
TYPE Original Research

PUBLISHED 15 November 2023

DOI 10.3389/fnbot.2023.1281166

OPEN ACCESS

EDITED BY

Ming-Feng Ge,

China University of Geosciences Wuhan, China

REVIEWED BY

Yinyan Zhang,

Jinan University, China

Qiang Fu,

Air Force Engineering University, China

*CORRESPONDENCE

Peng Wang

knightwp@126.com

RECEIVED 22 August 2023

ACCEPTED 17 October 2023

PUBLISHED 15 November 2023

CITATION

Cheng N, Wang P, Zhang G, Ni C and

Nematov E (2023) Prioritized experience replay

in path planning via multi-dimensional

transition priority fusion.

Front. Neurorobot. 17:1281166.

doi: 10.3389/fnbot.2023.1281166

COPYRIGHT

© 2023 Cheng, Wang, Zhang, Ni and Nematov.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Prioritized experience replay in
path planning via
multi-dimensional transition
priority fusion

Nuo Cheng1, Peng Wang1,2*, Guangyuan Zhang1, Cui Ni1 and

Erkin Nematov3

1School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan,

Shandong, China, 2Institute of Automation, Shandong Academy of Sciences, Jinan, China, 3Faculty of

Mechanical Engineering, Tashkent State Technical University named after Islam Karimov, Tashkent,

Uzbekistan

Introduction: Deep deterministic policy gradient (DDPG)-based path planning

algorithms for intelligent robots struggle to discern the value of experience

transitions during training due to their reliance on a randomexperience replay. This

can lead to inappropriate sampling of experience transitions and overemphasis on

edge experience transitions. As a result, the algorithm’s convergence becomes

slower, and the success rate of path planning diminishes.

Methods: We comprehensively examines the impacts of immediate reward,

temporal-di�erence error (TD-error), and Actor network loss function on the

training process. It calculates experience transition priorities based on these three

factors. Subsequently, using information entropy as a weight, the three calculated

priorities are merged to determine the final priority of the experience transition.

In addition, we introduce a method for adaptively adjusting the priority of positive

experience transitions to focus on positive experience transitions and maintain

a balanced distribution. Finally, the sampling probability of each experience

transition is derived from its respective priority.

Results: The experimental results showed that the test time of our method is

shorter than that of PER algorithm, and the number of collisions with obstacles

is less. It indicated that the determined experience transition priority accurately

gauges the significance of distinct experience transitions for path planning

algorithm training.

Discussion: This method enhances the utilization rate of transition conversion

and the convergence speed of the algorithm and also improves the success rate

of path planning.

KEYWORDS

deep reinforcement learning, deep deterministic policy gradient, prioritized experience

replay, multi-dimensional transition priority, priority fusion

1 Introduction

Intelligent robots have become increasingly diverse and essential across various

industries due to robotics and artificial intelligence technology advancements. Examples

include home-sweeping robots, shopping guide robots, and automatic sorting robots in

the logistics industry. Path planning underpins intelligent robot motion and is a prevalent

research topic. This process involves perceiving the environmental information through

sensors, determining the robot’s posture, and then identifying an optimal path from

its current position to a goal location. Traditional path planning algorithms primarily

encompass the Dijkstra algorithm (Liu L.-s. et al., 2021), the A∗ algorithm (Hong et al., 2021),

the ant colony algorithm (Miao et al., 2021), and enhancements based on these algorithms.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1281166
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1281166&domain=pdf&date_stamp=2023-11-15
mailto:knightwp@126.com
https://doi.org/10.3389/fnbot.2023.1281166
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1281166/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

Although these algorithms perform adequately in known

environments, they struggle with convergence speed, operation

time, and adaptation in unknown environments (Sang et al., 2021;

Hou et al., 2022).

In recent years, deep reinforcement learning (DRL) has found

applications in numerous fields (Lu et al., 2021;Wei et al., 2021; Zhu

et al., 2023), and the path planning algorithm combined with DRL

has gradually become a research hotspot. DRL-based path planning

does not necessitate prior information about the environment.

Instead, it predicts the next action based on sensing the current

state. Once an action is executed, the robot receives the reward from

the environment, facilitating its movement from the current state

to the next state. This process is repeated until the robot reaches its

target point or the maximum number of steps is achieved (Chen

et al., 2021; Liu X.-h. et al., 2021; Sinha et al., 2022). Q-learning

is a value-based reinforcement learning algorithm (Golowich and

Moitra, 2022). For scenarios with small state-action spaces, states

and actions can be stored in a dynamically changing Q-table for

path planning. In each episode, suitable actions from the table

are selected. However, as the environment of the robot becomes

intricate and the movement area expands, the Q-table’s capacity

grows exponentially, increasing its search time and affecting the

robot’s learning efficiency (Millán et al., 2002; Guo et al., 2021).

As a result, DeepMind introduced the deep Q-network (DQN)

algorithm, merging neural networks with Q-learning algorithms.

Instead of a Q-table, a neural network stores data, and states

and actions are used as the network’s inputs, enabling optimal

policy development through iterative learning. However, the DQN

algorithm mainly functions in discrete environments and struggles

with continuous action spaces (Xin et al., 2017). DeepMind then

proposed a deep deterministic policy gradient (DDPG) algorithm

(Yu et al., 2020), which combined the Actor-Critic framework with

DQN and employed a convolutional neural network to simulate

the policy function and Q-function, and the output result is a

definite action value. Consequently, it overcomes the challenges

faced by DRL in high-dimensional or continuous action tasks,

making DDPG amore effective path planning algorithm at present.

However, the DDPG’s random experience replay does not utilize

the experience transitions effectively during training (Wei et al.,

2022). The algorithm sometimes exhibits slow convergence speed,

a low success rate, and inadequate environmental adaptation

(Chen et al., 2019; Lin et al., 2021; Liu Q. et al., 2021).

We proposed a dynamic transition priority replay based on

multi-dimensional transition priorities. Considering the TD-error,

the influence of the Actor network loss function, and the immediate

reward on experience transition priority, this method enhances the

rationality of experience transition priority computation. It ensures

the comprehensive learning of high-value experience transitions

and sidesteps the learning of low-value transitions. This method

optimizes the use and balance of experience transitions, hastening

network convergence. The main contributions of this study are

as follows:

(1) To enhance the real-time performance of priority

calculation, one should compute the experience transition

priority using the Actor network loss function. This

calculation should be based on immediate rewards to

minimize the frequent sampling of experience transitions

with low immediate rewards (e.g., robots distant from the

goal point or positioned at the corners of the edges) but with

a significant TD-error.

