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Common RGBD, CMOS, and CCD-based cameras produce motion blur and

incorrect exposure under high-speed and improper lighting conditions. According

to the bionic principle, the event camera developed has the advantages of low

delay, high dynamic range, and no motion blur. However, due to its unique data

representation, it encounters significant obstacles in practical applications. The

image reconstruction algorithm based on an event camera solves the problem

by converting a series of “events” into common frames to apply existing vision

algorithms. Due to the rapid development of neural networks, this field has

made significant breakthroughs in past few years. Based on the most popular

Events-to-Video (E2VID) method, this study designs a new network called E2VIDX.

The proposed network includes group convolution and sub-pixel convolution,

which not only achieves better feature fusion but also the network model size

is reduced by 25%. Futhermore, we propose a new loss function. The loss

function is divided into two parts, first part calculates the high level features

and the second part calculates the low level features of the reconstructed

image. The experimental results clearly outperform against the state-of-the-art

method. Compared with the original method, Structural Similarity (SSIM) increases

by 1.3%, Learned Perceptual Image Patch Similarity (LPIPS) decreases by 1.7%,

Mean Squared Error (MSE) decreases by 2.5%, and it runs faster on GPU and

CPU. Additionally, we evaluate the results of E2VIDX with application to image

classification, object detection, and instance segmentation. The experiments show

that conversions using our method can help event cameras directly apply existing

vision algorithms in most scenarios.

KEYWORDS

image reconstruction, deep learning, dynamic vision sensor, event camera, image

classification, object detection, instance segmentation

1. Introduction

Robots have become indispensable in modern society, capable of replacing manual

labor to execute repetitive and hazardous tasks, thereby enhancing production efficiency

and quality while reducing production costs (Jing et al., 2022). Various research studies

in the field of robotics are continuously carried out by Bing et al. (2022, 2023a,b). In the

realm of robotics, computer vision plays a pivotal role in tasks such as robot navigation,

perception, and decision-making. Most commonly used camera sensors include CMOS

(Sukhavasi et al., 2021), CCD (Adam et al., 2019), and RGBD (Liu et al., 2022) cameras,

all of which share a standard parameter: frame rate. These cameras capture images at

consistent time intervals, synchronizing their data acquisition. However, they often yield

suboptimal results in high-speed motion scenes or environments with inadequate lighting
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FIGURE 1

A schematic of an image generated from the event stream (shot in

high speed motion scene), with blue for negative polarity and red for

positive polarity.

conditions due to their imaging principles. To solve this problem,

researchers (Posch et al., 2014) have developed event cameras,

sometimes called dynamic vision sensor (DVS). Instead of

capturing images at a fixed frame rate, event cameras capture

“events”, which are triggered when the cumulative brightness

change of a pixel reaches a certain threshold. An event has three

elements: timestamp, pixel coordinate, and polarity. Therefore,

an event expresses when (i.e., time), at which pixel, an increase

or decrease in brightness occurs. Event camera imaging principle

guarantees that as long as the brightness change exceeds the

threshold value, there will be an output, and it requires small

bandwidth. In other words, if there are objects moving very fast

in the camera’s field of view, it will generate multiple events

per second. If there is no object motion or brightness change, there

are no events generated. At the same time, since the event camera

is better at capturing the brightness change, it performs equally in

dark and intense light scenes. Therefore, event cameras have the

advantages of low latency, high dynamic range (140 vs. 60 dB),

and low power consumption and are not affected by motion blur

compared with regular frame-based cameras (Gallego et al., 2020).

Although an event camera has been successfully used in SLAM

(Vidal et al., 2018), human detection (Xu et al., 2020), and other

fields (Zhou et al., 2018; Perot et al., 2020), the output format of

an event camera is far from the familiar camera output format.

Therefore, it does not easily lend itself to practical applications.

