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The field of human-computer interaction is expanding, especially within the

domain of intelligent technologies. Scene understanding, which entails the

generation of advanced semantic descriptions from scene content, is crucial for

e�ective interaction. Despite its importance, it remains a significant challenge. This

study introduces RGBD2Cap, an innovative method that uses RGBD images for

scene semantic description. We utilize a multimodal fusion module to integrate

RGB and Depth information for extracting multi-level features. And the method

also incorporates target detection and region proposal network and a top-down

attention LSTM network to generate semantic descriptions. The experimental data

are derived from the ScanRefer indoor scene dataset, with RGB and depth images

rendered from ScanNet’s 3D scene serving as the model’s input. The method

outperforms the DenseCap network in several metrics, including BLEU, CIDEr, and

METEOR. Ablation studies have confirmed the essential role of the RGBD fusion

module in the method’s success. Furthermore, the practical applicability of our

method was verified within the AI2-THOR embodied intelligence experimental

environment, showcasing its reliability.

KEYWORDS

indoor robotic scene, dense captioning, RGBD fusion, multidimensional evaluation, top-
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1 Introduction

As artificial intelligence technology continues to evolve, mobile robots are taking on

increasingly pivotal roles across a multitude of fields (Rubio et al., 2019; Huang et al.,

2020; Liu et al., 2022). To enable these robots to more effectively comprehend and adapt

to complex, ever-changing indoor environments, it becomes essential to provide a detailed

description of the scene (Johnson et al., 2016; Chen et al., 2021). This involves extracting

semantic information—such as objects, attributes, and relationships within the scene—and

articulating it in natural language. By doing so, we can significantly enhance a robot’s

perceptual and interactive capabilities, thereby elevating its level of intelligence and the

overall user experience (Sheridan, 2016). The task of providing semantic descriptions of

scenes is of paramount importance, as it is key to facilitating effective interaction between

robots and humans, and crucial to a robot’s understanding of human needs.
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Scene description refers to the ability of machines to generate

high-level natural language descriptions based on given scene

images. Several Scene Description methods have been developed

for indoor scenes, with a recent focus on Dense Captioning based

on 3D point clouds. In 2021, Chen et al. (2021) proposed an

end-to-end method called Scan2Cap, which effectively locates and

describes 3D objects in the ScanRefer dataset and extracts spatial

relationships within the scene. Yuan et al. (2022) introduced a

cross-modal Transformer model, X-Trans2Cap, which integrates

features from auxiliary 2D modalities into point clouds through

knowledge distillation, achieving great performance improvement

in this task. Jiao et al. (2022) proposed a multi-level relationship

mining model called MORE, aiming to improve 3D Dense

Captioning by capturing and utilizing complex relationships within

3D scenes.

The task of providing dense scene captioning presents

numerous challenges (Cai et al., 2022). To begin with, in the context

of 2D scene captioning, the input from a single modality is often

insufficient, making it difficult to discern when objects are occluded

or when the viewpoint within the scene changes. Additionally,

while 3D scene captioning can capture comprehensive scene

information, the computational cost of performing convolution

and attention operations on point cloud data is high, and there

is an abundance of sparse, irrelevant information. Ultimately, the

existing methods of RGBD input have not effectively utilized

the information available in depth images, which serves as the

motivation for this research. We want to implement a method that

could reduce the amount of computation while expressing spatial

relationships better, so we came up with RGBD2Cap.

The main contribution of this paper includes the following

three aspects: Firstly, we propose a feature extraction method

based on RGB+D image multimodal fusion. This method, which

is grounded in the transformation between 3D point clouds and 2D

images, is combined with a semantic captioning generation module

to form RGBD2Cap. Secondly, we design and implement a multi-

dimensional evaluation method for scene semantic captioning.

This includes both manual and automatic evaluations, and utilizes

simulation scenes to assess the model within an embodied

intelligence experimental environment. Lastly, themodel presented

in this article has achieved the highest accuracy according to our

evaluation metrics.

2 Related work

2.1 2D image and scene captioning

Since its introduction by Johnson et al. (2016), dense captioning

has emerged as a subfield of image captioning, with the encoder-

decoder architecture becoming the prevailing solution (Cho et al.,

2014).

