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2School of Computer Science and Technology, Xidian University, Xi’an, China

Navigating safely and e�ciently in dense crowds remains a challenging problem

for mobile robots. The interaction mechanisms involved in collision avoidance

require robots to exhibit active and foresighted behaviors while understanding

the crowd dynamics. Deep reinforcement learning methods have shown superior

performance compared to model-based approaches. However, existing methods

lack an intuitive and quantitative safety evaluation for agents, and they may

potentially trap agents in local optima during training, hindering their ability to

learn optimal strategies. In addition, sparse reward problems further compound

these limitations. To address these challenges, we propose SafeCrowdNav, a

comprehensive crowd navigation algorithm that emphasizes obstacle avoidance

in complex environments. Our approach incorporates a safety evaluation function

to quantitatively assess the current safety score and an intrinsic exploration reward

to balance exploration and exploitation based on scene constraints. By combining

prioritized experience replay and hindsight experience replay techniques, our

model e�ectively learns the optimal navigation policy in crowded environments.

Experimental outcomes reveal that our approach enables robots to improve crowd

comprehension during navigation, resulting in reduced collision probabilities and

shorter navigation times compared to state-of-the-art algorithms. Our code is

available at https://github.com/Janet-xujing-1216/SafeCrowdNav.

KEYWORDS

mobile robot, human-aware navigation, reinforcement learning, security assessment,

collision avoidance

1. Introduction

Mobile robots have been extensively studied and widely applied in recent decades as

an essential branch of robotics research. They can accomplish tasks that are difficult or

impossible for humans, reduce the workload of human workers, and improve people’s

quality of life. Our daily lives increasingly depend on mobile robots, which share living

and social spaces with humans and interact with them to varying degrees. The crucial

factor determining the successful autonomous movement of mobile robots across diverse

environments is their possession of adaptable and autonomous navigation capabilities.

The key to achieving efficient autonomous navigation of mobile robots in various

environments lies in key elements such as safety, autonomy, effectiveness, and user-

friendliness. Among these, obstacle avoidance (Duguleana and Mogan, 2016; Pandey et al.,

2017), serving as a primary means to ensure safety, poses a challenging research problem

in robot navigation. It has been studied for decades and finds applications in critical real-

world scenarios such as autonomous driving (Kästner et al., 2021) and cargo logistics. For

instance, in the context of mobile robots, scenarios like autonomous navigation within

unmanned supermarkets or warehouses, where robots navigate among shoppers or workers
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while avoiding obstacles, have garnered significant attention.

At the same time, the operating environments for mobile

robots have become increasingly complex, with various static

and dynamic obstacles coexisting, including obstacles such as

barriers, pedestrians, vehicles, or other robots. These scenarios

add a layer of complexity, as robots must safely maneuver in

dynamic environments alongside pedestrians and other obstacles,

showcasing the versatility and practicality of mobile robotics.

While classical planning methods (Cai et al., 2023) can effectively

handle static environments, reliable obstacle avoidance in dynamic

environments remains a significant challenge. Safe and reliable

navigation in these highly dynamic environments is still a

crucial challenge.

The illustration of our work is showing in Figure 1 and the

paper presents the following key contributions:

• We design a novel framework called SafeCrowdNav,

which integrates hindsight experience replay and

prioritized experience replay to address the challenge of

sparse-reward navigation.

• We firstly propose novel safety evaluation reward functions

to estimate the safety weights of the robot in its current

state, enabling more accurate obstacle avoidance during the

navigation process.

• We firstly propose a novel intrinsic exploration reward

function with visited count state that helps the robot avoid

getting stuck in place and reduces unnatural robot behavior.