Compared with events alone, reconstructing images from events (as

shown in Figure 1) provides a compact representation of the latest

available data and enables the application of traditional computer

vision to event cameras. In contrast to raw events, images possess

a natural interpretability for humans and encompass a broader

spectrum of information. Additionally, the reconstructed image

offers a synthesis of several advantageous attributes, including high

temporal resolution, spatial interpretability, and robust resistance

to interference. Consequently, traditional vision algorithms can be

seamlessly employed with reconstructed images, eliminating the

necessity for the redesign of additional algorithms when integrating

event cameras into applications.

In the early days of this field, researchers derived the

reconstruction formula by modeling the imaging principle of event

cameras (Brandli et al., 2014; Munda et al., 2018; Scheerlinck et al.,

2018). However, due to the sensor noise, the reconstruction was

far from ground truth images. With advent of the powerful deep

learning methodology in recent years, we are able to improve

the reconstruction and the results converge to the ground truth

(Rebecq et al., 2019a,b; Wang et al., 2019; Scheerlinck et al.,

2020; Cadena et al., 2021). While advancements in reconstruction

techniques have led to improvements, the utilization of deep neural

networks often necessitates substantial time and computational

resources. Consequently, their application to edge or mobile

devices is constrained. Furthermore, the network architectures

developed using some of the current methods do not readily

scale down to these resource-constrained devices. To address this

challenge, this study proposes E2VIDX, a faster and stronger neural

network for image reconstruction. By changing the feature fusion,

the network is further optimized by using group convolution

and sub-pixel convolution. Simultaneously, this study proposes

a simplified loss function to counter the excessive number

of parameters. Furthermore, the effectiveness of the proposed

E2VIDX is demonstrated by applying it to various high-level

vision tasks, including image classification, object detection, and

instance segmentation, using the reconstructed images as input

data. These applications illustrate the practical utility of E2VIDX

in real-world scenarios.

In summary, the main contributions of this study are

as follows:

• This study proposes an improved event reconstruction

method: E2VIDX. On comparing with the state-of-the-art, not

only E2VIDX outperforms on the three evaluation indicators

but it also has shorter reconstruction time.

• Ablation study is presented to prove the effectiveness of the

proposed module.

• Designed high-level vision tasks completed to qualitatively

and quantitatively evaluate the reconstructed images obtained

using E2VIDX.

2. Related work

In the domain of event processing, the mainstream image

reconstruction algorithms can be divided into two types, namely,

asynchronous event processing and synchronous batch processing.

2.1. Asynchronous event processing

The idea is to use the sparsity of events; as soon as the

event arrives, the new information is integrated into the existing

state for updating. Since the information contained in a single

event is very little, one of the focuses of asynchronous algorithm

research is how to fuse the existing information with the current

event, which also requires that the algorithm needs an image or

waits enough time when initializing. Brandli et al. (2014) first

proposed using event streams for image reconstruction. They used

the complementarity of regular cameras and event cameras to

insert events marked with thresholds between two consecutive

frames. The threshold is determined by the difference in event

summary between two consecutive frames. This method has low

computational overhead and can run in real-time using only a

CPU, but it must require frame-based images as dense as possible.

Reinbacher (Munda et al., 2018) treat the image reconstruction

problem as an energy minimization problem, model the noise
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based on the generalized Kullback–Leibler divergence to prevent

noise accumulation, and define the optimization problem as

an event flow pattern containing timestamps. Finally, it used

the variational method to optimize. Scheerlinck et al. (2018)

proposed to use complementary filters to reconstruct intensity

images from asynchronous events, with an option to incorporate

information into image frames. Complementary filters perform

temporal smoothing but do not perform spatial smoothing,

which dramatically improves the computational efficiency and

significantly improves the reconstruction speed.

Although the above methods, based on mathematical and

physical modeling, are reliable in theory, cumulative error of

the reconstructed image increases with time because the sensor

noise is affected by temperature, humidity, and electrical devices.