(2) The priority, determined by the immediate reward, TD-

error, and Actor network loss function, is integrated using

information entropy. This integration serves as the final

priority for experience transition, which more accurately

reflects the value of experience transition for robot learning.

(3) Positive experience transitions are defined, and their

priorities are adjusted based on the training process to enhance

the balance of the sampled experience transitions.

(4) The efficacy of the proposedmethod for robot path planning,

based on the DDPG algorithm, is validated. Experimental

results demonstrate that the training effect of the proposed

method surpasses that of prioritized experience replay (PER)

in all types of environments. In addition, it exceeds other state-

of-the-art methods and significantly boosts path planning

success rates.

2 Analysis of experience replay
adopted in DDPG

2.1 DRL-based path planning formulation

The robot interacts with an environment in DRL-based path

planning. The robot observes the state st ∈ S at each time step t

and selects action at ∈ A based on its policy at ∼ π (a |st). The

robot then receives an immediate reward rt and moves to the state

st+1 ∈ S. The cumulative reward from each time step t in an episode

is Rt =
∑∞

i=t γ
tri, where γ ∈ [0, 1) is a discount rate. DRL-based

path planning aims to identify the policy π∗ that maximizes the

cumulative reward defined in equation (1).

Vπ (s) =

[

∞
∑

t=0

γ tr (st ,π (st)) |s0 = s

]

(1)

The Q-function under the policy π is defined by equation (2).

Qπ (s, a) =

[

∞
∑

t=0

γ tr (st , at) |s0 = s, a0 = a

]

(2)

The Q-function under the optimal policy π∗, denoted Q∗ as

equation (3), satisfies the Bellman optimality equation.

Q∗ (s, a) = r (s, a)+ γ
∑

s
′
∈S

T
(

s, a, s
′
)

max
a
′
∈A

Q∗
(

s
′

, a
′
)

(3)

2.2 Network structure of DDPG

DDPG uses the Actor-Critic framework, which comprises four

networks: the Actor current network, the Actor target network,

the Critic current network, and the Critic target network. During

the path planning process, the Actor current network outputs

the action at based on the state st , receives the environment

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

reward rt after executing at , and the robot moves to the next

state st+1. The experience transition [st , at , rt , st+1] generated by

the robot–environment interaction is stored in the experience pool.

The Actor target network selects the next optimal action at+1
by st+1. The current Q-value Eπ [Q (s,π (s))] and target Q-value

Eπ∗ [Q (s,π∗ (s))] of the current network and target network are

determined. TD-error represents their difference. In the training

process of the network model, network parameters are updated by

minimizing the loss function L
(

θQ
)

, defined as the mean value of

the TD-error of small batch transitions, and the calculation method

is shown in Eqs (4) and (5).

L
(

θQ
)

=
1

N

∑

i

(

yi − Q
(

si, ai
∣

∣θQ
))2

(4)

yi = ri + γQ
′
(

si+1,µ
′
(

si+1

∣

∣

∣
θµ
′) ∣

∣

∣
θQ
′)

(5)

where yi is the expected target Q-value to make it closer and

closer to the expectation of the target network; N is the small batch

transition size; ri is the reward of the environment after the robot

performs the action ai; θµ
′

is the parameters of the Actor target

network, θQ and θQ
′

are the parameters of Critic current network

and Critic target network, respectively. The calculation equations

of θQ
′

and θµ
′

are shown in (6) and (7), respectively.

θQ
′

← τθQ + (1− τ) θQ
′

(6)

θµ
′

← τθµ + (1− τ) θµ
′

(7)

DDPG target network adopts soft update mode and updates

parameters by slowly tracking the learned current network. The

advantages of this method are that the target network’s parameters

change little, the gradient of the current network is relatively stable

in the training process, and the stability of the whole algorithm

in the learning process is guaranteed. Figure 1 depicts the DDPG

network structure (Dong and Zou, 2020).

2.3 Prioritized experience replay in DDPG

Random experience replay is an experience transition sampling

method originally introduced by the DRL algorithm. Experience

transitions are stored in an experience pool, and transitions

are selected randomly for training the neural network. This

method disrupts the temporal correlation between experience

transitions, addressing the issue of non-reusable experience

transitions and consequently accelerating the robot’s learning

process. However, random experience replay utilizes a uniform

random sampling method that overlooks the significance of diverse

experience transitions in robot learning. This oversight can lead

to underutilizing valuable experience transitions and affect the

algorithm’s training efficiency (Sinha et al., 2022). To address this,

DeepMind introduced the PER, which ranks experience transitions

based on the absolute value of the TD-error. A larger TD-error

indicates a higher value of the experience for robot learning, while a

smaller TD-error suggests a lower value. This method allows robots

to concentrate on high-value experience transitions, maximizing

the use of such experience transitions and enhancing learning

speed (Li et al., 2022). PER has advanced the random experience

replay method in two significant ways: one refines the sampling

probabilities of experience transitions. Equation (8) indicates that

the specific method is employed to make the sampling probability

P (i) of the transition i proportional to the absolute value of TD-

error |δi|.

P (i) =
pα
i

∑

k p
α
k

(8)

pi = |δi| + ǫ (9)

where ǫ is constant, mainly to ensure that each experience

transition is sampled with a non-zero probability; pi is the priority

of the i-th experience transition; α is a parameter used to control the

priority; α = 0 indicates that all transitions are uniformly sampled.

Second, the importance of the samplingmethod is adopted. The

distribution of experience transitions is altered because PER tends

to sample experience transitions with a high TD-error value. PER

employs significance sampling to correct the significance weights

of the transitions and eliminate the bias caused by this method.

This ensures that each transition has a different probability of being

selected and that the algorithm converges to the same outcome.

Equation (10) calculates the weight wi and applies it to the loss

function L
(

θQ
)

.

wi =

(

1

N
·

1

P (i)

)β

(10)

L
(

θQ
)

=
1

N

∑

i

wi

(

yi − Q
(

si, ai
∣

∣θQ
))2

(11)

where β determines the extent to which the influence of PER

on the convergence result should be offset. If β = 1, all transitions

should be evenly sampled, and the influence should be completely

offset. Figure 2 shows the PER process adopted in DDPG.