Initial approaches (Mao et al., 2014) to dense image captioning

using the encoder-decoder architecture combined Convolutional

Neural Networks (CNNs) (LeCun et al., 2015) and Long Short-

Term Memory (LSTM) networks (Xu et al., 2015). These methods

used the image feature vector extracted by the CNN as the LSTM’s

initial state and generated descriptive statements word by word.

With the rise of attention mechanisms in natural language

processing, methods (Xu et al., 2015; Anderson et al., 2018)

combining CNNs and attention mechanisms have emerged. These

methods dynamically select themost relevant region feature vectors

at each time step based on the current generation state, combining

them with global feature vectors as input to subsequent language

generation models such as LSTM or Transformer.

Yang et al. (2017) introduced a method that combines

joint inference and contextual information fusion to address

two significant challenges in the current image-intensive

description task. This approach generates improved descriptions

by emphasizing visual cues from surrounding salient image regions

as contextual features. Kim et al. (2019) introduced a new task,

“Relation Captioning,” which generates multiple captions for

relational information between objects in an image. They utilized

a multi-task triple stream network (MTTSNet) that captures the

relational information between detected objects, providing precise

concepts and rich representations.

2.2 3D scene captioning

3D vision has become increasingly popular in recent years (Qi

et al., 2017; Li et al., 2022; Shao et al., 2022), and 3D detection

methods performed on point clouds are becoming more common

in 3D vision research.

Chen et al. (2021) pioneered the task of dense captioning in

RGB-D scans, a field that has yet to fully explore the discriminative

description of objects in complex 3D environments. Yuan et al.

(2022) furthered this research by investigating a cross-modal

knowledge transfer using a Transformer for 3D dense captioning.

Their model, X-Trans2Cap, leverages a teacher-student framework

for knowledge distillation to enhance the performance of single-

modal 3D captioning.

In the spirit of neural machine translation, Wang et al.

(2022) proposed SpaCap3D. Thismodel features a spatiality-guided

encoder and an object-centric decoder, both of which contribute to

the generation of precise and spatially-enhanced object captions.

However, existing methods often overlooking contextual

information such as non-object details and background

environments within point clouds. To address this, Zhong

et al. (2022) utilized point cloud clustering features as contextual

information, incorporating non-object details and background

environments into the 3D dense captioning task.

Jiao et al. (2022) aimed to improve 3D dense captioning by

capturing and utilizing complex relations within the 3D scene.

They proposed MORE, a Multi-Order RElation mining model,

to generate more descriptive and comprehensive captions. Chen

et al. (2022) introduced UniT3D, a fully unified transformer-based

architecture for jointly solving 3D visual grounding and dense

captioning.

Although the representation of 3D point cloud scenes

has achieved considerable performance to some extent, its

computational overhead remains excessively large. This is primarily

due to the sparsity of the 3D point cloud information, which

impedes the efficient utilization of features. This paper proposes

a method based on RGBD static images, effectively integrating

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1280501
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2023.1280501

RGB and Depth features. While reducing computational load,

this approach also ensures the model’s acquisition of spatial

information, thereby enhancing the accuracy of the generated

descriptions.

3 Proposed method

The research of this paper is to train a deep learning model

based on the RGBD images corresponding to indoor 3D scenes,

so that it can automatically generate the corresponding linguistic

descriptions. In order to accomplish these goals, this paper

accomplish the following specific tasks. First, we need to pre-

process the original point cloud data to obtain 2D and depth images

corresponding to different objects in the scene. Then, we design a

RGB and Depth multimodal feature extraction network to extract

and fuse the features of RGB and depth images. In addition, we need

a target detection network to detect the objects in the scene images

so that the subsequent Top-down Attention LSTM model can

accurately understand the objects in the images. Finally, the features

extracted by the neural network are fed into the text generation

network to generate text for the purpose of understanding the high-

level semantic information of the scene. The overall structure of the

proposed method is shown in Figure 1.