At the same time, another non-negligible problem is that the

contrast threshold of the event camera is different at each pixel

and changes over time. Therefore, methods based on asynchronous

event processing are limited in their usage scenarios.

2.2. Synchronous batch processing

Batch image reconstruction aims to reconstruct an image or

video by considering a batch of events rather than a single event,

primarily using popular machine learning methods for modeling.

To deal with how the event stream is fed into the network, Wang

et al. (2019) proposed two batch processing methods, namely, time-

based event stream input and event number-based input. Finally,

they successfully used the Conditional Generative Adversarial

Network (CGAN) to reconstruct and obtain the image with high

dynamic range and no motion blur. E2VID, proposed by Rebecq

et al. (2019a,b) is the first method to combine convolutional

neural network (CNN) and recurrent neural network (RNN) for

image reconstruction. It achieves end-to-end video reconstruction

with supervised learning from simulated event data, resulting in

images with high resolution in time and high-speed motion scenes.

Considering the low latency of events, Scheerlinck et al. (2020)

modified E2VID, by replacing the original U-Net (Ronneberger

et al., 2015) structure with a stacked structure, and obtained FireNet

with fewer parameters and faster operation but with almost the

same accuracy. E2VID uses a recurrent neural network to fuse

previous information, hence fewer frames are needed to initialize

at the beginning stage of reconstruction. SPADE-E2VID (Cadena

et al., 2021) adds a SPADE module (Park et al., 2019) to solve this

problem, significantly reducing the initialization time. At the same

time, a loss function without temporal consistency is proposed to

speed up the training speed.

Image reconstruction based on deep learning has made

significant progress. However, considering the characteristics of the

event camera itself, the designed neural network should consider

both running time and reconstruction accuracy.

3. E2VIDX method

This section outlines the specific implementation process of

E2VIDX. To feed a stream of events into a neural network, we need

to encode the data stream. The encoded tensors are, then, fed into

E2VIDX, a convolutional neural recurrent network for training. To

efficiently fit the model with the training data set, a convenient and

efficient loss function is also designed.

3.1. Event encoding

The event camera output is in the form of event streams, as

shown in Equation 1.

ei(p, t) = σ
p
i cδ

(

t − t
p
i

)

, i ∈ 1, 2, 3 . . . (1)

Here, we denote σ ∈ {−1, 1} as polarity, p = (x, y) as event

coordinates, c as the contrast threshold that triggers an event, and δ

as the Dirac delta function. To enable the convolutional recurrent

neural network to process the event stream, it is essential to encode

the event stream into a fixed-size spatiotemporal tensor. The event

stream is partitioned into groups based on their timestamp order,

with each group containing N events, denoted as εk = {ei} , i ∈

[0,N − 1]. This encoding transforms the event stream into a

spatiotemporal stereo tensor, which serves as the input. For each

event group denoted as εk, we quantize the time interval as 1T =

tkN−1−tk0 and distribute it across B time channels.Within each event

ei, its polarity is associated with the same spatial location and its two

closest time channels in the group Ek, as shown in Equation 2.

E
(

xl, ym, tn
)

=
∑

xi=xlyi=ym

pi max
(

0, 1−
∣

∣tn − t∗i
∣

∣

)

(2)

where t∗i , B−1
1T (ti − t0) is the benchmark time after

standardization. Like other methods Wang et al. (2019); Rebecq

et al. (2019a,b); Scheerlinck et al. (2020); Cadena et al. (2021), we

also set B as 5 for our experiment.

3.2. Network design

The overall structure of E2VIDX is similar to U-net, which is

divided into the head, body, and prediction layers, as shown in

Figure 2. The body layer comprises the downsampling part and

the upsampling part. Unlike E2VID, we add group convolution

branch to downsampling layer which helps in feature fusion

during upsampling. The original ResBlock is replaced by group

convolution, and by observing the output of each layer in training,

part of the input of the actual output layer is modified for better

low-level and high-level feature fusion. Meanwhile, learnable sub-

pixel convolution is used in the upsampling part.