2.4 Problem analysis of PER

Although the incorporation of PER in DDPG enhances the

use of experience transitions, the prioritization of these transitions

relies exclusively on TD-error, neglecting the impact of other

factors on this prioritization (Novati and Koumoutsakos, 2019). It

diminishes the robot’s efficiency in continuous state-action space,

resulting in suboptimal or random behavior (Oh et al., 2007;

Fujimoto et al., 2020). Numerous researchers have conducted

comprehensive studies to address this concern. Cicek et al.

(2021) employed KL divergence (KLPER) for batch prioritization

of experience replay. They measured the discrepancy between

the batch generation policy and the most recent policy using

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 1

Schematic diagram of the DDPG network.

FIGURE 2

PER in DDPG.

FIGURE 3

(A) Shows the curves of |TD-error| in the training process of DDPG. (B) Shows average reward in the training process of DDPG.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 4

Flow chart of the PER proposed in this study.

the KL divergence of a multivariate Gaussian distribution with

a mean of zero. Han et al. (2021) introduced the regularly

updated deterministic policy gradient algorithm, which organizes

experience transitions in block form within the experience pool.

This arrangement enabled alternating exploration and learning

processes, enhancing the efficacy of experience transition use. Xu

et al. (2022) presented the DDPG algorithm with averaged state-

action estimation (Averaged-DDPG), calculating action rewards

by averaging previously learned Q-value estimates, stabilizing the

training trajectory, and refining the algorithm’s performance. Cao

et al. (2019) integrated TD-error, Q-value, and data volume,

emphasizing varying importance indicators during different neural

network training phases and flexibly tuning the weight of each

marker to realize adaptive experience transition importance

assessment. Li et al. (2021) introduced an internal curiosity

module to provide internal rewards for the robot’s training phase.

These were combined with external rewards from environmental

feedback and paired with PER and transfer learning to elevate path

planning success rates and hasten convergence. As DRL algorithms

targeting transition utilization efficiency have made strides, issues

such as low convergence rates and inadequate experience with

transition use persist.

We conducted 200 episodes of tests on the DDPG algorithm

integrated with PER. The average reward value achieved by the

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 5

Comparison of training e�ects of increasing priority using various

settings.

robot after each training episode was recorded. These findings are

depicted in Figure 3, where the x-axis signifies the count of training

episodes, the y-axis denotes the average reward value, and the

continuous line represents the average value of 10 experimental

episodes. The average reward value was determined by dividing

the collective reward by the number of robotic movement steps.

As illustrated in Figure 3A, an increasing trend in the TD-error

curve is evident after 80 training episodes, accompanied by a

languid convergence rate. Figure 3B shows that the mean reward

consistently remains minimal during training, oscillating ∼0.5

in the latter stages, indicating subpar training outcomes. The

following two primary considerations drive this observation:

(1) A delay exists in TD-error. The Critic network determines

the TD-error associated with the experience transition upon

its last sampling. Consequently, if an experience transition’s

priority is evaluated solely based on its TD-error, a low

priority might suggest its diminished relevance to the previous

Critic network rather than its standing with the current

Critic network.

(2) Sampling transitions with high priority can easily cause

an imbalance, which is not conducive to algorithm training.

A high-priority transition implies that the Critic network

has limited knowledge of that transition, leading to high

uncertainty. Consequently, sampling such high-priority

transitions can negatively impact the training of Actor

networks. For instance, experience transitions in the

environment’s edge corners are highly valuable, as these areas

are rarely explored. Overemphasizing the learning of these

transitions can, however, diminish training efficiency.

3 The proposed experience replay

We examine the DDPG algorithm’s efficiency in utilizing

experience transitions by calculating and combining the experience

transition priority from multiple dimensions. This method enables

the robot to select experience transitions more rationally and

effectively during the path planning phase, accelerating the

robot’s learning process. Priorities of experience transitions are

identified sequentially based on the immediate reward, TD-error,

and Actor network loss function. These three priorities are

combined into a final priority for each experience transition using

information entropy weighting. Subsequently, positive experience

transitions are characterized, allowing for adaptive adjustment of

their priorities throughout the training process. The proposed

prioritized experience replay with multi-dimensional priority

fusion and priority adjustment (MPFA-PER) is depicted in Figure 4.

3.1 Multi-dimensional priority calculation
of transitions

For the i-th experience transition [si, ai, ri, si+1] in the

experience pool, the priority based on immediate reward pri , the

priority based on TD-error pTDi , and the priority based on Actor

network loss function plossi are defined, respectively. The calculation

methods are shown in Eqs (12) through (14).

pri = |ri| (12)

pTDi = |δi| (13)

plossi =
∣

∣∇aQ
(

si, ai
∣

∣θQ
)
∣

∣ (14)

where δi is the TD-error calculated from the i-th transition

in the experience pool; ∇aQ
(

si, ai
∣

∣θQ
)

is the loss function of the

Actor current network.

Once pri , p
TD
i , and plossi are determined, they are integrated to

form the final priority of the experience transition. Information

entropy is utilized to compute the weight coefficients of these

three factors. Information entropy represents the probability of

discrete random events. It measures the amount of information

needed to reduce the uncertainty of events. A higher information

entropy indicates that more information is required to dispel the

event’s uncertainty, and vice versa. The computation of information

entropy is presented in Equation (15):

H (X) = −

2
∑

i=1

pilog2
(

pi
)

(15)

where X is the unknown event; pi is the probability of

occurrence of the unknown event.

This study uses Eqs (16) and (17) to calculate the information

entropies of immediate reward H (r), TD-error H (TD), and the

Actor network loss function H
(

loss
)

, respectively.

H (r) = −p
r>Ravg

log2

(

p
r>Ravg

)

− p
r<Ravg

log2

(

p
r<Ravg

)

(16)

H(TD) = H
(

loss
)

= −pr>0log2
(

pr>0

)

− pr<0log2
(

pr<0

)

(17)

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 6

Schematic diagram of multi-dimensional priority calculation of transition.

In the training process of the network model, if the immediate

reward obtained by the robot exceeds zero, this training is termed

positive training, and the resulting experience transition is referred

to as a positive experience transition. If not, it is labeled negative

training. Where p
r>Ravg

is the probability that the immediate reward

is greater than the average reward; p
r<Ravg

is the probability that

the immediate reward is less than the average reward; p
r>0

is the

probability of active training; p
r<0

is the probability of negative

training in all training.

