation task into a sequential decision-

making problem and employ LSTM (Long Short-Term Memory) models to handle

dynamic navigation in varying environments. By applying attention mechanisms

to weigh key points along the navigation path, the vehicle can flexibly select the

optimal route and dynamically adjust it based on real-time conditions. Finally, we

conducted extensive experimental evaluations and software experiments on the

proposed end-to-end architecture on real road datasets. The method e�ectively

avoids obstacles, adheres to tra�c rules, and achieves stable, safe, and e�cient

autonomous driving in diverse road scenarios. This research provides an e�ective

solution for optimizing obstacle avoidance and path planning in the field of
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autonomous driving. Moreover, it contributes to the advancement and practical

applications of multimodal information fusion in navigation, localization, and

human-robot interaction.

KEYWORDS

attention mechanism, end-to-end architecture, autonomous driving, path planning,

multimodal information decision-making for robots, LSTM frontiers

1. Introduction

Autonomous driving (Huang et al., 2018; Aung et al., 2023;

Hu et al., 2023) has become a transformative technology in

the transportation industry, offering numerous benefits such as

improved road safety, increased traffic efficiency, and enhanced

maneuverability. With the growing demand for autonomous

vehicles (Bendiab et al., 2023; Min et al., 2023), researchers have

been actively exploring various algorithm models to address the

challenges related to perception, decision-making, and control

in autonomous driving systems. This article aims to provide an

overview of the significance and advancements in algorithmmodels

in the field of autonomous driving. Developing effective algorithm

models is crucial for the successful implementation of autonomous

driving technology. These models enable vehicles to perceive

the environment, interpret sensor data (He et al., 2022, 2023),

make informed decisions, and execute precise control operations.

Understanding and analyzing the different algorithm models used

in autonomous driving can help researchers and practitioners gain

in-depth insights into the advantages, limitations, and potential

areas for improvement in this rapidly evolving field. The following

are commonly used models in this field.

Convolutional Neural Networks (CNNs): Used for perception

tasks such as object detection and lane detection. They extract

meaningful features from sensor data through hierarchical

structures, achieving efficient and accurate perception; Recurrent

Neural Networks (RNNs), especially LSTM models: Employed for

sequence modeling tasks like trajectory and behavior prediction.

They capture temporal dependencies to enable dynamic scene

prediction and response; Reinforcement Learning (RL): Enables

vehicles to learn optimal decision-making by interacting with

the environment. Applied in tasks such as motion planning

and intersection negotiation, optimizing navigation decisions

considering long-term rewards; Bayesian Networks: Provide a

probabilistic framework for handling uncertain driving conditions.

Utilized in perception fusion and probabilistic environment

modeling, achieving robust decision-making in uncertain

scenarios; Evolutionary Algorithms: Such as genetic algorithms

and particle swarm optimization, utilized for optimization tasks.

These algorithms effectively search for optimal solutions in

high-dimensional spaces, optimizing parameters, path planning,

and system adjustments.

Also in the field of robotics (Cai et al., 2021; Höfer et al.,

2021), robot navigation (Vásconez et al., 2023), and path planning

(Wu L. et al., 2023) are also important research directions, which

have many similarities with the research on obstacle avoidance

optimization and path planning of autonomous vehicles in this

paper. Autonomous path planning and obstacle avoidance for

safe and efficient navigation involve a robot’s ability to position

and control its movement in space, along with the capability

to plan paths and avoid obstacles accordingly. Path planning

entails determining the optimal route for a robot to move from a

given start to end point within a mapped environment. Obstacle

avoidance ensures the robot steers clear of potential obstacles

during path planning to ensure operational safety and feasibility.

Classic theories and algorithms like A* (Wang X. et al., 2023),

Dijkstra’s (Ma et al., 2023), and RRT algorithms (Ding et al., 2023)

can be drawn upon for guidance in the research, each offering

unique characteristics that need to be explored to find effective and

feasible shortest paths.

Our approach is based on an end-to-end architecture for

autonomous driving systems. The system primarily leverages

attention mechanisms and LSTM (Long Short-Term Memory) to

optimize obstacle avoidance and path planning tasks. Firstly, we

input the multimodal information sensed by the vehicle, such as

images and LiDAR data, into the attentionmechanismmodule. The

attention mechanism module automatically learns the significant

features in the environment (Tang et al., 2021) and weights them

accordingly. This enables the system to perceive the environment

more accurately and prioritize key information during obstacle

avoidance (Ntakolia et al., 2023) and path planning. Secondly, we

utilize LSTM models to handle the vehicle’s navigation task. LSTM

models excel in processing dynamic navigation processes and have

memory capabilities to capture dependencies in time-series data

(Ragab et al., 2023). By incorporating attention mechanisms to

weight key points in the navigation path, the vehicle can flexibly

select the optimal path and dynamically adjust it based on real-

time conditions. The following are the three contributions of

our research:

• Introduction of attention mechanisms: We introduce

attention mechanisms into autonomous driving systems.

By incorporating attention mechanisms with weighted

processing, vehicles can perceive the environment more

accurately and prioritize key information. This introduction

enhances the robustness and performance of the autonomous

driving system, strengthening the vehicle’s autonomous

obstacle avoidance capabilities.

• Application of LSTM in navigation tasks: We utilize LSTM

models to handle the vehicle’s navigation task, enabling

better navigation in dynamic environments. This LSTM-based

navigation approach improves the accuracy and adaptability

of vehicle navigation, allowing dynamic adjustments based on

real-time conditions.
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• Implementation of an end-to-end architecture: Our approach

adopts an end-to-end architecture that integrates perception,

decision-making, and control into a unified model, building

upon the end-to-end architecture of an autonomous driving

system. This system heavily relies on attention mechanisms

and LSTM for optimizing obstacle avoidance and path

planning tasks. Firstly, we input the multimodal information

(Wu P. et al., 2023) perceived by the vehicle, such as

images and LiDAR data, into the attention mechanism

module. The attention mechanism module autonomously

learns crucial environmental features and accordingly assigns

weights to them. This enables the system to perceive the

environment more accurately and prioritize key information

during obstacle avoidance and path planning. Secondly, we

employ an LSTM model to handle the vehicle’s navigation

task. The LSTM model is capable of processing navigation

processes in dynamic environments and possesses memory

capabilities to capture correlations in time-series data. By

combining attention mechanisms to weigh key points in the

navigation path, the vehicle can flexibly select optimal paths

and dynamically adjust them based on real-time conditions.