3.2.1. Head
After event encoding, the neural network gets fixed-size tensors

with five channels as input. The primary purpose of the head layer

is to expand the number of channels to facilitate subsequent feature

extraction. The kernel size used in this layer is 3.
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FIGURE 2

The network structure of E2VIDX. The U-Net network structure is used, which is divided into the downsampling part and upsampling part, and new

feature fusion is added at the same time. In the downsampling part, ConvLSTM is used to fuse the previous reconstruction state information, and

subpixel convolution is used to avoid checkerboard artifacts in the upsampling part.

3.2.2. Body
The body part is the central part of the whole network, which

completes the feature extraction and fusion. The downsampling

part consists of three recurrent convolution modules with

ConvLSTM (Shi et al., 2015). Each convolutional block consists

of CBR (Conv+BatchNorm+ReLU) and ConvLSTM modules.

The purpose of using ConvLSTM is to preserve the previous

state information, which is used to update the current state in

combination with the current input. Therefore, the convolutional

block operation feeds the input into the CBR and then updates

the output as a partial input to the ConvLSTM. The size of the

convolution kernel in each convolution block is 5, the stride and

padding are 2, and the number of output channels is twice of the

input. Therefore, the width and height of the tensor are halved,

and the number of channels is doubled for each convolution block.

We also feed the output of each convolutional block into a branch,

each of which is made up of group convolutions (Xie et al., 2017).

We use group convolution instead of the original ResBlock because

not only they can effectively reduce the number of parameters but

also can speed up the training. After the bottom layer sampling,

two layers of group convolutions are connected, aiming to extract

the most abstract features fully. The group convolution we employ

is shown in Figure 3. The parameters involved are the input

dimension N, the depth of the channel d in each group, the group

number η, the total number of group convolution channels ζ , and

the number of output channels P. In this study, our relationship

between these parameters is: N = 2ζ = 8η, ζ = dη.

The next step is followed by three upsampling layers, where the

input of each upsampling layer is the output of the corresponding

downsampling layer processed by the group convolution branch

and the output of the previous upsampling layer. Traditional

upsampling is achieved by unlearnable methods such as linear

interpolation; however, we use subpixel convolution Shi et al.

(2016) to replace the original interpolation. The schematic of the

FIGURE 3

Schematic diagram of group convolution. Compared with the

original ResBlock, we group the input channels and perform

operations on each group before the confluence.

sub-pixel convolution is shown in Figure 4. We use sub-pixel

convolution for upsampling on each layer because it can effectively

decrease the number of arguments (channel count will become 1
r2
,

where r is the upsampling factor). Additionally, the parameters of

the sub-pixel convolution are learnable; its weight changes during
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training can effectively eliminate checkerboard artifacts (Shi et al.,

2016).

3.2.3. Prediction
At the end, the network is the prediction layer, which for

each pixel, predicts a value between 0 and 1. The input to the

prediction layer is the sum of the upsampled output of R1 and

U1. The expected inputs to the prediction layer are deep features

and shallow features with good quality. Figure 5 shows the visual

output of each layer in the network. The head layer’s output is

sparse, meaning the shallow features are insufficient, so we consider

R1 as representative. U1 is the output after upsampling iteration,

which has higher level feature properties and is used as a deep

FIGURE 4

Schematic diagram of subpixel convolution. The expansion is

realized by arranging the identical coordinate position tensors on

the channel.

feature representative. After getting the input of the prediction

layer, it is convolved with a convolution kernel of size 1×1, then

fed into the BN layer. Finally, the output is obtained by the Sigmoid

activation function.

3.3. Loss fuction

To obtain a reconstructed image with rich feature information,

the loss function consists of two parts. The first part LPIPS (Zhang

et al., 2018) is used to measure the high-level features of the image.

The second part SSIM (Wang et al., 2004) is to calculate the low-

level features. SSIM measures the similarity between two images,

mainly judged by focusing on the similarity of edges and textures.