2. Related works

2.1. React-based collision avoidance

Over the past decade, extensive research has focused on

robotic navigation in dynamic obstacle environments within

the field of robotics. Numerous works have been dedicated to

classical navigation techniques, with the earliest attempts being

reactive rules-based methods, such as Optimal Reciprocal Collision

Avoidance (ORCA) (Van den Berg et al., 2008), Reciprocal Velocity

Obstacle (RVO) (Van Den Berg et al., 2011), and Social Force

(SF) (Helbing and Molnar, 1995). These methods employ one-step

interaction rules to determine the robot’s optimal actions. However,

despite considering interactions among agents, ORCA and SF

simplify the crowd behavior model, leading to limitations such as

shortsightedness, lack of safety, and unnatural movement patterns.

2.2. Trajectory-based collision avoidance

As a result, researchers have started exploring trajectory-

based methods (Kothari et al., 2021) and considered visual-inertial

initialization (Huang et al., 2021; Liu et al., 2022) to address crowd

avoidance problems. Nevertheless, trajectory-based approaches

suffer from high computational costs, inability to perform real-

time updates in the presence of increasing crowd sizes and

difficulties in finding safe paths (Trautman and Krause, 2010; Alahi

et al., 2016; Sathyamoorthy et al., 2020). These limitations restrict

the application and effectiveness of these methods in large-scale

crowd scenarios.

2.3. Learning-based collision avoidance

To overcome the above challenges, recent research has

modeled the crowd navigation problem as a Markov Decision

Process (MDP) and introduced deep reinforcement learning

called Collision Avoidance with Deep Reinforcement Learning

(CADRL). Chen et al. (2019) propose the Socially Attentive

Reinforcement Learning (SARL), which combines human-robot

interaction features with self-attention mechanisms to infer the

relative importance of neighboring humans with respect to their

future states. They also develop the simulation environment

CrowdNav (Chen et al., 2019), which has been widely used for

comparing CADRL approaches. In CrowdNav, the information

regarding the agent’s position, velocity, and radius is considered

as input, and the robot responds accordingly based on this input.

To address the computational cost associated with learning-based

methods, Zhou et al. (2022) propose SG-D3QN, which utilizes

graph convolutional networks to predict social attention weights

and refines coarse Q-values through online planning of potential

future trajectories. The latest paper (Martinez-Baselga et al., 2023)

claims to be the first work in this field that applies intrinsic rewards

and has achieved the state-of-the-art performance.

2.4. Safety evaluation

However, reinforcement learning algorithms suffer from a

fatal drawback: the need for trial and error exploration of the

environment to learn optimal policies. In real-world settings, safety

is a crucial concern, and trial and error that may cause harm to

humans during the exploration process is unacceptable. Although

current practices often train reinforcement learning agents in

simulation environments with low safety risks, the complexity of

transitioning from simulated environments to the real world poses

a series of unacceptable safety issues (Ray et al., 2019). Therefore,

safety evaluation should be a key focus area in reinforcement

learning research. In this regard, this paper is dedicated to

addressing safety concerns and proposes a robot crowd navigation

system that enables the evaluation of an agent’s safety performance.

3. Problem formulation

3.1. Crowd navigation modeling

The problem of crowd navigation for robots refers to guiding

a robot to its target location in the shortest possible time while

avoiding collisions with a variable number of intelligent agents

behaving like a crowd in the environment. These agents can

encompass various types of obstacles, and in this study, we utilize

the CrowdNav simulation environment widely adopted in previous

works (Chen et al., 2019, 2020; Everett et al., 2021).

The observable state of all agents w is represented by their

positions p = [px, py], velocities v = [vx, vy], and radii r. The
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FIGURE 1

Illustration of our work: the robot utilizes heterogeneous attention weights and safety evaluation scores obtained from observations to selectively

aggregate pedestrian information, enabling more anticipatory decision-making.

observable state indicates the information that other visible agents

in the environment can perceive. Additionally, the state of the robot

includes its preferred velocity (vp), heading angle (θ), and target

coordinates (g = [gx, gy]). At a given time step t, the input joint

state of the robot st is defined as:

st =
[

wt
r ,wh

]

wt
r =

[

ptx, p
t
y, v

t
x, v

t
y, r

t , gtx, g
t
y, v

t
p, θ

t
]

wh =
[

wt
1,w

t
2, . . . ,w

t
n

]

wt
i =

[

pix, p
i
y, v

i
x, v

i
y, r
]

, i > 0,

(1)

where wt
r is the state of the robot r, w

t
i is the state of human agent i

and wh is the collective state of all human agents.