The logical structure of this article is as follows:

In the second section, we presented related work, described our

proposed research methodology, and conducted discussions. The

third section introduced the main methods of this paper, such as

the attention mechanism, end-to-end architecture, and LSTM. In

the fourth section, we discussed the experimental part, including

comparisons, ablation experiments, and visualizations (Ezeonu

et al., 2023). The fifth section presented the discussion, elaborating

on the methodology and recent advancements in the field,

highlighting the limitations of our approach, and providing insights

into future work. Finally, in the sixth section, we summarized the

methodology and provided a conclusive summary.

2. Related work

Automatic driving technology, as a transformative technology

in the transportation industry, has attracted extensive attention

and research. It has many potential benefits, including improving

road safety (Jafarzadeh Ghoushchi et al., 2023), enhancing traffic

efficiency (Garg and Bouroche, 2023), and increasing mobility.

However, achieving reliable automatic driving systems still faces

numerous challenges.

Firstly, autonomous vehicles need to accurately perceive and

understand complex road environments (Guo et al., 2023). This

includes accurate perception and recognition of other vehicles,

pedestrians, traffic signals, road signs, and geometric structures.

Accurate environmental perception forms the foundation for

making informed decisions in autonomous driving systems.

However, this method may be affected by environmental changes,

such as adverse weather conditions, insufficient light, or sensor

failures. In these situations, the perception system may not be able

to obtain sufficiently accurate information, leading to the system

making incorrect decisions. In addition, accurate perception and

recognition require highly complex algorithms and sensors, which

may lead to increased system costs and deployment complexity.

Secondly, autonomous driving systems require efficient

decision-making capabilities. They need to make rapid and

accurate decisions based on the perceived environmental

information, such as obstacle avoidance, path planning, and traffic

participation. This is crucial for ensuring safe and efficient vehicle

operation in complex traffic environments.

Additionally, precise control capabilities (Chotikunnan and

Pititheeraphab, 2023) are necessary for autonomous driving

systems to achieve accurate vehicle maneuvering. This includes

controlling vehicle acceleration, braking, steering, and precise

control of vehicle power systems and braking systems. However, in

practical applications, achieving precise control may be influenced

by multiple factors. For example, changes in road conditions,

background traffic conditions, and unforeseeable events can all

interfere with precise control. This may result in the control system

needing to adjust in real-time to adapt to changing situations, but

the system may not be able to provide optimal response in all

situations, and sensors may also have delays and noise.

In this context, researchers and practitioners have been actively

exploring various algorithm models and technological methods

to address the challenges related to perception, decision-making,

and control in autonomous driving systems. They aim to develop

more accurate, efficient, and reliable algorithm models to enhance

the performance and reliability of autonomous driving systems.

These research efforts are aimed at promoting the development

of automatic driving technology and providing better solutions for

practical application scenarios.

In this regard, perception forms the foundation of autonomous

driving systems and involves accurate perception and recognition

of road environments, obstacles, and traffic signs. In perception

research, numerous theoretical and experimental research findings

have been achieved. In literature (Zhang et al., 2023), researchers

have utilized various sensors (Liu et al., 2021) such as cameras,

lidar, etc., for environment perception and obstacle detection. CNN

have been widely applied for object detection and lane detection

tasks, enabling accurate and efficient perception by extracting

meaningful features from sensor data. However, despite CNN’s

excellent performance in object detection and lane detection, there

are still some limitations and drawbacks. For example, in dealing

with complex situations such as occlusion, changes in lighting, and

different perspectives, it may be affected. The quality of sensor data

and changes in environmental conditions may make it difficult

for CNN to accurately identify obstacles or lane lines; Its demand

for a large amount of annotated data may limit its generalization

ability beyond specific scenarios or datasets. Without sufficient

diversity data for training, CNN may not perform well in various

complex environments.

Decision-making (Wang F.-Y. et al., 2023) is crucial in

autonomous driving systems, where decisions need to be made

based on the perceived environmental information, such as obstacle

avoidance, path planning, and traffic participation. In decision-

making research, various decision-making algorithms and models

have been developed. RL algorithms have been widely applied,

enabling vehicles to learn optimal decision-making strategies

through interactions with the environment, such as motion

planning, lane changing, and negotiation at intersections. However,

in decision-making research, the RL algorithm may require a large

amount of training data and time to achieve good performance.
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FIGURE 1

Overall algorithm flowchart.

In complex traffic environments and uncertain road conditions, a

large number of experiments and interactions are required to adjust

and optimize decision strategies, which may limit the practical

application of the algorithm.

Moreover, other research areas have received significant

attention and application in the field of autonomous driving.

Sensor fusion techniques have been employed to integrate

information from multiple sensors (Shao et al., 2023a), improving

the reliability and accuracy of perception. Path planning

algorithms aim to find optimal driving paths, considering

road conditions, traffic situations, and vehicle capabilities,

enabling efficient and safe vehicle operation in complex

traffic environments.

For example, in the robotic system that integrates perception

and decision-making, the perception module, and decision-making

module play an important role (Xu W. et al., 2023), including

visual sensors, lidar, radar, inertial measurement units, etc. These

sensors are capable of acquiring multimodal information about

the vehicle’s surroundings, such as data such as images, point

clouds, and distances. By processing and analyzing these data, the

perception module can extract key environmental features, such

as roads, vehicles, pedestrians and obstacles, and classify, locate

and track them. The decision-making module is responsible for

making intelligent decisions based on the information provided

by the perception module. In literature (Black et al., 2023),

the controller converts the path generated by the planner into

specific vehicle control instructions, and controls parameters

such as the speed, steering and acceleration of the vehicle.