Its calculation formula is as follows:

SSIM(X1,X2) = L(X1,X2)× C(X1,X2)× S(X1,X2) (3)

where X1 and X2 represent two images, L represents brightness

similarity, C represents contrast similarity, and S represents

structure score. L, C, and S are, respectively, calculated as follows:

L(X1,X2) =
2uX1uX2 + C1

u2X1
+ u2X2

+ C1

C(X1,X2) =
2σX1σX2 + C2

σ 2
X1

+ σ 2
X2

+ C2

S(X1,X2) =
σX1X2 + C3

σX1σX2 + C3

(4)

In the above, uX1 and uX2 represent the mean of images X1

and X2, σX1 and σX2 represent the standard deviation, and σX1X2

FIGURE 5

Visualization of each layer of the network.
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represents the covariance, respectively. C1, C2, and C3 are constants

used to avoid division by 0. Specifically, C1 = 0.01, C2 = 0.03,

and C3 = 0.015.

To increase the similarity of the two images, it is also necessary

to make their error in high-level feature expression as small as

possible; here, LPIPS is used to achieve that goal. LPIPS uses a

VGG19 (Simonyan and Zisserman, 2014) network trained in the

MS-COCO dataset to let two images pass through the network and

calculate the difference between the output value of each layer of

the network.

d (X1,X2) =
∑

l

1

HlWl

∑

h,w

∥

∥

∥
wl ⊙

(

Ŷ l
1hw − Ŷ l

2hw

)
∥

∥

∥

2

2
(5)

where d is the mean difference between X1 and X2. Feature pairs

are extracted from the l layer and unit normalized in the channel

dimension. wl is the scaling factor, ⊙ stands for the inner product,

and Ŷ is the output of the corresponding layers. The final loss

function is as follows:

L = SSIM (X1,X2) + d (X1,X2) (6)

3.4. Training

Since the ground truth is not easy to obtain when the actual

event camera is used to make the dataset, all the datasets used by

the mainstream methods (Rebecq et al., 2019a,b; Scheerlinck et al.,

2020; Cadena et al., 2021) are generated in the simulator. For fair

evaluation, this study also uses the same dataset. Based on the MS-

COCO dataset, the ECOCO dataset (Lin et al., 2014) is used. The

event simulator ESIM (Rebecq et al., 2018) is used to map and

generate the corresponding event stream and regular image. The

image size used in the simulator is 240×180 pixels. The simulator

was used to generate 1,000 sequences, each event lasting for 2 s, 950

sequences were randomly selected as the training set, and the rest

were used as the test set. For all event streams, normal distribution

random noise with a mean of 0.18 and a standard deviation of 0.03

are added. The purpose of this is to mimic the noise of the actual

camera itself and avoid over-fitting during training, which leads to

poor reconstruction results in natural conditions.

During training, the data were randomly flipped [-20◦, 20◦],

randomly flipped horizontally, and cropped to 128×128 size to

increase the dataset. Our experiments are conducted on the Ubuntu

18.04 LTS operating system using CUDA 11.0, Python 3.8, and

PyTorch 1.3.0. The hardware setup included NVIDIA GTX 1080

(8GB), 64GB of RAMs, and an Intel i7-12700 CPU. The epoch is

200, the batch size is 4, ADAM (Kingma and Ba, 2014) optimizer is

used, the maximum learning rate is 5×10−4, and warm up learning

strategy is adopted.

4. Experiment and analysis

In this section, we qualitatively evaluate E2VIDX against

current mainstream methods and then apply it in practice. T
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4.1. Reconstructed image evaluation

To measure the accuracy of each method, we use the

same dataset as the previous study (dynamic_6dof, boxes_6dof,

poster_6dof, office_zigzag, slider_depth, and calibration). The

dataset was taken indoors under six scenarios. It contains variable

speed-free motion with six degrees of freedom and linear motion

with only one degree of freedom. The camera model used in the

dataset is DAVIS240C, which can output event streams and frame

images of 240×180 size. Each reconstructed image is matched

with the frame image with the closest timestamp. MSE, SSIM, and

LPIPS of the two images were calculated as evaluation metrics.