3.1 Rendering of 3D scenes

This study employs the ScanRefer (Chen et al., 2020) dataset

for model training, which is an extension of the ScanNet dataset

with added high-level semantic descriptions. ScanNet provides a

rich array of indoor 3D scenemeshes, semantic labels, and 2D video

frame images with corresponding depth maps. However, we refrain

from using ScanNet’s 2D image data directly for training due to the

blurriness of most images, which hampers effective capture of the

scene’s visual information. Instead, we use the viewpoints provided

by the ScanRefer dataset to render the 3D data, yielding clearer

2D data.

The rendering process of the 3D scene adheres to the principle

of camera projection (Kannala and Brandt, 2006). It begins with

transforming the scene points in the world coordinate system using

the camera’s external parameter matrix, yielding their coordinates

in the camera’s coordinate system. These points are then converted

to the image coordinate system using the camera’s internal

parameter matrix.

The initial step involves the transformation from the world

coordinate system to the camera coordinate system, a rigid

transformation composed of translation and rotation. In this study,

a right-hand coordinate system is used for world coordinates. If a

point in the scene has coordinates (x, y, z) in the world coordinate

system. We aim to obtain its coordinates (x′, y′, z′) in the camera

coordinate system, this can be achieved through the following

matrix transformation:


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, (1)

where t represents the translation vector of the point coordinates,

and the orthogonal matrix R represents the rotation matrix of the

point’s coordinates in space. The values of both are determined by

the position of the camera in the world coordinate system and the

direction of the optical axis. The external parameter matrix of the

camera is composed of the rotation matrix R and the translation

vector t, represented as [R|t] ∈ R3×4.

Next is the transformation from the camera coordinate system

to the normalized device coordinate system, which is usually

achieved through perspective projection. For a point (x′, y′, z′) in

the camera coordinate system, the following matrix transformation

can be used to describe this process:
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where f represents the focal length of the camera, and (x′′, y′′, z′′)

are the coordinates of the point in the normalized device coordinate

system. This transformation maps the 3D points in the camera

coordinate system to a 2D, while preserving the depth information

of each point.

Finally, there is the transformation from the normalized device

coordinate system to the image coordinate system, which can

be achieved through the simple scaling and offset. For a point

(x′′, y′′, z′′) in the normalized device coordinate system, we want to

obtain its coordinates (u, v) in the image coordinate system, which

can be achieved through the following formula:

[

u

v

]

=

[

w/2 0

0 h/2

]

[

x′′y′′
]

+

[

w/2

h/2

]

, (3)

where w and h represent the width and height of the

image, respectively. This transformation maps the points in the

normalized device coordinate system to the image coordinate

system, generating the final 2D image.

The above is the whole process we used to convert the point

cloud in the scene, from the world coordinate system to the image

coordinate system. The whole process is linear and can be achieved

by a series of matrix multiplications. This allows us to obtain a

mapping of the 3D point cloud data onto the 2D image, which

can then be processed and analyzed using 2D image processing

techniques.

3.2 RGB and depth multimodal fusion
networks

The network accepts an RGB image and a depth image as

inputs. Its architecture is grounded in ResNet101 (He et al., 2015), a

deep residual network of 101 convolutional neural network layers.

This network addresses the issues of vanishing and exploding

gradients, common in deep neural network training, through

residual learning.

The feature fusion approach employed in this network is a

third-branch multilevel fusion, as shown in Figure 2. Specifically,

we start with the feature map generated by the third convolutional
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FIGURE 1

The general structure of the proposed method.

FIGURE 2

RGB and Depth multimodal fusion networks.

layer of ResNet101. The RGB and depth feature maps from this

convolutional layer are summed and fused separately to form

the network’s third branch. The same convolutional operation is

performed on this third branch, and the feature maps obtained

from subsequent convolutional layers are continuously added to

yield the final RGBD multimodal features.

Our feature extraction network is bifurcated into two branches:

the RGB branch and the depth branch. The RGB image and the

depth image are processed through their respective convolution

layers to extract features and generate their individual feature

maps. These two feature maps are then fused using the feature

fusion method to obtain RGBD multimodal features, which serve

as the third branch for multilevel fusion. This network omits

the final fully-connected and softmax layers of ResNet, bypassing

classification result output and directly utilizing its feature maps for

subsequent tasks.
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FIGURE 3

Target detection and region proposal network.