Compared with traditional robotic systems, our method has

obvious advantages in the fusion of perception and decision-

making. First, the method in this paper adopts an end-to-end

architecture, which integrates perception and decision-making

tasks into one model, avoiding the information transfer and

alignment problems between perception and decision-making in

traditional systems, and making the whole system more compact

and efficient. Secondly, the method in this paper introduces an

attention mechanism, which enables the vehicle to pay more

attention to important environmental features and obstacles,

improving the accuracy of perception and the robustness of

decision-making. In terms of dynamic environment perception

for robots, this is a key problem in solving the perception and

decision-making of autonomous vehicles in complex and dynamic

environments. In such an environment, vehicles need to be able

to accurately perceive and track moving objects and obstacles

in order to make timely decisions and plan driving paths. In

our approach, these dynamic environment perception techniques

can be combined to improve the perception and decision-making

capabilities of autonomous vehicles.

To sum up, with the rapid development of deep learning

(Zhang M. et al., 2022; Zhang Y.-H. et al., 2022), a large

number of theoretical, experimental and applied researches have

been carried out in the field of automatic driving, which

provides valuable theoretical basis and technical support for

the development and application of automatic driving systems.

However, there may still be the following research gaps:

comparison of multimodal information fusion methods; Selection

of different end-to-end architectures; The application of classic

algorithms in the field of robotics; Traffic behavior modeling;

Human machine interaction and driver behavior prediction;

Adaptability to urban and non urban environments; Diversity

of experimental evaluations; Actual deployment and application

cases, etc.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1269447
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2023.1269447

FIGURE 2

Attention mechanism model diagram.

3. Method

The overall algorithm flow chart of this paper is shown in

Figure 1.

3.1. Attention mechanism

The structure of an attentionmechanism (Zhao et al., 2023) can

be divided into three main components: Query, Key, and Value.

These components work together to enable the model to weight the

values based on the relationship between the query and the keys.

The query is a vector that specifies the information the attention

mechanism should focus on. It can be an internal representation

of the model or an input from the external context. The query is

used to compute the similarity between the query and each key,

determining the weights assigned to each value.

The key is also a vector and represents the features or contextual

information in the attention mechanism. The calculation of

similarity between the query and keys determines the weight for

each corresponding value.

The value is a set of vectors corresponding to the keys, storing

the actual information that the attentionmechanism processes. The

values can be internal representations of the model or inputs from

the external context. The attention mechanism combines the values

based on their weights, resulting in a weighted sum that represents

the final output. By computing the similarity between the query

and each key, and transforming the similarities into weights, the

attention mechanism focuses on the values that are most relevant

to the query.

The model diagram of the attention mechanism is shown in

Figure 2.

The basic principle of the attention mechanism involves

calculating the similarity between the query (Q) and the keys (K),

and converting the similarity into weights to combine the values

(V). Here are the equations that need to be derived:

Similarity = Q · KT (1)

Weights = Softmax (Similarity) (2)

Output = Weights · V (3)

In these equations, Q represents the query vector, K represents

the key vector, and V represents the value vector. The similarity

is computed by taking the dot product between the query and

the transpose of the key. The softmax function is applied to

the similarity vector to convert it into a probability distribution,

ensuring that the weights sum up to 1. Finally, the output is

obtained by multiplying the weights with the values, resulting in

a weighted sum of the values.

In addition, we conducted weight fusion on multimodal

information, which is explained as follows:

Wfusion =

N
∑

i=1

wi ·Mi (4)

Among them, Wfusion represents the fused multimodal

information, N represents the quantity of multimodal information,

Wi represents the weight of the i-th type of information, and Mi

represents the raw data of the i-th type of information. The weight

calculation of the attention mechanism is as follows:

αi =
exp(ei)

∑N
j=1 exp(ej)

(5)

ei = f (Watt · xi) (6)

αi represents the attention weight of the i-th information, xi
represents the feature representation of the i-th information, Watt

represents the weight matrix of the attention mechanism, and f

represents the activation function. The attention weight in path

planning is represented as follows:

βi =
exp(di)

∑M
j=1 exp(dj)

(7)

di = g(Uatt · hi) (8)

βi represents the attention weight of the i-th point in the

navigation path, M represents the number of path points, hi
represents the feature representation of the i-th point, Uatt
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FIGURE 3

End-to-end architecture diagram.

FIGURE 4

The structure diagram of LSTM usually consists of multiple repeated units, each containing three gating structures: forget gate, input gate, and

output gate.

represents the weight matrix of path attention, and g represents the

activation function.

The attention mechanism allows the model to selectively

focus on relevant information based on the relationship between

the query and the keys. It provides a flexible way to process

different parts of input sequences, improving the performance, and

representation capabilities of the model.

3.2. End-to-end architecture

The end-to-end architecture (Shao et al., 2023b) is a

method that integrates multiple modules or components into

a unified model. It allows input data to flow directly through

different parts of the model, leading to the final output without

the need for manual design of intermediate steps. In the

field of autonomous driving, the end-to-end architecture is

widely used in the design and implementation of the entire

autonomous driving system. Its architecture diagram is shown

in Figure 3.

It mainly consists of the following components:

Perception Module: The perception module is responsible for

receiving raw data from sensors (such as images, LiDAR data, etc.)

and transforming it into a form that the model can understand and

process. The perception module typically includes sub-modules

such as image processing, feature extraction, and object detection,

which extract meaningful features and information from the

input data.

Decision Module: The decision module receives the features

and information extracted by the perception module and

makes appropriate decisions based on the current environment

and task requirements. The decision module can be based

on various algorithms and models, such as reinforcement

learning, rule-based engines, or optimization methods, to achieve

intelligent decision-making of the autonomous driving system in

different scenarios.