3.2. Reinforcement learning based on the
Q-value

In our work, the crowd navigation problem is formulated as a

Markov Decision Process, and we adopt the double dueling deep

Q-network as the fundamental method for solving this task. The

objective is to estimate the optimal policy π∗, which selects the

optimal action at for state st at a specific time step t. The optimal

policy maximizes the expected return, given by:

π∗
(

st
)

= argmax
at

(

Q∗
(

st , at
))

, (2)

where Q∗ is the optimal action-value function, recursively defined

with the Bellman equation as:

Q∗
(

st , at
)

= E

[

rt + γ 1t·vp max
at+1

Q∗
(

st+1, at+1
)

]

, (3)

where st+1 is the successor state and rt is immediate reward. γ ∈
(0, 1) is the discount factor that balances the current and future

rewards, normalized by the preferred velocity vp and the time step

size 1t.

3.3. Reward shaping

While tackling the challenge of sparse reward tasks in crowd

navigation without expert demonstrations, the most intuitive

approach is to shape the reward function. However, previous works

(Chen et al., 2017, 2019) have not given due attention to this

aspect and instead applied sparse reward functions designed for

non-communicative dyadic collision avoidance problems. In crowd

navigation, such mismatched rewards can lead to poor training

convergence (Chen et al., 2020). In contrast to existing reward

functions (Chen et al., 2019; Zhou et al., 2022), which commonly

rely solely on external or intrinsic rewards, our approach not

only integrates and refines these two reward functions, but also

introduces an additional safety evaluation function. We divide the

overall reward rt into three parts and innovate each: externally

provided rewards rtex, safety evaluation function rt
safe

, and intrinsic

exploration rewards rtin, defined as follows:

rt = rtex + rtsafe + rtin, (4)
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where we first introduce innovations in the externally-provided

reward function rtex offered by the environment to incentivize

the robot to navigate toward the goal while avoiding collisions.

Additionally, we introduced safety evaluation functions rt
safe

and

intrinsic rewards rtin to encourage the robot to explore and exploit

the environment while improving its safety and reliability.

4. Method

This paper focuses on the safety evaluation of crowd navigation

using deep reinforcement learning. Building upon SG-D3QN

(Zhou et al., 2022), we firstly model the social relationship

graph (Liu et al., 2023), a heterogeneous spatio-temporal graph

as input to the SG-D3QN planner to generate optimal actions.

The simulated environment provides external reward function,

safety evaluation scores and intrinsic exploration reward function

based on the current state, which are then fed back to the

reinforcement learning policy. The trajectory sampling process

combines hindsight experience replay and prioritized experience

replay to handle the data in the experience replay buffer. The overall

framework of our algorithm is illustrated in Figure 2.

4.1. External reward function

We redesign the external reward function rtex offered by the

environment, dividing it into rt
goal

, rt
collision

, rt
shaping

, rt
pred

four

components. rt
goal

is used to reward the robot for reaching the goal,

rt
collision

penalizes collisions, rt
shaping

guides the robot toward the

goal, and rt
pred

provides penalties for potential collisions in future

time steps. Our external reward function is defined as follows:

rtex = rtgoal + rtcollision + rtshaping + rtpred. (5)

The individual components rt
goal

, rt
collision

, rt
shaping

, rt
pred

are

defined as follows:

rtgoal =
{

rarr if target is reached

0 otherwise
(6)

rtcollision =
{

rcol if collision

0 otherwise
(7)

rtshaping = wp ·
(
∥

∥pt−1 − pg
∥

∥−
∥

∥pt − pg
∥

∥

)

(8)

rtpred = min
i=1,...,n

ri,t
pred
= min

i=1,...,n

[

min
k=1,...,K

(

1
t+k
i

rcol

2k

)]

, (9)

where rt
shaping

represents the difference between the distance from

the endpoint at time t−1 and t. pt and pg respectively represent the
robot’s position and the goal at time t, and wp is a hyper-parameter.