After calculating the three information entropies, the values of

the fusion weight coefficients a, β and υ of pri , p
TD
i and plossi can be

determined according to Eqs (18) through (20):

a =
H (r)

H (r)+H (TD)+H
(

loss
) (18)

β =
H (TD)

H (r)+H (TD)+H
(

loss
) (19)

υ = 1− a− β (20)

Based on the estimated weight coefficients, the multi-

dimensional transition information is derived by fusing pri , p
TD
i

and plossi . Each experience transition’s priority is determined pi as

illustrated in equation (21):

pi =
(

a× pri + β × pTDi + υ × plossi

)

+ ǫ (21)

where ǫ is minimal constant.

The numerical settings from PER were adopted, and a value

of 0.05 was used. When the
(

a× pri + β × pTDi + υ × plossi

)

of

a transition reaches zero, the omission of that transition can

be prevented, thereby assigning it a probability to be sampled

for training.

3.2 Priority increasing of positive transitions

The transition experience with a high absolute value of TD-

error in the experience pool suggests a significant discrepancy

between the Q-values of the Critic current network and the

Critic target network, indicating substantial learning potential.

Consequently, prioritizing the replay of such experience transitions

can swiftly enhance the robot’s learning capability. However,

solely considering the TD-error during training can neglect

the significance of immediate rewards. Experience transitions

generated when the robot is positioned at the edge of the

environment, known as edge experience transitions, can be

excessively used, leading to network overfitting. Experience

transitions with successful outcomes or high rewards are termed

“positive experience transitions,” which are crucial for robot

learning. Sampling more positive experience transitions can

expedite the algorithm’s convergence and effectively mitigate

overfitting. Thus, to prioritize positive experience transitions in

experience replay, their priorities are increased based on the

priority of experience transitions determined by Eq. (21) as

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

depicted in Eq. (22). The priority of other experience transitions

remains unaltered.

p
′

i=max
(

ϕ × pi, 1
)

(22)

where ϕ is a constant.

We conducted 100 episodes of testing for ϕ =2, 3, and 4 and

recorded the average reward value obtained by the robot after each

training episode, as shown in Figure 5. In this figure, the x-axis is

the number of training episodes, the y-axis is the average reward

value after one training episode, and the solid line is the average

of 10 experimental runs. The average reward value is determined

by dividing the total reward by the number of steps the robot takes.

Figure 5 indicates that the average rewards are roughly similar from

episodes 0 to 50. However, as training progressed, the mean reward

at ϕ =4 decreased, while the mean reward at ϕ =3 increased more

than in either of the other two cases. Based on the results of the

experiments, it was discovered that setting the value of ϕ=3 yielded

the best performance. Figure 6 depicts the calculation process for

the proposed experience transition priority.

3.3 Priority decay of positive transitions

In the training process of the DDPG algorithm, high-priority

experience transitions prove more beneficial for the algorithm’s

training. A balance in transitions enhances the adaptive ability of

the trained algorithm. Thus, even low-priority transitions should

be sampled and learned to maintain this balance. Additionally,

to rapidly assimilate the most recent high-priority experience

transitions from robot interactions with the environment, updating

the priority of existing positive experience transitions in real time

is essential. Supposing that a positive experience transition of

sampling is Tj, its priority is pj, and the priority of the experience

transition of the same batch of sampling is expressed as p =
(

p1, p2, · · ·pj · ··, pn
)

. After the training of this batch of transitions is

completed, the priority pj is attenuated exponentially based on the

attenuation factor σ as shown in equation (23).

pj = pj ×
1

1+ e−σ×j
(23)

After several decreases, pj gradually approach 0, resulting in

the transition not being sampled again in the subsequent training

process. In order to avoid this problem, a threshold pth is defined,

which allows the priority to reduce when the priority of the

transition is greater than pth; otherwise, the decrease stops. pth is

calculated as shown in equation (24):

pth =
p1 + p2 + · · · + pj + · · · + pn

n
(24)

After the transition priority decreases, the sampling probability

is computed using Equation (8).

3.4 Algorithm descriptions

Algorithm 1 represents the detailed description of the

proposed algorithm.

Input:

Randomly initialize Critic network Q
(

s, a
∣

∣θQ
)

and

Actor network µ (s |θµ) with weights θQ and θµ.

Initialize target network Q
′

and weights θQ
′

← θQ,

θµ
′

← θµ

Initialize replay buffer R

for episode = 1 to M do

Receive initial robot state s1

for t = 1 to T do

Select action at according to the current policy

Execute action at and obtain reward rt and new

state st+1

Store [st , at , rt , st+1] in R

for i = 1 to N do

Sample a mini-batch of N transitions [st , at , rt , st+1]

from R with P (i) = pα
i /

∑

Np
α
N

Compute TD-error δi

define pri, pTDi , plossi

determine coefficients with information entropy

H (r), H (TD), and H
(

loss
)

update priority pi ← pi =
(

a× pri + β × pTDi + υ × plossi

)

+ ǫ

if ri > 0 then

p
′

i ← max(ϕ × pi, 1)

else

pi ← pi

decay transition priority which ri > 0

end for

Update the Critic network by minimizing the

loss:L
(

θQ
)

= 1
N

∑

i
ωi

(

yi − Q
(

si, ai
∣

∣θQ
))2

Update the Actor network policy using the

sampled policy gradient:

▽θµ J ≈ 1
N

∑

i
▽aQ

(

s, a
∣

∣θQ
)
∣

∣

s=si ,a=µ(si) ▽θµµ (s |θµ)
∣

∣

si

Update the Target networks:

θQ
′

← τθQ + (1− τ) θQ

θµ
′

← τθµ + (1− τ) θµ

end for

end for

Algorithm 1. Prioritized experience replay via multi-dimensional

transition priority fusion.

4 Experimental results and analysis

4.1 Experimental setting

The experiment utilized the Gazebo simulation platform,

selected the PyTorch framework, and employed the robot

operating system for information transmission. The experimental

environment measured 10 × 10m, as depicted in Figure 7. The

robot’s frontal field of view was set to 180 degrees, and it

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 7

Schematic diagram of simulation environment used to train the path

planning algorithm of robot. (A) Indicates the environment where

there are no obstacles, (B) indicates the environment where

obstacles are far apart, (C) indicates the environment where

obstacles are close apart, and (D) indicates the environment where

obstacles are dense.

featured 18 distance measurements with a resolution of 10 degrees

each. The robot model resembled a black TurtleBot, with red

squares indicating the target points and cuboids denoting the

obstacles. The starting and target points for the robot’s movement

were randomly positioned within the entire map, ensuring no

overlap with the obstacles. The algorithms proposed in this study

conducted 100, 200, 300, and 400 episodes of training experiments

in the environments illustrated in Figures 7A–D, respectively.