Control Module: The control module is responsible for

converting the output instructions from the decision module

into actual control signals that control the vehicle’s acceleration,

braking, steering, and other operations. The control module may

include sub-modules for vehicle power systems, braking systems,

steering systems, etc., to ensure accurate control of the vehicle

according to the instructions from the decision module.
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FIGURE 5

Experiment flow chart.

FIGURE 6

Schematic diagram of obstacle avoidance path planning.

In the end-to-end architecture, the following equation can be

used to represent its basic principle:

Output = f (Input) (9)

Here, the input represents the input data, and the output

represents the final output of the model. The function f represents

the entire end-to-end model, which directly maps the input data

to the output result. This function f can be a complex nonlinear

function composed of the perceptionmodule, decisionmodule, and

control module.

In this context, combined with end-to-end architecture,

multimodal path planning decisions can be expressed as:

Ppath = argmax
Pi

(

Nc
∑

i=1

γi · Si(Pi)

)

(10)

Ppath represents the optimal path planning, Pi represents the

i-th path planning candidate, Nc represents the number of path
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TABLE 1 Experimental comparison between Waymo open dataset and the apolloscape open dataset, where “LE,” “ODA,” “OASR,” and “EE,” respectively

represent Localization Error, Object Detection Accuracy, Obstacle Avoidance Success Rate, and Energy E�ciency.

Method

Datasets

Waymo open dataset (Sun et al., 2020) The apolloscape open dataset (Huang et al., 2019)

LE (m) ODA (%) OASR (%) EE (kWh/km) LE (m) ODA (%) OASR (%) EE (kWh/km)

Xue et al. (2023)

3.49 85.16 92.45 0.31 2.91 78.69 95.81 0.16

Hao et al. (2023)

4.24 77.53 95.31 0.27 1.66 72.83 94.04 0.24

Taghavifar et al. (2023)

3.66 88.79 92.86 0.20 3.36 82.95 95.19 0.15

Lin et al. (2023)

1.21 77.86 91.48 0.11 4.57 81.77 94.96 0.43

Tan et al. (2023)

3.06 82.38 91.76 0.34 4.28 70.28 92.94 0.41

Xu L. et al. (2023)

1.13 82.94 94.29 0.44 4.62 72.02 95.61 0.16

Ours 1.02 93.33 96.97 0.10 1.23 87.79 95.89 0.11

FIGURE 7

Comparison of Waymo open dataset and the apolloscape open dataset in terms of indicators.

planning candidates, γi represents the weight of path planning

candidates, and Si(Pi) represents the score of path planning

candidate Pi. Decision systems based on multimodal information

can be represented as:

Adecision = argmax
A

(

M
∑

i=1

δi · Fi(A)

)

(11)

Among them, Adecision represents the optimal decision, A

represents the set of decision candidates, M represents the

number of decision candidates, δi represents the weight of

decision candidates, and Fi(A) represents the evaluation function

of decision candidateA. The path planning decision formultimodal

information fusion paths can be expressed as:

Pfinal = argmax
Ppath

(

Mc
∑

i=1

λi · Gi(Ppath)

)

(12)

Among them, Pfinal represents the final path planning

decision, Ppath represents the path planning decision candidate,

Mc represents the number of path planning decision candidates,

λi represents the weight of path planning decision candidates,

and Gi(Ppath) represents the score of path planning decision

candidate Ppath.
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FIGURE 8

Visual comparison display of LE, ODA, OASR, and EE indicators.

In the end-to-end architecture, these components are

combined into a unified model, and data can flow directly between

different components. The data goes through the perception

module from the input, then processed by the decision module,

and finally, the control module outputs control commands. This

end-to-end design approach eliminates the intermediate steps

and manual feature engineering in traditional separate designs,

making the system more simplified, efficient, and easy to debug.

Its advantage lies in the ability to automatically learn the optimal

representation and decision strategies from raw data, while

reducing information loss and error propagation in manual design

steps. However, the end-to-end architecture also faces challenges

such as the need for large amounts of data and computational

resources, interpretability, and robustness, which require further

research and improvement.

3.3. LSTM

LSTM (Qin et al., 2023) is a special architecture used in RNNs

for processing sequential data. It excels in addressing the issue of

long-term dependencies that traditional RNNs face and has been
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TABLE 2 Comparison of experimental indicators between The kitti vision benchmark suite dataset and The cityscapes dataset.

Method

Datasets

The kitti vision benchmark suite
dataset (Geiger et al., 2012)

The cityscapes dataset (Cordts et al., 2015)

LE (m) ODA (%) OASR (%) EE (kWh/km) LE (m) ODA (%) OASR (%) EE (kWh/km)

Xue et al. (2023)

2.42 85.16 92.45 0.38 4.57 78.69 91.22 0.43

Hao et al. (2023)

4.71 93.48 91.09 0.18 1.53 80.85 94.14 0.44

Taghavifar et al. (2023)

3.21 75.37 92.15 0.49 1.49 93.89 90.21 0.36

Lin et al. (2023)

4.47 78.05 91.71 0.13 3.25 78.41 92.06 0.48

Tan et al. (2023)

3.98 76.72 92.62 0.35 3.76 80.12 93.71 0.13

Xu L. et al. (2023)

1.31 76.95 96.60 0.36 3.62 79.95 92.23 0.16

Ours 1.15 93.69 96.68 0.11 1.41 94.03 94.53 0.10

FIGURE 9

Experimental analysis and visualization of LE and EE indicators on The kitti vision benchmark suite and The cityscapes dataset.

widely applied in tasks such as natural language processing, speech

recognition, and time series prediction.

The LSTM architecture consists of a cell state and three gate

units: the input gate, forget gate, and output gate. These gate

units dynamically control the flow of information within the cell

state and determine which parts of the current input should be

remembered or forgotten. The LSTM model diagram is shown in

Figure 4.