Prediction reward function rt
pred

presents the maximum penalty for

collisions occurring among n humans in future K time steps. 1t+ki

indicates whether the robot collides with the predicted position of

the human i at time t+k. The role of 2k is to assign different weights
to collisions at different predicted time steps, with lower penalty

weights given to collisions predicted farther into the future.

4.2. Safety evaluation function

The safety evaluation function rt
safe

assesses the current

safety level of the robot based on the surrounding environment

information and adjusts the robot’s behavior accordingly to guide

it toward safer navigation. Specifically, if the safety evaluation

function rt
safe

provides a higher safety score, it indicates a lower risk

and likelihood of collisions in the current environment, allowing

the robot to choose a relatively higher speed to complete the

navigation task more quickly. Conversely, if the safety evaluation

function rt
safe

provides a lower safety score, it indicates a higher risk

and likelihood of collisions in the current environment, requiring

the robot to lower its speed or even stop to avoid potential danger.

The factors considered in the safety evaluation function include:

(1) Collision probability rt
obstacle

between the robot and obstacles:

It considers the movement speed and direction of obstacles,

the distance between the robot and obstacles, and the obstacle

type together. A global collision probability map is used here,

where closer obstacles to the robot have a higher collision

probability pcollision .

(2) Robot’s velocity rt
robot

: Ensuring smooth and natural motion

is vital in dynamic and crowded settings, enhancing comfort and

safety for passengers and bystanders. Abrupt velocity changes can

cause discomfort and confusion among humans and destabilize

navigation, leading to collisions. Thus, we quantify motion

smoothness by assessing continuity in velocity changes, calculated

from the cosine of the angle between current vt and previous vt−1

robot actions.

(3) Safety distance rt
discomfort

between obstacles and the robot: To

ensure the safety and comfort of humans during robot navigation,

we additionally impose a penalty when the distance between

obstacles and the robot falls below the predefined safety threshold.

Actually, collision probability rt
obstacle

can partially achieve this goal,

but only use it fail to discourage situations that may potentially

cause discomfort to humans.

The composition of the safety score is as follows:

rtsafe = rtobstacle + rtrobot + rtdiscomfort (10)

rtobstacle = β · pcollision (11)

rtrobot = α ·
−−→
vt−1 ·

−→
vt

∣

∣

∣

∣

−−→
vt−1

∣

∣

∣

∣

|
−→
vt |

(12)

rtdiscomfort =
N
∑

i=1
f
(

dti , ds
)

f
(

dti , ds
)

=
{

dti − ds if dti < 0.2

0 else
,

(13)

where β is a hyper-parameter, pcollision is our collision probability

and vt represents the velocity of the robot at the current time

step t. Discomfort reward function rt
discomfort

encourages the robot

to maintain a safe distance from all pedestrians, where ds is the

minimum safe distance that the robot needs to maintain with

pedestrians at any time. In this paper, ds is set to 0.2 m, dti
represents the actual minimum distance between the robot and the

i-th pedestrian within the time step.
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FIGURE 2

Architecture of SafeCrowdNav: Environment Module: Models the current environment information as a heterogeneous spatiotemporal graph. RL

Policy Module: Implements an online planner based on SG-D3QN. Takes the state information as input and outputs the optimal action. Simulation

Module: Divides the reward function in the reinforcement learning policy into three parts: intrinsic exploration reward, safety evaluation, and extrinsic

reward. Optimizes the reward function. Trajectory Sampling Module: Combines hindsight experience replay and prioritized experience replay.

Adjusts the reward for failed trajectories and performs experience importance sampling.