Figure 7A shows a square environment devoid of obstacles, which

trains the robot in path planning within a confined setting.

Figure 7B shows four cuboid obstacles, spaced widely apart, to

the environment in Figure 7A to cultivate the robot’s avoidance

capabilities in a restricted area. The gap between the four obstacles

narrows in Figure 7C to intensify the robot’s training in obstacle

avoidance within tighter spaces. In Figure 7D, numerous obstacles

supplement the environment from Figure 7A to train the robot’s

path planning ability in intricate settings.

During the training of path planning algorithms, the reward

attained by the robot’s interaction with its environment in a training

episode serves as a crucial metric for evaluating algorithmic

performance. If the reward is high and consistent, the episode’s

training outcome is deemed satisfactory; if not, it is considered

unsatisfactory. As expressed in Eq. (25), the reward function can

determine the reward the robot accrues during training. Upon

reaching the target point, the robot receives a reward of 10. A

collision with an obstacle incurs a penalty of−5. If the robot neither

TABLE 1 Setting of experimental parameters.

Parameter Value

Learning rate of critic network 0.0001

Learning rate of actor network 0.0001

Reward discount rate γ 0.99

Soft update parameter τ 0.01

Total number of episodes 1,000

Experience pool capacity 100,000

Batch size 256

collides with obstacles nor attains the target point, the distance

variance between the robot and the target at times t − 1 and t is

calculated as a reward, motivating the robot to navigate closer to

the target in subsequent moves.

R =











10

−5

εp ×
(

dt − dt−1
)

robot reaches the goal

robot collides

otherwise

(25)

where εp is the amplification factor; dt and dt−1 are the distance

between the robot and the target point at time t − 1 and time

t, respectively.

In order to ensure the robot completes the path planning

algorithm training, the following termination conditions must be

set: (1) If the robot reaches the specified target point without

collision, a new training episode is initiated; (2) if the robot collides

with obstacles or exceeds the maximum number of steps, the

current training episode is terminated and a new one begins. The

rationale for setting a maximum step count is to prevent ineffective

training. The experimental parameters are listed in Table 1.

4.2 Results and analysis of algorithm
training

This section presents experiments designed to address the

following questions:

(1) Can multi-dimensional transition priority calculation

enhance the path planning performance of the

DDPG algorithm?

(2) Can the performance of the DDPG algorithm in path

planning be improved by dynamically modifying the

transition priority?

4.2.1 Validity test of priority calculation of
multi-dimensional transitions

In order to address the first question, we independently used

the immediate reward, TD-error, and Actor loss function. The

multi-dimensional Priority Fusion PER (MPF-PER) was employed

to determine the priority of the experience transition. This was

incorporated into the DDPG algorithm’s training process. In the

environments depicted in Figures 7A–D, training was conducted

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 8

Comparison of training e�ects of DDPG algorithm with di�erent priority calculation methods in di�erent environments (A–D are the training results

in the four training environments shown in Figure 7).

for 100, 200, 300, and 400 episodes, respectively. The average

reward value obtained by the robot after each training episode was

documented, with the results presented in Figures 8A–D. In this

study, the x-axis denotes the number of training episodes, while

the y-axis signifies the average reward value obtained after a single

episode. The data in Figure 8 represent the average values from 10

experiments. The average reward value is the total reward divided

by the robot’s number of movement steps.

The immediate reward’s impact on the experience transition

priority calculation was assessed. The immediate reward was

incorporated into the PER to determine its efficacy during

training. Results are illustrated in Figure 8 with the blue line

(TD-error + reward), which is contrasted against the red line

representing PER. Figure 8A reveals that the training efficacy of

PER with the immediate reward surpassed that of standalone

PER after 75 episodes, despite a minor decline in PER experience

transitions. Figure 8B indicates that the PER with the immediate

reward stabilized within 50 episodes with minimal fluctuation

and consistently outperformed the PER. Though PER stabilized

after 75 episodes, its fluctuations were pronounced, suggesting

that robots either missed their target or encountered obstacles

often during training, resulting in limited path planning success.

Figures 8C, D exhibit that the training effect of PERwith immediate

reward consistently surpassed the average reward of PER. This

indicated that incorporating the immediate reward into the priority

calculation method significantly influences the training process.

The influence of the Actor network loss function on experience

transition priority calculation was also investigated. It was

integrated into the PER to ascertain the loss function’s role

during training. The green line (TD-error + loss) represented the

outcome in Figure 8 and was primarily contrasted with the red line

symbolizing PER. Figure 8A shows that the training effect of PER

with a loss function was inferior to that of PER during episodes

50–60, whereas the training effect between episodes 60–70 was

comparable. However, after 70 training episodes, the PER with

Actor loss function converged and outperformed the standalone

PER. In Figures 8B–D, PER enhanced with a loss function

demonstrates a superior training effect than PER, indicating that

incorporating a loss function can effectively improve the success

rate of robot path planning.

We examined the effect of information entropy weighting

on three types of information for experience transition priority

computation. The MPF-PER algorithm underwent separate

training to test the effectiveness of this information entropy

weighting. The resulting line, denoted as MPF-PER in Figure 8, was

compared to the priority calculationmethod that incorporated each

type of information independently. In Figure 8A, even though the

training outcome of MPF-PER resembled that of other algorithms

up to the 50th episode, there was a significant increase after the

50th episode, as depicted in Figures 8B–D. This suggested that the

integration of the three types of information significantly impacted

the training.

In the above experiments, both immediate reward and Actor

network loss functions were incorporated into the PER training,

highlighting their pivotal role in transition priority computation.

The inclusion of information entropy bridged the disparities

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 9

Comparison of training e�ects of DDPG algorithm integrated with priority increasing and PER in di�erent environments (A–D are the training results

in the four training environments shown in Figure 7).

among the three information types, reflecting the enhanced

training effect of the MPF-PER within the DDPG algorithm.