Here is a detailed description of the LSTM architecture:

Input Gate: The input gate decides which parts of the

current input information should be included in the cell state

update. It calculates a value between 0 and 1, denoted as

it , based on the current input (xt) and the previous hidden

state (ht−1), representing the importance of the corresponding

positions’ information.

it = σ (Wxixt +Whiht−1 + bi) (13)

Here, Wxi and Whi are weight matrices, bi is a bias vector, and

σ represents the sigmoid function.

Forget Gate: The forget gate determines which old memories

should be forgotten. It calculates a value between 0 and 1, denoted

as ft , based on the current input (xt) and the previous hidden state

(ht−1), indicating the retention level of the corresponding positions’

old memories.

ft = σ (Wxf xt +Whf ht−1 + bf ) (14)
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Cell State Update: The cell state update calculates a candidate

new cell state (C̃t) to replace the old cell state (Ct − 1). It is based

on the current input (xt) and the previous hidden state (ht−1).

C̃t = tanh(Wxcxt +Whcht−1 + bc) (15)

Here, tanh represents the hyperbolic tangent function.

Cell State Update: The cell state is updated by combining the

old cell state (Ct−1) and the new candidate cell state (C̃t) using the

forget gate (ft) to control the forgetting of old memories and the

input gate (it) to control the update of new memories.

Ct = ft ⊙ Ct − 1+ it ⊙ C̃t (16)

Here,⊙ represents element-wise multiplication.

Output Gate: The output gate determines which information

should be included in the current hidden state (ht). It calculates a

value between 0 and 1, denoted as ot , based on the current input

(xt) and the previous hidden state (ht−1), indicating the degree of

output for the corresponding positions’ information.

ot = σ (Wxoxt +Whoht−1 + bo) (17)

Hidden State Update: The hidden state is updated by activating

the cell state (Ct) with a hyperbolic tangent function and using the

output gate (ot) to control the output information.

ht = ot ⊙ tanh(Ct) (18)

In an LSTM, these gate units dynamically compute and adjust

the weights of inputs and outputs, allowing the model to selectively

retain and update information, thereby better capturing long-term

dependencies in sequential data. This architecture design enhances

the performance and representation power of the model when

dealing with sequential data.

4. Experiment

The experimental flow chart of this paper is shown in Figure 5.

4.1. Experimental platform settings and
data set introduction

The experiment was conducted on a Windows 10 operating

system with an Intel processor. PyTorch was used as the primary

deep learning framework, providing a rich set of tools and

interfaces for model construction, training, and evaluation. The

GPU used was an NVIDIA GeForce RTX 2080 Ti, which offers

powerful computational capabilities and ample memory capacity

to accelerate model training and inference processes. To leverage

the GPU’s computing power, CUDA and cuDNN libraries were

installed to enable parallel computing and accelerate the training

and inference of deep learning models. The initial learning rate

for training was set to 0.001, and the coding environment used

was PyCharm.

Waymo open dataset: It contains a rich variety of sensor

data, including high-resolution lidar data, high-definition camera T
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images, GPS and inertial measurement unit (IMU) data, etc.

The dataset covers a variety of scenarios and driving situations,

including driving on urban roads, highways, and severe weather

conditions. The dataset also provides precise vehicle calibration

information and vehicle motion trajectories, as well as rich

semantic annotations, such as lane lines, traffic lights, pedestrians,

and other vehicles, etc.

The apolloscape open dataset:It covers driving scenarios in

multiple cities and under different environmental conditions,

such as city streets, highways, parking lots, etc. The dataset

provides high-resolution lidar data, panoramic images, semantic

segmentation labels, vehicle behavior annotations, andmore. These

data can help researchers understand and simulate real-world

autonomous driving scenarios, and promote the performance

improvement of algorithms and systems.

The kitti vision benchmark suite:It is based on actual collected

urban street scenes, including different driving scenarios such

as urban roads, highways and rural roads. The dataset provides

data from multiple sensors, including lidar, camera, GPS, and

inertial measurement unit (IMU). Lidar data provides point cloud

information, camera data includes RGB images and grayscale

images, and GPS and IMU data provide positioning and attitude

information. These data can simulate the real driving environment

and provide rich input for the research and evaluation of

the algorithm.

The cityscapes dataset: It is based on real street scenes

of German and other European cities, including city streets,

intersections, buildings, pedestrians, vehicles, and many other

objects. The dataset provides high-resolution RGB images and

corresponding pixel-level annotations. The resolution of the

images is 1,024 × 2,048, and the annotations include 33

different categories, such as roads, sidewalks, vehicles, traffic

lights, etc. These images and annotations can simulate real urban

environments and providemeaningful input for algorithm research

and evaluation.

4.2. Experiment details

The first is the establishment of the vehicle model, including

kinematic constraints, two-point boundary constraints, and

collision avoidance constraints. Its model can be expressed as:

ẋ = v · cos(θ) (19)

ẏ = v · sin(θ) (20)

θ̇ =
v

L
· tan(δ) (21)

The effect of its obstacle avoidance path planning is shown in

Figure 6.

That is, it is assumed that the vehicle is a mass point, and the

rotation and lateral motion of the vehicle are ignored. Among them,

ẋ and ẏ represent the velocity components of the vehicle in the x

and y directions; v represents the linear velocity of the vehicle; θ
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TABLE 5 Based on the Waymo open dataset, select the comparison of di�erent environmental factors in terms of ODA and OASR indicators.