FIGURE 4

Top-down attention LSTM network.

3.3 Target detection and region proposal
network

The Bottom-Up and Top-Down Attention model (Anderson

et al., 2018) comprises two components: a bottom-up image feature

extractor and a top-down language generator. The bottom-up

image feature extractor employs a Faster-RCNN (Ren et al., 2015)

detector to identify a set of potential visual regions, generating a

fixed-length feature vector for each region.

As shown in Figure 3, this study employs a Faster-RCNN-

based object detection and region proposal network, utilizing

the previously mentioned multimodal fusion ResNet101 as its

backbone, augmented with an RPN network and an RoI Pooling

layer. The RPN network, which is fully convolutional, generates

candidate bounding boxes. It takes the output feature map of the

backbone network as input and produces a series of candidate

bounding boxes along with their corresponding scores. A 3 × 3

convolution generates scores for each position, and non-maximum

suppression is applied to eliminate overlapping candidate boxes.

The RoI Pooling layer takes the output feature map of the backbone

network and a series of candidate boxes as input, outputting a

fixed-size feature vector after pooling. The final pooling results are

concatenated to form the ultimate feature vector.

3.4 Top-down attention LSTM network

The top-down language generator in the Bottom-Up and Top-

Down Attention model employs an attention mechanism as shown

in Figure 4. This mechanism uses the currently generated word as

a query, calculates its similarity with the bottom-up feature vector,

and produces a set of attention weights. These weights are then used

to compute a weighted average of each feature vector, which is used

to generate the next word.

The top-down attention mechanism is the heart of the model.

The model uses the currently generated word as a query at each

time step, calculates its similarity with the bottom-up feature vector,

and produces a set of attention weights. These weights are then used

to compute a weighted average of each feature vector, which is used

to generate the next word. This attention mechanism can be viewed
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FIGURE 5

(A) Visualization of point cloud data. (B) Visualization of the labels of point cloud data.

as a top-down interpretation of the image, integrating the generated

language with the underlying image representation to produce a

more precise image description.

In this module, the global features, object features, and context

features obtained from the previous networks are fused, and to

utilize these three features effectively, we use the following method

for fusion. Firstly, the global and target features with the same

dimension are spliced and fused, then a fully connected network

with an activation function is used to scale the fused features to

the same dimension as the contextual features, and then they are

spliced twice to get the final fused features, which can effectively

utilize the extracted contextual features.

4 Experiments

4.1 Dataset

Generating scene descriptions for robots necessitates a

computer vision approach that can convert environmental data

into natural language descriptions. Several datasets have been

developed to provide high-level language descriptions for various

scenes, including the ScanRefer dataset.

ScanRefer (Chen et al., 2020) is a dataset designed explicitly for

dense scene descriptions, primarily used in robotic indoor scene

understanding tasks. It provides semantic scene description

information, facilitating robots’ comprehension of their

surroundings. The dataset comprises 800 annotated scenes,

11,046 stereo location frames of objects, and 51,583 corresponding

textual descriptions. It offers not only a wealth of scene description

data but also high-quality 3D scene data. By employing 3D

projection, we can map the objects in the scene onto a 2D plane,

making it suitable for the RGBD2Cap model presented.

ScanRefer builds upon the ScanNet (Dai et al., 2017) dataset

by adding natural language descriptions. As shown in Figures 5A,

B, ScanNet provides 3D point clouds and their corresponding

semantic labels, resulting from high-quality scene reconstruction.

In this study, we utilize the 3D data from the dataset and select

viewpoints provided by ScanRefer to render the point cloud

scenes. The authors of ScanRefer provide viewpoint information

for different camera locations in each scene in the Annotated

viewpoints file. This information includes the camera location,

rotation angle, and look at (the point the camera is currently aimed

at), which we use to set the camera pose.

4.2 Rendering of 2D images

The rendering of the 3D scene using Pytorch3D (Ravi et al.,

2020) is shown in Figure 6. From left to right, the RGB color image

of a viewpoint, the rendered image with labels, and the depth image

are shown.