4.2.2 E�ectiveness test of adaptive adjustment of
experience transition priority

In response to question 2, we integrated increase priority, decay

priority, MPF-PER, andMPFA-PER into the DDPG algorithm. The

environment depicted in Figures 7A–D underwent 100, 200, 300,

and 400 training episodes, respectively. Figures 9–11 present the

average reward values achieved by the robot after each training.

The data illustrated in the figures represent the average values of

10 experiments.

4.2.2.1 E�ectiveness of priority increasing

Figure 9A shows that even though PER’s average reward spikes

between episodes 45 and 60, the average reward of PER with

increased priority distinctly surpassed that of the standard PER

post the 70th episode. Figure 9B shows that the average reward

of PER declined drastically during the 27th episode, with the

trajectory showing volatility until it stabilized at the 140th episode.

This suggested repetitive failures in robot navigation toward the

target or frequent obstacles, culminating in training hindrances.

However, PERwith increased priority attained the zenith of average

reward, stabilizing at the 125th episode. Figures 9C, D shows that

the average reward of PER with an elevated priority consistently

surpassed the regular PER, emphasizing its superior training for

positive experience transitions and enhanced robot path planning.

4.2.2.2 E�ectiveness of priority decay

Figures 10, 11 display the robot’s average rewards across

four environments. Figure 11A shows that decay priority mirrors

the average reward of increased priority until, after the 90th

episode, the average reward of PER with decaying priority

notably excels. In Figure 10A, the average reward of PER post

the 70th episode significantly outperformed that of standard

PER. Despite pronounced fluctuations in the training curve,

as depicted in Figures 10B–D, the average reward consistently

held a median position, always ahead of the increased priority.

Analyzing data from Figures 10, 11 affirmed its superiority over

the PER, underscoring the role of decay priority in robot

performance enhancement.

4.2.2.3 E�ectiveness of MPF-PER

Figure 11 substantiates that the DDPG algorithm fortified with

MPF-PER performs better across varied testing environments

than its increased and decayed priority counterparts. Introducing

MPFA-PER to the DDPG algorithm yielded the most optimal

training outcomes for the DDPG algorithm.

The above experimental results show that both increase

and decay priorities improve the average reward during the

DDPG algorithm training, yielding more stable training results.

The substantial fluctuations in the average reward garnered by

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 10

Comparison of training e�ects of DDPG algorithm integrated with priority decay and PER in di�erent environments (A–D are the training results in

the four training environments shown in Figure 7).

FIGURE 11

Training of DDPG algorithm integrated with MPFA-PER in di�erent environments (A–D are the training results in the four training environments

shown in Figure 7).

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 12

Schematic diagram of the simulation environment used to test the

path planning algorithm of robot.

PER throughout the training process render it unstable. This

instability arises from PER’s reliance on TD-error for assessing

experience transition priority, overlooking the immediate reward’s

influence during network training. Such an oversight can lead

to excessive reliance on edge experience transitions and result in

localized optimality. Transitions are prioritized more precisely by

considering all three factors—immediate reward, TD-error, and

Actor network loss function—integrating them with information

entropy. The methodology of decaying the priority of positive

experience transitions ensures a balanced sampling of both low-

priority experience transitions and those of the latest high priority.

This equilibrium in training transitions maintains the algorithm’s

training more steadfastly. The convergence speed is faster than that

of PER, and the success rate of path planning is also higher than

that of PER.

4.3 Results and analysis of algorithm testing

In order to verify the effectiveness and success rate of the

proposed algorithm for path planning in unknown environments,

we incorporated the increased priority, decay priority, MPF-PER,

and MPFA-PER methodologies into the DDPG algorithm. After

training, the algorithm underwent testing for 200 episodes in a

new unknown simulation environment, as depicted in Figure 12.

The black dot represents the robot, the red square signifies the

target point, and the brown block objects symbolize obstacles. The

obstacle density in the testing environment exceeds that of the

training environment.

Table 2 presents the test outcomes of the robot in the

environment depicted in Figure 12. When each algorithm

component was trained independently, the training effectiveness

surpassed that of PER. The proposed algorithm reduced collision

instances by 34.48% compared to PER, and the likelihood of the

robot successfully reaching the target point increased by 5%. This

demonstrated a higher success rate for the path planning algorithm

TABLE 2 Comparison of algorithm performance in the test environment.

Algorithm Number
of

collisions

Success
rate

(100%)

Average
test time

(s)

PER 29 85.5 31.8

TD-error+ reward 24 88 30.1

TD-error+ loss 25 87.5 30.5

MPF-PER 21 89.5 28.2

Raise priority 22 89 30.3

Decay priority 23 88.5 29.8

MPFA-PER 19 90.5 27.3

The bolded column shows the experimental results of our proposedmethod, showing that our

method is the most effective.

and enhanced safety for the robot during movement. Regarding

time consumption, the proposed algorithm’s average test duration

was 27.3 s, which was 14.15% less than that of PER. This suggested

that the algorithm facilitated faster target attainment by the robot,

thereby elevating the operational efficiency of the robot.

4.4 Comparison with other algorithms

We proposed MPFA-PER to evaluate and compare the

effectiveness of the prioritized experience replay method with the

following methods.

(1) KLPER (Cicek et al., 2021): The mean KL divergence

was employed to measure the bias between policies as the

prioritized transition standard.

(2) Averaged-DDPG (Xu et al., 2022): DDPG with average state

action was estimated.

(3) HVPER (Cao et al., 2019): Calculate transition importance

considering TD-error, Q-value, and data volume.

(4) DDPG + RAdam (Li et al., 2021): The RAdam algorithm,

which incorporated the curiosity algorithm, replaced the

neural network optimizer.

(5) MW-MADDPG (Zhao et al., 2023): Transition priority was

determined using TD-error and rewards, and after a certain

number of transitions, the transition was no longer selected

for sampling.

In the simulation environment depicted in Figure 7, each

algorithm underwent training for 100, 200, 300, and 400 episodes

sequentially. The total rewards secured by the robot every 10,000

steps are depicted in Figure 13. The data presented in Figure 13

represent the average values from 10 experiments. The y-axis

showcases the total reward earned by the robot, while the x-

axis denotes the number of steps taken. The figure illustrates the

robot’s total reward per 10,000 steps. The total reward for each

algorithm has been increasing. However, the reward from the

algorithm we proposed remained elevated, achieving convergence

after 130,000 steps at the most rapid rate. Beyond 160,000 steps,

the reward from the studied algorithm was substantially higher

than the others. KLPER showed gradual convergence in path

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

FIGURE 13

Total reward obtained every 10,000 steps in the training process of di�erent algorithms.