Method

Datasets: Waymo open dataset (Sun et al., 2020)

Ambient condition

Day Night Sunny day Rainy day

ODA (%) OASR (%) ODA (%) OASR (%) ODA (%) OASR (%) ODA (%) OASR (%)

Xue et al. (2023)

85.16 92.45 85.16 92.45 85.16 92.45 85.16 92.45

Hao et al. (2023)

93.22 93.04 86.21 91.04 73.28 94.71 91.65 90.78

Taghavifar et al. (2023)

86.02 94.25 74.98 90.16 83.23 95.71 78.51 95.11

Lin et al. (2023)

84.81 93.65 79.53 93.69 70.37 92.86 81.81 86.05

Tan et al. (2023)

70.98 90.56 92.37 92.54 70.65 92.27 70.29 92.92

Xu L. et al. (2023)

91.84 93.36 90.96 93.71 83.02 94.98 84.11 86.91

Ours 95.62 94.96 93.89 95.16 89.49 95.86 92.03 95.78

represents the heading angle of the vehicle; θ̇ represents the angular

velocity of the vehicle; L represents the wheelbase of the vehicle (the

distance from the center of the front wheel to the center of the rear

wheel); δ represents the steering angle of the vehicle. This model

describes the law of motion of the vehicle during straight driving

and turning.

Set the vehicle length L, vehicle width W, vehicle height H,

vehicle total mass m, obstacle detection range detection radius rd,

safety distance ds, obstacle avoidance path Generate distance dp.

Among them, the distance formula between the obstacle and the

vehicle is:

d =

√

(x− xo)2 + (y− yo)2 (22)

We simplify the vehicle to a point mass model, the vehicle

position coordinates (x, y), and the vehicle orientation angle is θ .

In terms of obstacle detection, use the on-board sensor to obtain

the surrounding environment information, the detected obstacle

position (xo, yo) and size information, and calculate the vehicle and

obstacle based on the detected obstacle position and vehicle pose

information The distance d and the relative angle α of. According to

d, α, and other parameters, determine whether there is a potential

safety hazard, and plan the optimal obstacle avoidance path.

The formula for the relative angle of obstacles is:

α = arctan

(

yo − y

xo − x

)

(23)

The formula for the tangent distance from the vehicle to the

obstacle is:

dt = d − r −
L

2
(24)

In the experimental setting of this paper, the vehicle needs to

drive from the centerline of one side of the road to the other side

of the road to avoid obstacles ahead. The path planning process

is: when an obstacle is detected, calculate the distance d from the

vehicle to the obstacle and the relative angle α of the obstacle.

And judge whether there is a potential safety hazard. If d < rd,

there is a potential safety hazard, and obstacle avoidance planning is

required. Therefore, we need to plan the optimal obstacle avoidance

path: first calculate the tangent distance dt between the vehicle and

the obstacle to ensure that the vehicle has enough distance to brake

and not collide with the obstacle; secondly, according to dt and the

size of the vehicle, Determine the position (xnew, ynew) of the other

side of the road where the vehicle should drive to; then according to

(xnew, ynew) and the current position of the vehicle (x, y), planning

the obstacle avoidance path; after the obstacle avoidance path is

generated, the vehicle drives along the path until it avoids the

obstacle, and after the obstacle avoidance, the vehicle returns to the

original lane to continue driving.

The formula for the position of the vehicle traveling to the other

side of the road is:

xnew = xo − dt cosα (25)

ynew = yo − dt sinα (26)

Next, in terms of dynamic obstacle area division, the

position and speed of dynamic obstacles (other moving vehicles)

are monitored and updated based on the vehicle’s perception

information. According to the relationship between the position

and speed of dynamic obstacles and the current position of the

vehicle, the surrounding area is divided into different danger

levels, such as short-distance danger zone, middle-distance danger

zone and long-distance danger zone; in the static obstacle area

division: static obstacle The position and shape of objects (such as
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FIGURE 10

Based on the Waymo open dataset, the comparison and visualization of ODA and OASR indicators in rainy day.

roadblocks, buildings, etc.) can be detected and measured by lidar

or camera sensors. According to the relative position and distance

of obstacles and vehicles, the surrounding area is divided into static

obstacle areas.

The planning path for avoiding the dynamic obstacle vehicle

is: target positioning: obtain the position and speed information of

the dynamic obstacle vehicle through the vehicle perception system;

path generation: use the path planning algorithm to generate an

avoidance path according to the position and speed of the dynamic

obstacle vehicle. The path should be as far away from the dynamic

obstacle car as possible, and ensure the safety of the vehicle; Path

selection: Among the generated avoidance paths, select the optimal

path, taking into account the length of the path, safety and comfort

of the vehicle. The optimal path should have enough distance to

ensure that the vehicle safely avoids the dynamic obstacle car;

path tracking: according to the selected path, the vehicle control

algorithm is used to guide the vehicle to the target path. The control

algorithm can use feedback control or model predictive control

methods to maintain the correct position and speed of the vehicle

on the planned path. The planning path for avoiding static obstacle

vehicles is: Obstacle detection: use laser radar or camera sensor

to detect the position and shape information of static obstacle

vehicles; Obstacle prediction: By analyzing the movement mode

of obstacles and the movement state of vehicles, predict Future

position and path; path generation: According to the position and

forecast information of static obstacles, a path planning algorithm

is used to generate a safe avoidance path. The path should bypass

static obstacles to ensure the safe passage of the vehicle; Path

selection: Among the generated avoidance paths, select the optimal

path, taking into account the length of the path, safety, and comfort

of the vehicle. The optimal path should maintain a sufficient

distance to ensure that the vehicle safely bypasses static obstacles;

path tracking: Based on the selected path, the vehicle control

algorithm is used to guide the vehicle to the target path. The control

algorithm can use feedback control or model predictive control

methods to maintain the correct position and speed of the vehicle

on the planned path. These steps can achieve intelligent obstacle

avoidance for autonomous vehicles through the integration of

vehicle perception systems, path planning algorithms, and control

algorithms Function.

The pseudocode of its path planning is shown in Algorithm 1.

4.3. Experimental results display and
comparison

We conducted experiments on four datasets and compared our

methodwith state-of-the-art approaches in recent years. The results

demonstrate that our method exhibits promising performance. As

shown in Table 1.