The qualitative indicators in each dataset are shown in Table 1. We

use sub-pixel convolution and group convolution, which means

a boost on the low-level features of the image. Therefore, the

obtained reconstructed image has better performance in SSIM

and MSE. SPADE-E2VID adds weight to the LPIPS term in

the loss function, so it performs best on LPIPS. In addition to

FIGURE 6

Comparison of reconstruction results.

TABLE 2 Timing Performance (ms).

Methods Resolution E2VID FireNet SPADE-E2VID E2VIDX Ours

GPU 240×180 8.02 2.81 22.02 8.19

480×320 22.28 9.46 70.48 20.65

640×480 42.70 16.86 138.44 38.52

1280×720 123.42 51.15 375.42 108.72

CPU 240×180 86.62 13.98 294.04 63.18

480×320 296.53 65.28 1042.35 242.59

640×480 588.39 150.28 2210.71 496.44

1280×720 1870.22 581.61 6672.57 1596.67

The GPU is NVIDIA GTX 1080 (8GB) and the CPU is Intel i7-12700. The bold values show that the score is the best compared with other methods.
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that on LPIPS, our method performs better than both E2VID

and FireNet.

Figure 6 shows the reconstruction results of various methods.

The reconstructed images of E2VID and FireNet have a white

foreground, causing the deviation of color saturation. SPADE-

E2VID has a good performance in reconstruction images, but it

needs the previous reconstruction image as input; the accumulated

error often cannot be eliminated. Our method performs better

in terms of color saturation and contrast and achieves the best

performance in terms of SSIM and MSE.

In addition, we calculate the time required for various methods.

We made a dataset at each of the four resolutions and averaged

three tests of each method using GPU and CPU. The results are

presented in Table 2. FireNet has the lowest time required due to its

lightweight network. However, its reconstruction accuracy is not

high. Compared with E2VID and SPADE-E2VID, our method is

approximately 10% and 60% faster, respectively, and has the best

accuracy. Therefore, FireNet is only necessary when computing

power is very limited. Our proposed method can improve the

reconstruction accuracy while ensuring as delay as possible.

4.2. Ablation study

To demonstrate the effectiveness of the network design, we

designed an ablation study. Experiments are conducted to test the

TABLE 3 Score of ablation study evaluation index.

Datasets ↑SSIM ↓LPIPS ↓MSE

E2VIDX_grp E2VIDX_sub E2VIDX_grp E2VIDX_sub E2VIDX_grp E2VIDX_sub

dynamic_6dof 0.3919 0.4015 0.3683 0.3301 0.1376 0.1069

boxes_6dof 0.5595 0.5711 0.3140 0.3142 0.0450 0.0411

poster_6dof 0.5630 0.5603 0.3072 0.3184 0.0642 0.0632

office_zigzag 0.4519 0.4639 0.3349 0.3242 0.0676 0.0547

slider_depth 0.2880 0.3023 0.3896 0.3762 0.0817 0.0739

calibration 0.3691 0.3978 0.3142 0.3002 0.0645 0.0557

Mean 0.4372 0.4495 0.3380 0.3272 0.0768 0.0659

E2VIDX_grp represents the use of group convolution only, and E2VIDX_sub represents the use of subpixel convolution only.

FIGURE 7

Reconstruction results of ablation study. E2VIDX_grp represents the use of group convolution only, and E2VIDX_sub represents the use of subpixel

convolution only.
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used group convolution and subpixel convolution. For the same

hardware environment, keeping other network parameters same,

the network is trained for the same epoch. The test results are

shown in Table 3, and the representative reconnection results are

shown in Figure 7.