TABLE 3 Comparison of training time and steps of di�erent algorithms.

Algorithm Training
time (min)

Training
steps
(step)

KLPER 1,284 219,318

DDPG+ RAdam 1,589 224,048

HVPER 2,082 247,043

Averaged-DDPG 1,522 222,569

MW-MADDPG 1,675 233,047

MPFA-PER 994 213,627

The bolded column shows the experimental results of our proposedmethod, showing that our

method is the most effective.

planning, reaching a plateau of ∼140,000 steps. However, post-

convergence, there was a declining trend in the reward, suggesting

an imperfect path. Both DDPG + RAdam and HVPER exhibited

similar training effects. DDPG + RAdam reached convergence

in ∼140,000 steps. Meanwhile, HVPER and MW-MADDPG lag,

converging approximately at 160,000 steps. The total reward of the

Averaged-DDPG was the least, converging∼150,000 steps.

Table 3 provides details on the training duration and steps

for each algorithm. From this table, HVPER has the longest

training duration of 2,082min, whereas MW-MADDPG requires

1,675min. DDPG + RAdam and Averaged-DDPG have training

durations exceeding 1,500min, but KLPER’s duration was shorter

at 1,284min. In particular, the training time for the algorithm we

proposed was a mere 994min, outpacing the others. Regarding

the number of training steps, HVPER tops the list with

247,043 steps, followed by MW-MADDPG at 233,047. DDPG

+ RAdam and Averaged-DDPG exceeded 220,000 steps, with

KLPER even fewer at 219,318 steps. The proposed algorithm

has the fewest steps at 213,627. Both in terms of duration

and steps, the algorithm under investigation outperformed

KLPER, Averaged-DDPG, HVPER, DDPG + RAdam, and MW-

MADDPG.

TABLE 4 Comparison of success rate and average test time of di�erent

algorithms.

Algorithm Number
of

collisions

Success
rate

(100%)

Average
test time

(s)

KLPER 24 88 29.4

DDPG+ RAdam 25 87.5 31.5

HVPER 27 86.5 34.2

Averaged-DDPG 28 86 30.9

MW-MADDPG 27 86.5 32.8

MPFA-PER 19 90.5 27.3

The bolded column shows the experimental results of our proposedmethod, showing that our

method is the most effective.

To assess the success rate of the path planning algorithm

in unfamiliar environments, our proposed and other methods,

such as KLPER, Averaged-DDPG, HVPER, DDPG + RAdam,

and MW-MADDPG, underwent 200 tests in the simulation

environment of Figure 12. Table 4 shows the collision count,

success rate, and average consumption time. The success rate

of Averaged-DDPG was the lowest at 86%. HVPER marginally

improved to 86.5%, but its average duration was the longest at

34.2 s. DDPG + RAdam and Averaged-DDPG shared a similar

average time exceeding 30 s, though DDPG + RAdam has a

marginally better success rate. MW-MADDPG matched HVPER’s

86.5% success rate but had a shorter average time of 32.8 s.

KLPER posted an 88% success rate and an average time of

29.4 s. Remarkably, the algorithm we proposed boasted a 90.5%

success rate and the shortest average time of 27.3 s. This suggested

that, compared with other algorithms, the proposed algorithm

ensured that the robot reached its target more swiftly and

reliably. Additionally, it has the lowest collision rate, 19 times,

marking a reduction of 20.83% relative to KLPER, 24% relative

to DDPG + RAdam, 29.63% compared to HVPER and MW-

MADDPG, and 34.48% against Averaged-DDPG. This underscored

the enhanced safety assurance of the robot during path planning

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

and highlighted the proposed algorithm’s superior performance in

path planning tasks.

5 Conclusion

We proposed an enhanced method for determining the

priority of experience transitions. Experience transitions are further

optimized by increasing the priority of positive transitions and

utilizing a decay method. This leads to a faster convergence speed

in path planning, enabling the robot to reach its goal more safely

and efficiently. However, when increasing the priority of positive

transitions, a fixed parameter derived from experimental data is

employed. The priority calculation can be more accurate if this

parameter can be adaptively modified during the training process.

The current algorithm focuses solely on scenarios with static

obstacles in the environment and neglects situations with dynamic

obstacles. Future research will focus on determining how to adjust

the parameter more appropriately, mitigating the influence of

dynamic obstacles on path planning, and enhancing the efficiency

of path planning in intricate environments.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

NC: Methodology, Software, Writing—original draft,

Writing—review & editing. PW: Supervision, Writing—review &

editing. GZ: Conceptualization, Methodology, Writing—review

& editing. CN: Writing—review & editing. EN: Writing—review

& editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the China Postdoctoral Science Foundation

(Grant No. 2021M702030) and the Science and Technology Project

of the Shandong Provincial Department of Transportation (Grant

No. 2021B120).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Cao, X., Wan, H., Lin, Y., and Han, S. (2019). “High-value prioritized experience
replay for off-policy reinforcement learning,” in Proceedings of the 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI) (Portland, OR:
IEEE), 1510–1514. doi: 10.1109/ICTAI.2019.00215

Chen, J., Zhang, Y., Wu, L., You, T., and Ning, X. (2021). An adaptive clustering-
based algorithm for automatic path planning of heterogeneous UAVs. IEEE Trans.
Intell. Transp. Syst. 23, 16842–16853. doi: 10.1109/TITS.2021.3131473

Chen, W., Zhou, S., Pan, Z., Zheng, H., and Liu, Y. (2019). Mapless collaborative
navigation for a multi-robot system based on the deep reinforcement learning. Appl.
Sci. 9, 4198. doi: 10.3390/app9204198

Cicek, D. C., Duran, E., Saglam, B., Mutlu, F. B., and Kozat, S. S. (2021). “Off-
policy correction for deep deterministic policy gradient algorithms via batch prioritized
experience replay,” in Proceedings of the 2021 IEEE 33rd International Conference
on Tools with Artificial Intelligence (ICTAI) (Washington, DC: IEEE), 1255–1262.
doi: 10.1109/ICTAI52525.2021.00199

Dong, Y., and Zou, X. (2020). “Mobile robot path planning based on improved
DDPG reinforcement learning algorithm,” in Proceedings of the 2020 IEEE 11th
International Conference on Software Engineering and Service Science (ICSESS) (Beijing:
IEEE), 52–56. doi: 10.1109/ICSESS49938.2020.9237641

Fujimoto, S., Meger, D., and Precup, D. (2020). An equivalence between loss
functions and non-uniform sampling in experience replay. Adv. Neural Inf. Process.
Syst. 33, 14219–14230. Available online at: https://proceedings.neurips.cc/paper/2020/
hash/a3bf6e4db673b6449c2f7d13ee6ec9c0-Abstract.html

Golowich, N., and Moitra, A. (2022). “Can Q-learning be improved with advice?”
in Proceedings of the Conference on Learning Theory (PMLR), 4548–4619.