Inspired by Wang et al. (2022), our collision probability

pcollision is:

pcollision =
i=1,...,n
∑

(x,y)∈φhuman

gi(x, y), (14)

where φhuman represents the range of human perception,

determined by the velocities of the robot and humans and the unit

of time. gi(x, y) denotes the collision probability of the robot relative

to human i. “Arrive” refers to the distance between the agent and

its target position being less than 0.1 m. At time t, gi(x, y) can be

computed as follows:

gti
(

xt , yt
)

=
N
∑

i=1
N(δx, x) · N(δy, y) · N(δθ , θ) (15)

N(δ, a) = δ√
2π

e−
(at−aoi )

2

2 (16)

θoi = arctan

(

v
y
i

vxi

)

θ t = arctan

(

yt − yoi
xt − xoi

)

, (17)

where N is the number of obstacles, and δx, δy, and δz are hyper-

parameters representing variances. (xoi , y
o
i ) represents the position

of obstacle i, and θoi denotes the heading angle of obstacle i. θ t is

the angle between the line from the robot’s position (xt , yt) to the

obstacle is position (xoi , y
o
i ) and the x-axis.

Finally, the safety scores are introduced to assess the safety

of the current environment. Based on these scores, the robot’s

behavior is modified to navigate and avoid collisions with the

crowd. This approach aims to reduce the risk of collision by

providing real-time analysis and guidance in response to the

assessed safety levels.

4.3. Intrinsic reward function

The intrinsic reward encourages the robot to explore new states

or reduce the uncertainty of predicted action outcomes (Badia et al.,

2020). In this work, the intrinsic reward incentivizes the agent to

visit unknown or unpredictable states until they are adequately

explored and exploited, particularly in the vicinity of humans and

the goal. Incorporating intrinsic exploration is beneficial in this

context. Our approach is based on the Intrinsic Curiosity Module

(ICM) (Pathak et al., 2017).

First, the states s and next states st+1 are encoded as inputs to

the feature encoder network φ, resulting in feature representations

in the feature space φ(st) and φ(st+1). This step aims to transform

the agent-level states into state representations defined by feature

vectors as outputs of the feature encoder network. Then, the states

in the feature space are used to predict the actions taken, denoted

as ât . Simultaneously, the actual actions a and the feature space

states φ(st) are used to predict the next states in the feature space

φ̂ (st+1). We adopt the same feature encoder network as (Martinez-

Baselga et al., 2023), and the intrinsic reward is calculated as the

mean squared error (MSE) between φ (st+1) and φ̂ (st+1), where
higher MSE indicates that the agent is accessing unknown or

unpredictable states.

To tackle the challenge of inefficient navigation resulting

from excessive exploration, such as repetitive behavior within

the same area, we have incorporated a state visitation record

mechanism. This enhancement optimizes the exploration strategy

and effectively curbs trajectory loops. The intrinsic reward rin is

formulated as follows:

rin = µ
MSE

(

φ (st+1) , φ̂ (st+1)
)

√
C (st+1)

, (18)
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where µ is a hyper-parameter and C(st) represents the visited

count of states at time step t, indicating the number of times the

robot has observed state st . The visited count is used to drive the

robot out of already visited areas to avoid trajectory loops in the

same region. The visited count state is computed on a per-episode

basis, Cep(st) = C(st).

4.4. Experience replay

Traditional experience replay algorithms only store the

experiences generated by the interaction between the agent

and the environment (i.e., state, action, reward, and next

state) and randomly sample them for training the agent.

However, these approaches overlook valuable information, such

as the agent’s erroneous decisions and the significance of

experiences. Errors in decision-making provide valuable learning

opportunities for agents to improve their future actions, while

the significance of experiences helps prioritize the replay of

important events, allowing agents to learn more efficiently

from crucial interactions. Therefore, we propose combining

the prioritized experience replay and hindsight experience

replay algorithms.