4.3 Configuration of the training model

This study utilized the Python programming language and the

PyTorch deep learning framework to implement the algorithm. The

hardware setup for the experiment included a NIVIDA Tesla P100

GPU (16GB), 80GB of RAM, and 70GB of available disk space. The

software environment was configured with Ubuntu 18.04, Python

3.8, Cuda 11.1, and PyTorch 1.8.1.

The experimental procedure began with the fusion of the

ScanRefer dataset with RGBD images to extract image features.

The primary architecture used in the training process was a

convolutional neural network and a long short-term memory

network. The model was trained using the Adam optimizer, with

a batch size of 14 and 100 epochs. The initial learning rate was set at

0.0005, and a weight decay parameter of 0.0001 was used to control

model complexity. Intersection over Union (IOU) thresholds were

set at 0, 0.25, and 0.5. The number of sampled point clouds was

40,000, with 562 scenes in the training set and 141 in the validation
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FIGURE 6

Multi-view image based on pytorch3d rendering. (A) RGB image. (B) Labeled image. (C) Depth image.

set. After rendering, the training set comprised 36,665 samples, and

the validation set included 9,508 samples.

The loss of the RGBD2Cap network is a multi-task loss,

including target detection loss and semantic description loss.

The loss for target detection includes classification loss and

bounding box regression loss, while the text generation part can

directly use the cross-entropy loss of text prediction probability.

The final multi-task loss value at the end of model training

was 0.26.

4.4 Scene dense captioning and evaluation
methods

4.4.1 Metrics-based evaluation
The objective of the dense captioning task is to identify and

articulate all objects and events of interest within an image. This

task merges two subtasks: object detection and image captioning.

Consequently, its evaluationmetrics are a fusion of themetrics used

for these two subtasks.

Firstly, the Mean Average Precision (mAP) is typically

used as the evaluation metric for object detection. The mAP

represents the Area Under Curve (AUC) of the average

precision-recall curve across all categories. For each category,

detections are ranked based on their predicted confidence,

followed by the calculation of precision and recall. The

precision-recall curve is then plotted, and the area under it

is calculated to obtain that category’s Average Precision (AP).

The final mAP is obtained by averaging the AP across all

categories.

Secondly, image captioning is evaluated using metrics

such as BLEU, CIDEr, Meteor, and Rouge. BLEU (Bilingual

Evaluation Understudy) (Papineni et al., 2002) assesses the

similarity between generated and reference descriptions primarily

through n-gram accuracy. CIDEr (Consensus-based Image

Description Evaluation) (Vedantam et al., 2015) gauges the

quality of descriptions by calculating the TF-IDF-weighted

cosine similarity between generated descriptions and a set

of reference descriptions. Meteor (Metric for Evaluation of

Translation with Explicit ORdering) (Banerjee and Lavie, 2005)

and Rouge (Recall-Oriented Understudy for Gisting Evaluation)

(Lin, 2004) evaluate description quality by computing the

longest common subsequence between generated and reference

descriptions.

In dense captioning tasks, these evaluation metrics for object

detection and image captioning are typically used in conjunction.

Specifically, mAP is used to assess the model’s performance on the

object detection task, while BLEU, CIDEr, Meteor, and Rouge are

used to evaluate the model’s performance on the image captioning

task. Finally, these evaluation metrics can be combined in a

weighted manner to derive a comprehensive evaluation metric for

assessing the model’s overall performance on the dense captioning

task.

In this paper, we evaluate the completed training model and

obtain several evaluation metrics data, including (BLEU1-4, cider,

mAP@0.5, meteor, rouge, and many other evaluation metrics). The
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TABLE 1 Algorithm comparison and ablation study on RGBD2Cap

components.

BLEU-
4

CIDEr ROUGE-
L

METEOR

RGB (DenseCap)

(Johnson et al.,

2016)

20.1 32.7 38.2 21.0

RGB (without

fusion)

20.7 34.5 41.6 22.9

Show and tell

(without attention)

18.3 33.5 46.9 21.09

RGB+D fusion

(ours)

21.5 35.1 38.8 23.3

Bold values indicate the optimal value of each method for a given evaluate metric.