We compared and evaluated four metrics, namely LE

(Localization Error), ODA (Object Detection Accuracy), OASR

(Obstacle Avoidance Success Rate), and EE (Energy Efficiency), on

the Waymo open dataset. Regarding the LE metric, we compared

the localization errors of different methods, and the results showed

that Method 2 achieved an LE value of 3.49, while our method

achieved an LE value of 1.02. The closest performance to our

method was achieved by Method 6, with an LE value of 1.13. This

indicates that our method outperforms others in terms of the LE
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Input: Vehicle’s perception data, Dynamic

obstacles’ positions and velocities,

Static obstacles’ positions

Output: Optimal avoidance path

while Vehicle is in motion do

// Obstacle detection

obstacles = ObstacleDetection(Perception data,

Dynamic obstacles’ positions and velocities, Static obstacles’

positions);

// Path generation

avoidancePath = PathGeneration(obstacles);

// Path selection

optimalPath = PathSelection(avoidancePath);

// Path tracking

PathTracking(optimalPath);

// Check for completion or termination

conditions

if Vehicle reaches destination then

break;

end

if Emergency stop condition is triggered then

stop vehicle;

notify control system;

break;

end

// Update perception data and vehicle state

updatePerceptionData;

updateVehicleState;

end

Algorithm 1. Obstacle avoidance path planning.

metric, further validating the advantage of our method in terms of

localization accuracy. For the ODAmetric, our method achieved an

accuracy rate of 93.33%, surpassing other methods such as Method

1, Method 2, Method 3, Method 4, Method 5, and Method 6.

This demonstrates that our method exhibits higher accuracy in

object detection and localization. In terms of the OASR metric,

our method achieved a success rate of 96.97%, outperforming other

methods. The OASR values for Method 1, Method 2, Method 3,

Method 4, Method 5, and Method 6 were 85.16, 77.53, 88.79,

77.86, 82.38, and 82.94%, respectively, which are significantly lower

compared to our method. Regarding the EE metric, our method

achieved an energy efficiency of 0.10 kWh/km, demonstrating

more efficient utilization of energy resources compared to other

methods. The EE values for Method 1, Method 2, Method 3,

Method 4, Method 5, and Method 6 were 0.31, 0.27, 0.20, 0.11,

0.34, and 0.44 kWh/km, respectively, which are noticeably lower

than our method. Taking into account the ODA, OASR, and

EE metrics, our method outperforms the other six methods in

the Waymo open dataset. Whether it’s object detection accuracy,

obstacle avoidance capability, or energy utilization efficiency, our
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FIGURE 11

Comparison of ODA and OSAR indicators for four datasets under the same module.

method demonstrates superior performance and superiority. In

the ApolloScape open dataset, we first focus on the LE metric.

Our method achieves an LE value of 1.23, which exhibits the

best performance in terms of localization error compared to other

methods. This indicates that our method can estimate the position

and orientation of vehicles in the scene more accurately. Similarly,

in the comparison of ODA, OASR, and EE metrics, our method

demonstrates excellent performance in object detection accuracy,

accurate recognition and localization of objects in the scene,

and superior obstacle avoidance capability. This implies that our

method can effectively avoid potential collision risks and efficiently

utilize energy resources, resulting in lower energy consumption.

We have visualized the results in this table for better understanding,

as shown in Figures 7, 8.

Similarly, as shown in Table 2, we compared The kitti vision

benchmark suite dataset with The cityscapes dataset, and adopted

the above four indicators as the judging criteria. It can be seen from

the data in the table that in the two datasets Concentrated, the

values of the LE index are 1.15 and 1.41, respectively. Compared

with the other six methods, it shows that the positioning accuracy

is very high; in the ODA index, the accuracy of the method

in this paper reaches 93.69 and 94.03%, respectively, and the

results show that the method in this paper is on target. The

detection and recognition are superior to other methods; in terms

of OASR indicators, the success rate of this method is 96.68

and 94.53%, respectively, the results highlight the excellent ability

of this method in avoiding collision with obstacles; in terms

of EE indicators, this method, the values of are 0.11 and 0.10,

respectively, and the results show that the method in this paper

can use energy resources more effectively and achieve lower energy

consumption. In addition, we also visualized the results of this

table and displayed them in front of everyone, as shown in

Figure 9.

In addition, we selected the Training Time indicator, Inference

time indicator, Flops indicator, and Parameters indicator to

compare the four data sets, as shown in Tables 3, 4.

First, let’s discuss the Training Time metric. According to

the data in the table, our method achieved training times of

20.03, 30.16, 31.72, and 21.82 on the four datasets. Compared

to other methods, our approach demonstrated faster training
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speeds. This indicates that our method is more efficient and

converges faster during the training phase. Next, let’s consider the

Inference Time metric. From the data in the table, our method

achieved inference times of 69.89, 32.19, 82.04, and 105.93 on

the respective datasets. In comparison, other methods had longer

inference times, some even approaching 200. This implies that

our method exhibits higher responsiveness and better real-time

performance in practical applications. Regarding the Flops (G)

and Parameters (M) metrics, our method had Flops values of

45.18 billion and Parameters values of 237.17 million on the four

datasets. In contrast to other methods, our approach required

fewer floating-point operations and had a smaller number of

parameters. For instance, the other methods had Flops values

ranging from 37.49 to 96.55 billion and Parameters values

ranging from 237.17 to 398.41 million. This indicates that our

method achieves better optimization and efficiency in terms of

model complexity and computational load. In summary, based

on the Waymo open dataset, The apolloscape open dataset, The

kitti vision benchmark suite, and The cityscapes dataset, our

method outperforms other methods in terms of Training Time,

Inference Time, Flops (G), and Parameters (M). This demonstrates

the superior efficiency, speed, and utilization of computational

resources in our approach.

Finally, we also considered the impact of environmental

factors on the optimization of vehicle obstacle avoidance,

conducted experiments in daytime, night, sunny and

rainy days, and selected Waymo open dataset, compared

with the other six methods in terms of ODA and

OASR indicators Experiment, the results are shown in

Table 5.