It can be observed from the table that the two groups of ablation

study have a certain degree of decline in the three indices compared

with E2VIDX. Among them, the group of experiments without

group convolution score better in the evaluation indices, indicating

that subpixel convolution has a significant influence on our model.

It is also noted that even the ablation studies perform better than

E2VID, indicating that we have appropriately chosen our network

design, loss function, and data processing. From the perspective of

images, the images reconstructed by the ablation study are close

to E2VIDX in terms of color and contrast, which can recover

the results of perceptual solid perception. However, the images of

E2VIDX_grp are missing in detail (burrs appear on the edges of the

objects).

FIGURE 8

Overview of the N-MNIST dataset. The blue point clouds represent negative polarity and the red point clouds represent positive polarity. x and y are

two-dimensional representations of the space.

FIGURE 9

N-MNIST dataset reconstruction results.
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4.3. Applications

In this section, the reconstructed images are mainly used for

various computer vision applications, and three popular visual

application experiments are mainly carried out for task difficulty:

image classification, object detection, and instance segmentation.

The hardware and software platforms used in this section are the

same as those mentioned in Section 3.4.

4.3.1. Image classfication
Image classification is one of the basic tasks in computer

vision, which aims to identify the objects in the image. With the

recent advancements in neural networks, this task has been well

solved (the accuracy can even exceed the human eye Russakovsky

et al., 2015). The datasets in this domain include MNIST (LeCun

et al., 1998) and CIFAR-10 (Krizhevsky and Hinton, 2009), which

contain regular images and labels. Compared with the previous

image classification, the image classification task in this section

is carried out under the dataset captured by the event camera.

The Neuromorphic-MNIST (N-MNIST) dataset (Orchard et al.,

2015) is a “Neuromorphic" version of the MNIST dataset. It is

captured by mounting an Asynchronous Time-based Image Sensor

(ATIS) (Posch et al., 2010) on the motorized head unit and

allowing the sensor to move while viewing the MNIST dataset

TABLE 4 Classification accuracy of N-MNIST dataset.

E2VID FireNet SPADE-E2VID E2VIDX
Ours

Mean accuracy 85.78% 85.92% 84.03% 86.71%

The bold values show that the score is the best compared with other methods.

on the LCD (Figure 8). To fully demonstrate the reliability of

image reconstruction, we use LeNet5 (LeCun et al., 1998) to train

on the MNIST dataset to obtain the corresponding weight file

and then directly use this file to classify and recognize the image

reconstructed by the image reconstruction algorithm onN-MNIST.

The corresponding reconstruction results are shown in Figure 9,

and the classification accuracy is shown in Table 4.

From Figure 9, it can be observed that the reconstruction

results of these four methods can accurately recover the

handwritten numbers, among which the images of E2VID and

FireNet are still slightly white, resulting in insufficient color.

SPADE-E2VID needs more time to initialize at the beginning of the

reconstruction result because the input needs the output from the

previous step. The proposed method (E2VIDX) can provide high-

quality reconstructed images. It is worth mentioning that although

our LeNet5 is trained on the MNIST dataset, the classification

accuracy of N-MNIST dataset is more than 84% (the accuracy

of our proposed E2VIDX is the highest 86.71%). This shows

that the reconstruction method is reliable and can recover the

corresponding feature information.

4.3.2. Object detection
Object detection technology has always been one of the

challenging fields in computer vision. The object detection task

is to automatically identify the object contained in the input

image and return its target pixel coordinates and target category.

Object detection technology based on deep learning has been

extensively researched. Up to now, there have been many excellent

object detection algorithms, such as R-CNN series (Girshick, 2015;

Ren et al., 2015), YOLO series (Redmon et al., 2016; Redmon

and Farhadi, 2017, 2018), and SSD series (Liu et al., 2016;

FIGURE 10

YOLOv5 for reconstructed image detection.
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Li and Zhou, 2017; Yi et al., 2019). This section aims to prove the

reliability of each reconstruction algorithm. The popular YOLOv5

(Zhang et al., 2022) object detection algorithm is adopted to detect

the reconstructed image. The task in this section is still using

transfer learning as mentioned in the previous section. The model

trained on the conventional image is directly used to detect and

reconstruct the image. Specifically, YOLOv5s that has been trained

on the COCO dataset is used for detection.