TABLE 2 Comparison of time and accuracy between 2D and 3D methods.

BLEU-
4

CIDEr ROUGE-
L

METEOR Train
time
(h)

RGBD2Cap

(ours)

21.5 35.1 38.8 23.3 8

Scan2Cap

(Chen et al.,

2021)

23.32 39.08 44.78 21.97 71

Bold values indicate the optimal value of each method for a given evaluate metric.

IOU thresholds k in the data table are all taken as 0.5. The results

are shown in Table 1.

Since no experimental studies are based on RGBD fusion so far,

the proposedmodel is compared with the algorithmwithout RGBD

fusion.

The RGB(DenseCap) row in Table 1 uses the rendered RGB

image as input, and the Dense Captioning of the scene is obtained

by using the method in paper[]. The RGB(Without Fusion) line

also takes the same image as input and uses the RGBD2Cap

network without the Depth branch and the third branches to get

the DenseCap. The last row in Table 1 is our complete proposed

RGBD2Cap method. Based on the data in the table, it can be seen

that the performance of the proposed model is optimal in the three

indexes of BLEU-4, CIDEr, and METEOR, which can verify the

effectiveness of the RGBD fusion module.

Furthermore, ablation experiments were conducted to ascertain

the effectiveness of the Top-down Attention and FasterRCNN

modules. As depicted in Table 1, the model’s performance across all

three metrics declines when the Attention module is not utilized,

indicating the module’s crucial role in feature extraction during

semantic description generation.

In addition, we compare the proposed method RGBD2Cap

with the 3Dmethod Scan2Cap (Chen et al., 2021), and the obtained

results are shown in Table 2. Both methods are trained on the

ScanRefer dataset, the difference is that RGBD2Cap uses a rendered

RGBD image as the input to the model, while Scan2Cap directly

uses a 3D point cloud as the input. Both models are trained on

a 2080Ti GPU for 50 epochs to ensure fairness. Based on the

experimental results, it can be learned that although the 3D model

outperforms our method in the three metrics, its training time

is 9 times longer than that of RGBD2Cap, greatly shortening the

training time while reducing the performance loss.

TABLE 3 Performance of using Faster-RCNN as a target detector vs. real

bounding box to generate description results.

BLEU-
4

CIDEr ROUGE-
L

METEOR

Faster-RCNN 21.5 35.1 38.8 23.3

Ground truth 24.3 35.7 39.3 23.5

Bold values indicate the optimal value of each method for a given evaluate metric.

Lastly, we verify the impact of the Faster-RCNN module’s

detection capabilities on the description performance by

contrasting it with the actual bounding box, as shown in

Table 3. The features extracted using the real bounding box of the

object are more precise, hence the semantic description based on it

will also yield more accurate descriptions. Following experimental

verification, it was found that the model exhibits a slight decrease in

the four indicators. Still, the decrease is minimal, thus affirming the

feasibility of the end-to-end model. The target features produced

using Faster-RCNN as the target detector and feature box extractor

serve as a solid foundation for semantic description.

4.4.2 Manual evaluation
Because the high-level semantics are more difficult to describe

formalistically, manual evaluation is essential, and this paper next

evaluates a manual sample of training results.

A randomly selected sample from the validation set was used

for inference prediction, and the results are presented in Figure 7.

The captioning of the red box is “The chair is brown. It is to the

left of the desk”, in which the object’s color information and spatial

location are accurately displayed; the captioning of the white box is

“The monitor is on the desk on the right side. It is the monitor that

is closest to the window”, although the real label of the computer

on the desktop is “laptop”, the object vocabulary “monitor” given

in the description is similar; this description shows very detailed

spatial location information; the captioning of the green box is “The

desk is on the right side of the room. There is a chair in front of the

desk.” This description shows the position of the desk object in the

room and accurately expresses its spatial relationship with the chair

in front of it.

However, not all scenes are accurately described, and Figure 8

shows another randomly selected sample from the validation set.

The captioning of the red box in the figure is “This is a white pillow.