The key advantage of Prioritized Experience Replay (PER)

(Schaul et al., 2015) lies in its ability to prioritize and sample

important experiences, thereby enabling more effective utilization

of the agent’s training data. PER introduces a priority queue that

efficiently sorts experiences based on their importance for training

the agent, giving higher priority to experiences that are more

beneficial for training. The sampling probability, denoted as P(i),

is monotonic with respect to the priority of the transition, ensuring

a non-zero probability even for transitions with the lowest priority.

In our approach, we adopt the rank-based prioritization sampling

method p(i) in order to enhance robustness and reduce sensitivity

to outliers:

P(i) = pα
i

∑

k p
α
k

(19)

pi =
1

rank(i)
, (20)

where α is a hyper-parameter that determines the degree of

prioritization in the sampling and controls the exponentiation of

the priorities pi in the calculation of the sampling probabilities P(i).

Higher values of α emphasize experiences with higher priorities,

enabling a more focused exploration of important experiences

during replay.

Hindsight Experience Replay (HER) (Andrychowicz

et al., 2017) addresses the specific case of failed experiences.

While traditional experience replay algorithms overlook

valuable information gained from failed experiences, HER

can transform failed experiences into successful ones and

add them to the experience replay buffer, thus effectively

leveraging the knowledge from unsuccessful attempts. The key

idea is to treat the final state as an additional goal, allowing

the agent to learn useful information from failed simulated

trajectories as if the agent had intended to reach that state from

the beginning.

We present enhancements to the proposed algorithm (Li et al.,

2021) tailored to suit our specific task better. Specifically, when

a collision occurs or the agent reaches the goal in each episode,

we store the trajectory in the experience replay buffer. If the

agent’s final state exceeds the global time limit (“Timeout”) without

causing discomfort to humans (i.e., the shortest distance is less

than the safety distance), we relabel the final state as reaching

the goal and assign the last reward as half of the success reward.

The modified trajectory is then stored in the replay buffer. The

HER method is a straightforward approach without complex

reward engineering, contributing to improved sample efficiency

in reinforcement learning. The details of the HER algorithm are

outlined in Algorithm 1.

Output: experience replay memory E

Initialize value network V and target value

network V̂

Initialize experience replay memory E

for episode = 1 to M do
Sample an initial state s0 with the original

goal g

for t = 1 to T − 1 do

at ← π∗
(

st
)

= argmax
at

(

Q∗
(

st , at
))

=

E
[

rt + γ 1t·vp maxat+1 Q
∗ (st+1, at+1

)]

Execute the action at and observe a new

state st+1

Record information info of the last state sT

if info = ReachGoal or Collision then

for t = 1 to T − 1 do

Store the transition
(

st , at , rt , st+1
)

in E

else if info = Timeout then
Relabel the final agent position as the

additional goal: g′ ← pT

for t = 1 to T − 1 do

Obtain the goals stnew and st+1new with the new

goal g′;

if pt = g′ then rtnew = 1;

else rtnew = rt;

Store the transition
(

stnew , a
t , rtnew , s

t+1
new

)

in E

for t = 0 to N do
Sample a minibatch B from E with prioritized

sampling

Calculate importance sampling weights

wi =
(

1
N·pi

)β

Normalize the importance sampling weights

wi = wi
max(w)

Compute TD errors δ

Update priorities in E based on the TD

errors

Set target yi = rt + γ 1t·vp maxat+1 Q
∗ (st+1, at+1

)

Update value network V by gradient descent

with the weighted loss

if episode % target update interval = 0 then

Update target network V ← V ′

Algorithm 1. D3QN with HER and PER algorithm.
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TABLE 1 Quantitative results: “Success:” the rate of the robot reaching its goal without a collision. “Collision:” the rate of the robot colliding with other

humans. “Nav. Time:” the robot’s navigation time to reach its goal in seconds. “Avg. Return:” discounted cumulative reward in a navigation task.