Its visualization effect is shown in Figure 10.

In the daytime environment, our method achieves an ODA

(Object Detection Accuracy) score of 95.62%, while the ODA

scores of the other methods range from 70.98 to 91.84%.

Similarly, our method demonstrates an OASR (Obstacle Avoidance

Success Rate) of 94.96% in the daytime environment, whereas

the OASR scores of the other methods range from 90.56 to

93.36%. These results indicate that our method outperforms the

other methods in terms of object detection accuracy and obstacle

avoidance capability in the daytime environment. In the nighttime

environment, our method achieves an ODA score of 93.89%,

while the ODA scores of the other methods range from 86.21

to 90.96%. Furthermore, our method demonstrates an OASR

of 95.16% in the nighttime environment, whereas the OASR

scores of the other methods range from 91.04 to 93.71%. These

findings suggest that our method can accurately detect objects

and effectively avoid obstacles in nighttime conditions. In the

sunny day environment, our method achieves an ODA score

of 89.49%, while the ODA scores of the other methods range

from 70.37 to 83.02%. Additionally, our method demonstrates an

OASR of 95.86% in sunny day conditions, whereas the OASR

scores of the other methods range from 92.27 to 94.98%. These

results indicate that our method can accurately detect objects

and successfully avoid obstacles in sunny day scenarios. In the

rainy day environment, our method achieves an ODA score

of 92.03%, while the ODA scores of the other methods range

from 78.51 to 84.11%. Moreover, our method demonstrates an

OASR of 95.78% in rainy day conditions, whereas the OASR

scores of the other methods range from 86.91 to 95.11%.

These findings suggest that our method can accurately detect

objects and effectively avoid obstacles in rainy day conditions.

Overall, our method outperforms the other methods in terms of

object detection accuracy and obstacle avoidance capability across

different environmental conditions, including daytime, nighttime,

sunny day, and rainy day scenarios. Our method consistently

achieves higher accuracy and success rates, demonstrating its

superiority in handling autonomous driving tasks under various

environmental conditions.

4.4. Ablation studies

In order to verify the effectiveness of the module, this

paper conducts ablation experiments on the basis of comparative

experiments, and the experimental results are shown in Table 6.

The visualization results of the ablation experiment are shown

in Figure 11.

It can be seen from the table, on the Waymo open dataset, the

baseline method achieves an ODA (Object Detection Accuracy)

of 77.38% and an OASR (Obstacle Avoidance Success Rate)

of 84.76%. With the addition of the attention module (+att),

the ODA increases to 84.24% and the OASR increases to

85.96%. After incorporating the end-to-end module (+EtE), the

ODA further improves to 80.68% and the OASR increases to

86.74%. Finally, when the attention module and end-to-end

module are combined (+att EtE), our method achieves the

best performance with an ODA of 92.24% and an OASR of

91.18%. Similar trends can be observed on other datasets such

as The apolloscape open dataset, The kitti vision benchmark

suite, and The cityscapes dataset. On each dataset, as the model

progressively incorporates the attention module and end-to-

end module, significant improvements in ODA and OASR are

observed. Particularly, when the attention module and end-to-

end module are combined, our method consistently achieves the

best results across different datasets. These results demonstrate

the significant contributions of the attention module and end-

to-end module in improving object detection accuracy and

obstacle avoidance capability. The combination of these two

modules leads to superior performance. Therefore, our method

exhibits clear advantages in designing and optimizing attention

mechanisms and end-to-end learning, enabling more accurate

object detection and effective obstacle avoidance in autonomous

driving tasks.

5. Discussion

The innovation of this paper lies in the integration of

attention mechanism and end-to-end architecture into the research

of autonomous vehicle obstacle avoidance optimization and

path planning. By incorporating the attention mechanism, the

vehicle is able to perceive the environment more accurately

based on important information and make decisions in complex

scenarios, thereby improving the robustness and performance of

the autonomous driving system. Furthermore, this research is

closely related to the field of robotics. Robot navigation and path
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planning are important research directions in robotics, forming

the foundation of this study. Robot navigation and path planning

aim to enable robots to autonomously plan paths and avoid

obstacles in unknown or complex environments, achieving safe,

and efficient navigation. The approach proposed in this paper

draws inspiration from classical theories and algorithms in the

field of robotics to achieve efficient path planning and obstacle

avoidance capabilities in autonomous vehicles. By placing the

research of autonomous vehicles within the broader context of

robotics, this paper not only provides a deeper understanding of

autonomous driving technology but also offers valuable insights for

research and practical applications in the field of robotics.

Lastly, there are still potential improvements and future

research directions for the study. Firstly, although the proposed

method has achieved good performance on multiple datasets, its

applicability can be further expanded and validated in more diverse

scenarios and environments. Secondly, with the advancement

of technology, new perception and decision-making methods

continue to emerge, such as deep learning-based object detection

and prediction models. By integrating these new techniques

with the proposed method, the perception and decision-making

capabilities of autonomous vehicles can be further improved.

Additionally, research on dynamic environment perception and

decision-making is also an important direction. This involves

accurately tracking and predicting dynamic objects and obstacles

in real-time environments and making corresponding decisions.

6. Conclusion

The proposed path planning method in this study holds

significant implications for the navigation of autonomous vehicles.

By transforming the navigation task into a sequence decision

problem and utilizing the LSTM model to weigh the key points

in the navigation path, the vehicle can flexibly select the optimal

path and dynamically adjust it based on real-time conditions during

the journey. This path planning approach enhances the navigation

efficiency and robustness of the vehicle.

The interdisciplinary research with the field of robotics

highlights the importance of this study not only for autonomous

driving technology but also for the domain of robot navigation

and path planning. By placing the research of autonomous

vehicles within the broader context of robotics, we deepen our

understanding of autonomous driving technology and explore

the fusion of perception and decision-making methods, thereby

enhancing the overall performance and intelligence of the vehicles.
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