It is on a gray couch.” Although the object’s color is accurately

described as white, the white bed sheet is mistakenly identified as

a pillow and the bed below as a sofa, which is a misjudgment. The

text of the blue box is “This is a brown nightstand. It is next to a

bed”, which accurately shows that the object is a brown nightstand;

it also points out that its orientation is next to the bed; the text of the

pink box is “this is a radiator. It sets along the wall.” This sentence

incorrectly identifies the object as a radiator, probably because the

picture shows an incomplete object, but it correctly conveys that the

object is against the wall.

From the results, it can be seen that the current field still

faces many challenges, and future research directions could be

more fine-grained feature extraction to achieve a more accurate

description.
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FIGURE 7

Example 1 of dense captioning results in the validation set.

FIGURE 8

Example 2 of dense captioning results in the validation set.

FIGURE 9

RGB, Labeled, and Depth images of scenes in AI2-THOR environment.
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4.5 Simulation tests in AI2-THOR

4.5.1 AI2-THOR
AI2-THOR is an embodied AI experimental environment

designed to simulate real-world environments to train and test AI

systems (Kolve et al., 2017; Deitke et al., 2020). This simulation

environment contains a variety of detailed indoor scenarios such

as kitchen, bedroom, bathroom, and living room. In AI2-THOR,

AI intelligence can explore and interact with the environment

through a series of actions, such as moving, viewing, grasping, and

manipulating objects. This design allows the intelligent body to

learn and understand the properties and relationships of objects in

the environment and how they affect the execution of tasks as it

performs them.

A key feature of AI2-THOR is its support for scene

semantics, for which objects are provided with labels with semantic

information. In this paper, RGBD2Cap is further evaluated by

controlling the actions of the intelligence in AI2-THOR, acquiring

single frames of images in the scene and their depth images as input

samples for the model, and observing the correlation between the

model’s output and the images.

4.5.2 Operation details
The operation of AI2-THOR is facilitated through Python,

with the research team providing a Python API for public

experimentation. Initially, the AI2-THOR experimental

environment is installed and initialized, typically involving

the selection of a scene (e.g., kitchen, bedroom, etc.) and

establishing the AI agent’s initial position and orientation. Once

the environment is initialized, the agent is primed to commence

action execution.

The system’s “move” and “rotate” actions can be utilized

to capture a single frame from varying scene perspectives. For

instance, the AI agent can be maneuvered forward, backward, or

rotated left or right. Each execution of these actions provides the

agent with a new viewpoint for frame acquisition. To procure a

depth image, the “Get Depth Image” function of the AI2-THOR

environment is employed, returning a depth image that represents

the scene’s depth from the AI system’s current viewpoint. The depth

image is a two-dimensional array, with each element representing

the depth value of the corresponding pixel. These depth values

serve to comprehend the position and shape of objects within the

scene.

The paper randomly selects a scene in the experimental

environment, and after initializing the intelligent body in the scene,

the movement method and the final location and angle were

arbitrarily set, and the RGB, Depth and instance labeled images

of the scene were captured. The effect of the model was verified,

and the results are shown in Figure 9. The text corresponding

to the three detection boxes are “This is a white door in the

front. it is at the far end of the wall.”, “This is a brown box

on the desk. It is near the wall. It is near the wall.”, “This is

a door near the wall. It is a white door.” It can be seen that

these description results are relatively accurate, and the model

has excellent performance in the test results in the simulation

environment.

5 Conclusion

In this paper, the problem of scene semantic description

for indoor mobile robots is studied. The ScanNet scene data is

processed to obtain its RGBD image, and then the corresponding

semantic description is obtained based on the RGBD image. After

experiments, we know that the proposed algorithm can effectively

describe the indoor scene semantically. The use of multimodal

information can help the model understand the scene better and

improve the accuracy of the model. Compared with direct RGB

image recognition, the proposed model obtains better results in

three indexes, such as BLEU, CIDEr, and METEOR, and gets better

test performance in the AI2-THOR experimental environment.

Overall, the proposed method has high practicality and promotion

value and can provide more accurate and advanced semantic

information for the perception of indoor mobile robots.
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