Method Successs↑ Collision↓ Nav. Time↓ Avg. Return↑
OCRA (Van den Berg et al., 2008) 0.736 0.252 13.865 0.3234

AEMCARL (Wang et al., 2022) 0.920 0.045 12.859 0.5392

Intrinsic-SGD3QN (Martinez-Baselga et al., 2023) 0.966 0.034 9.793 0.6964

Hindsight & prioritized experience reply (ours) 0.948 0.052 11.753 0.6194

Intrinsic-Ntimes (ours) 0.977 0.023 10.036 0.7028

Experience reply & intrinsic-Ntimes (ours) 0.980 0.019 10.282 0.6953

SafeCrowdNav(ours) 0.986 0.014 9.984 0.7070

Bold values indicate the best performance of four metric.

5. Experiments

5.1. Implementation details

This paper uses Open-Gym to create a simulation environment

for modeling crowd behavior and conducting path planning.

Specifically, we build upon the commonly used CrowdNav

simulation environment (Chen et al., 2019), which simulates crowd

behavior in indoor scenarios. It incorporates factors such as crowd

density and movement directions, enabling us to better study

crowd behavior and path planning problems, as well as facilitating

algorithm comparison.

Within each scene of the CrowdNav environment, we set up

five dynamic obstacles within a circular area, requiring them to

pass through the center of the circle. In more complex scenarios,

we add five randomly placed individuals who must traverse the

room. They navigate using the ORCA (Van den Berg et al., 2008)

algorithm to avoid collisions with each other. The robot is invisible

to them, meaning pedestrians in the simulation will never yield

to it. This necessitates the robot to have a more proactive and

anticipatory collision avoidance strategy, requiring it to execute

complete obstacle avoidance maneuvers. When one person reaches

a specified goal, another goal is randomly assigned to prevent them

from stopping.

A total of 10,000 randomly generated episodes (agents with

random positions and trajectories) are trained in this study. Each

algorithm starts with the same randomly initialized weights to

ensure a fair comparison. The training hardware is a computer with

anAMDRyzen 5600XCPU and anNvidia GeForce RTX 3090GPU,

which can simultaneously train four tasks overall in three days.

5.2. Quantitative evaluation

The baseline of our approach is intrinsic-SGD3QN (Martinez-

Baselga et al., 2023), which innovatively introduces intrinsic

exploration rewards on top of the related work SG-D3QN (Zhou

et al., 2022). Building upon the CrowdNav simulation environment,

this work introduces the innovative concept of intrinsic exploration

reward. In addition, we incorporate prioritized experience replay,

hindsight experience replay, the intrinsic curiosity module with

visit count of states, and safety evaluation for exploration. We

explore different hyper-parameters and select the best ones in each

case. To validate and compare these methods, eachmethod is tested

in 10,000 randomly generated episodes in circular scenes. Table 1

compares state-of-the-art methods and our approach, highlighting

success rate, collision rate, navigation time, and average return as

performance metrics.

The results in the table indicate that our method SafeCrowdNav

significantly improves the original results and outperforms other

methods. The utilization of prioritized experience replay and

hindsight experience replay enhances the efficiency of the agent

in utilizing past experiences. Our approach’s additional safety

evaluation function achieves a success rate of 98.6%, which is

a 2% improvement compared to the baseline. Our method also

demonstrates the ability to find near-optimal solutions quickly

and reduces collision probability by 2%, thereby improving the

robustness of navigation.

5.3. Qualitative evaluation

In the simple scenario, the training curve is depicted in

Figure 3. The metrics of our method SafeCrowdNav are plotted in

orange, AEMCARL (Wang et al., 2022) in blue, Intrinsic-SGD3QN

(Martinez-Baselga et al., 2023) in purple and the remaining colors

are the metrics of our ablation experiments. It obvious reveals that

our method outperforms Intrinsic-SGD3QN (Martinez-Baselga

et al., 2023) on four metrics. At the beginning of training, with

a randomly initialized model, it is challenging for the agent to

accomplish the crowd navigation task, and most of the termination

states result in “Timeout” or “Collision.” As training progresses, the

robot quickly learns to maintain a safe distance from pedestrians.

It gradually comprehends the crowd’s behavior and plans its

path based on its predictions of pedestrian trajectories. The

robot’s performance becomes relatively stable toward the end of

the training.