Since there are no corresponding labels in the ECOCO

dataset, we can only present qualitative experimental results,

as shown in Figure 10. It can be observed from the figure

that all reconstruction methods can directly identify the main

object, but there are differences in the specific class and

confidence. E2VIDX’s reconstructed image detection results are

improved in confidence compared with the frame images, which

indicates that our recovered images have strong interpretability.

FIGURE 11

YOLACT for reconstructed image instance segmentation. (A) Instance segmentation of reconstructed images of indoor scenes. (B) Instance

segmentation of reconstructed images of outdoor scenes.
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The detection results of E2VIDX and SPADE-E2VID are

better than E2VID and FireNet in object recognition and

confidence, especially in the recognition of small objects, such

as books.

4.3.3. Instance segmentation
As one of the difficult visual tasks, instance segmentation,

is also the focus of current research. Instance segmentation

classifies the image pixel-by-pixel, so it requires high quality of

the image itself. In this section, we use the YOLACT (You Only

Look At Coefficients) (Bolya et al., 2019) instance segmentation

model to conduct experiments and also use the weight files

trained under the regular camera dataset to directly segment

our reconstructed image. The previously used datasets were

all taken indoors, so the reconstruction of outdoor scenes is

added in this section. The specific scene is a motor vehicle

on the highway. After taking frame images with Huawei P20

Pro, VID2E (Hu et al., 2021) is used to transform them

into event streams, and then, reconstruction is performed. The

segmentation results of our reconstruction results are shown

in Figure 11.

For indoor scenes, it can be observed that the segmentation

effect of E2VIDX is more continuous and accurate compared

with other methods. Our method can outline most objects

by pixels. In comparison, other methods do not achieve

the same performance because the reconstruction results are

not ideal and thus can lead to missed detection or false

detection. Due to the insufficient illumination conditions, the

false detection rate for instance segmentation in frame images

is high.

For outdoor scenes, E2VIDX performs image reconstruction

equally well, and the reconstructed images are highly consistent

with the high-quality original images. The segmentation of the

two images (original and reconstructed) is almost the same,

indicating that the recovered image has similar characteristics

with the high-quality frame image. The outdoor segmentation

results of other methods generally perform well but occasionally

have misdetection.

5. Conclusion

In this study, we propose a novel approach named E2VIDX for

the field of event camera-based image reconstruction. Specifically,

our study proposes: (1) the optimization of the original network

structure to strengthen the feature fusion of deep and shallow

layers; (2) use of group convolution and sub-pixel convolution to

further strengthen themodel and the related ablation study to verify

its effectiveness. (3) A simple loss function, which is optimized from

the semantic and low-level features of the image. Furthermore, we

evaluate the reconstructed results in practical vision applications,

including image classification, object detection, and instance

segmentation. We conduct comprehensive quantitative and

qualitative experiments to assess the performance of our approach.

Through rigorous experimentation, E2VIDX surpasses the current

state-of-the-art methods. When compared with E2VID, our

approach exhibits notable improvements, including a 1.3% increase

in SSIM, a reduction of 1.7% in LPIPS, a 2.5% decrease in MSE,

and a 10% reduction in inference time. We also optimize the

model size, reducing it from 32.1MB to 42.9MB. After conducting

a series of comparative experiments, we demonstrate that E2VIDX

boasts enhanced robustness, enabling direct application of the

reconstructed image data. This effectively narrows the gap between

conventional computer vision and biomimetic vision. In future,

our research will primarily concentrate on the development of a

lightweight network structure. We aim to enhance the efficiency of

feature extraction by integrating advanced attention mechanisms

into our model.
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