Through learning-based strategies, the robot is able to reach

the target location safely and quickly in both simple and complex

scenarios, as depicted in Figures 4A, B. In the complex scenario, the

robot needs to pay more attention to avoid pedestrians, resulting

in rougher trajectories, and longer navigation times. In both

simple and complex scenarios, the robot exhibits proactive, and

anticipatory collision avoidance behavior. The robot can recognize

and avoid interaction centers where pedestrians approach each
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FIGURE 3

Navigation performance about success rate, collision rate, time to reach the goal, and cumulative discounted reward over 10,000 training episodes.

(A) Success rate. (B) Collision rate. (C) Time to reach the goal. (D) Cumulative discounted reward.

other. For instance, in the simple scenario, the robot suddenly turns

right at around 4.0 seconds to avoid a potential encirclement at 5.0

seconds. Additionally, in complex scenarios, even when the robot is

surrounded by pedestrians, it possesses the ability to safely escape

the environment. In this particular instance, the encirclement by

three pedestrians starts at 1.0 seconds and lasts for approximately

3.0 seconds.

The safety evaluation in the tested crowd scenarios is shown

in Figure 5, where the real-time safety evaluation score of the

robot for the current scene is dynamically displayed. A higher

score indicates better safety in the current situation, guiding the

robot to navigate faster, while a lower score indicates higher risk,

prompting the robot to reduce speed and pay more attention to

pedestrians moving toward it or potentially interacting with it. In

Figure 5A, the robot’s score is 0.46, indicating a lower score due

to multiple pedestrians and a complex environment. The lower

safety evaluation score guides the robot to reduce speed and allocate

different attention weights to surrounding pedestrians, prioritizing

obstacle avoidance. In Figure 5B, the robot’s score is 0.96, indicating

fewer pedestrians in the vicinity and guiding the robot to accelerate

its movement, focusing more on navigation tasks. The setting of

the safety evaluation score also helps the robot better balance

navigation tasks and obstacle avoidance behavior.

6. Conclusion

This paper aims to address safety, autonomy, effectiveness,

and user-friendliness in evaluating intelligent robot behaviors.

We propose SafeCrowdNav, an innovative approach based

on Deep Reinforcement Learning to enhance navigation in

crowded environments. Our approach includes heterogeneous

spatial-temporal maps for comprehensive environmental

representation. We introduce a novel safety evaluation

framework based on environment complexity and task

difficulty. Additionally, we enhance the intrinsic reward by

introducing constraints based on previously encountered

scenes, effectively avoiding repetitive and inefficient exploration

behavior by the agent. To facilitate efficient and safe navigation

in dense crowds, we also integrate prioritized and hindsight

experience replay techniques. Extensive evaluations in the

CrowdNav simulator demonstrate that SafeCrowdNav achieves
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FIGURE 4

Trajectory maps for a simple and a complex scene. In these maps, the circles represent agents, with the black circle representing the robot and other

colors representing pedestrians. The numbers near the circles indicate the corresponding time steps. The time interval between two consecutive

circles is 1.0 seconds. The maps mark humans’ starting positions, turning points, and final goal positions with triangles, squares, and pentagrams,

respectively. (A) Trajectories in a simple scenario. (B) Trajectories in a complex scenario.

FIGURE 5

Visualization of safety evaluation scores: the solid circle represent the robot, the hollow circles represent humans, and the numbers inside the circles

indicate the safety evaluation scores of the robot. (A) Low safety evaluation score: 0.46. (B) High safety evaluation score: 0.96.

shorter trajectories and higher success rates compared to

state-of-the-art algorithms.

However, future works still have many shortcomings

to overcome. This includes the need for real-world

scenario datasets to enhance performance in real

environments, incorporating more realistic human

reactions, and exploring the generalization performance

from virtual to real-world scenarios. Adjusting the

robot’s shape based on real-world conditions and

conducting real-world observations will provide

valuable insights.
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