Guo, S., Zhang, X., Du, Y., Zheng, Y., and Cao, Z. (2021). Path planning of
coastal ships based on optimized DQN reward function. J. Mar. Sci. Eng. 9, 210.
doi: 10.3390/jmse9020210

Han, S., Zhou, W., Lü, S., and Yu, J. (2021). Regularly updated deterministic
policy gradient algorithm. Knowl. Based Syst. 214, 106736. doi: 10.1016/j.knosys.2020.
106736

Hong, Z., Sun, P., Tong, X., Pan, H., Zhou, R., Zhang, Y., et al. (2021). Improved A-
star algorithm for long-distance off-road path planning using terrain data map. ISPRS
Int. J. Geo. Inf. 10, 785. doi: 10.3390/ijgi10110785

Hou,W., Xiong, Z., Wang, C., and Chen, H. (2022). Enhanced ant colony algorithm
with communication mechanism for mobile robot path planning. Robot. Auton. Syst.
148, 103949. doi: 10.1016/j.robot.2021.103949

Li, M., Huang, T., and Zhu, W. (2022). Clustering experience replay for the
effective exploitation in reinforcement learning. Pattern Recognit. 131, 108875.
doi: 10.1016/j.patcog.2022.108875

Li, P., Ding, X., Sun, H., Zhao, S., and Cajo, R. (2021). Research on dynamic path
planning of mobile robot based on improved DDPG algorithm. Mob. Inf. Syst. 2021,
1–10. doi: 10.1155/2021/5169460

Lin, G., Zhu, L., Li, J., Zou, X., and Tang, Y. (2021). Collision-free path planning
for a guava-harvesting robot based on recurrent deep reinforcement learning. Comput.
Agric. 188, 106350. doi: 10.1016/j.compag.2021.106350

Liu, L.-s., Lin, J.-f., Yao, J.-x., He, D.-w., Zheng, J.-s., Huang, J., et al. (2021). Path
planning for smart car based on Dijkstra algorithm and dynamic window approach.
Wirel. Commun. Mob, Comput. 1–12. doi: 10.1155/2021/8881684

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://doi.org/10.1109/ICTAI.2019.00215
https://doi.org/10.1109/TITS.2021.3131473
https://doi.org/10.3390/app9204198
https://doi.org/10.1109/ICTAI52525.2021.00199
https://doi.org/10.1109/ICSESS49938.2020.9237641
https://proceedings.neurips.cc/paper/2020/hash/a3bf6e4db673b6449c2f7d13ee6ec9c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a3bf6e4db673b6449c2f7d13ee6ec9c0-Abstract.html
https://doi.org/10.3390/jmse9020210
https://doi.org/10.1016/j.knosys.2020.106736
https://doi.org/10.3390/ijgi10110785
https://doi.org/10.1016/j.robot.2021.103949
https://doi.org/10.1016/j.patcog.2022.108875
https://doi.org/10.1155/2021/5169460
https://doi.org/10.1016/j.compag.2021.106350
https://doi.org/10.1155/2021/8881684
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Cheng et al. 10.3389/fnbot.2023.1281166

Liu, Q., Liu, Z., Xiong, B., Xu, W., and Liu, Y. (2021). Deep reinforcement learning-
based safe interaction for industrial human-robot collaboration using intrinsic reward
function. Adv. Eng. Inform. 49, 101360. doi: 10.1016/j.aei.2021.101360

Liu, X.-h., Zhang, D., Zhang, J., Zhang, T., Zhu, H. (2021). A path planning method
based on the particle swarm optimization trained fuzzy neural network algorithm.
Clust. Comput. 24, 1901–1915. doi: 10.1007/s10586-021-03235-1

Lu, Q., Zhu, Z., Zhang, G., Kang, S., and Liu, P. (2021). Aspect-gated
graph convolutional networks for aspect-based sentiment analysis. Appl. Intell. 51,
4408–4419. doi: 10.1007/s10489-020-02095-3

Miao, C., Chen, G., Yan, C., and Wu, Y. (2021). Path planning optimization of
indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 156,
107230. doi: 10.1016/j.cie.2021.107230

Millán, J. D. R., Posenato, D., and Dedieu, E. (2002). Continuous-action Q-learning.
Mach. Learn. 49, 247–265. doi: 10.1023/A:1017988514716

Novati, G., and Koumoutsakos, P. (2019). “Remember and forget for experience
replay,” in Proceedings of the International Conference on Machine Learning (Long
Beach, CA: PMLR), 4851−4860.

Oh, Y., Lee, K., Shin, J., Yang, E., and Hwang, S. J. (2007). Learning to
sample with local and global contexts in experience replay buffer. arXiv. [preprint].
doi: 10.48550/arXiv.2007.07358

Sang, H., You, Y., Sun, X., Zhou, Y., and Liu, F. (2021). The hybrid path
planning algorithm based on improved A∗ and artificial potential field for unmanned
surface vehicle formations. Ocean Eng. 223, 108709. doi: 10.1016/j.oceaneng.2021.1
08709

Sinha, S., Song, J., Garg, A., and Ermon, S. (2022). “Experience replay with
likelihood-free importance weights,” in Proceedings of the Learning for Dynamics and
Control Conference (PMLR), 110−123.

Wei, Q., Ma, H., Chen, C., and Dong, D. (2022). Deep reinforcement learning
with quantum-inspired experience replay. IEEE Trans. Cybern. 52, 9326–9338.
doi: 10.1109/TCYB.2021.3053414

Wei, Z., Quan, Z., Wu, J., Li, Y., Pou, J., Zhong, H., et al. (2021). Deep deterministic
policy gradient-DRL enabled multiphysics-constrained fast charging of lithium-ion
battery. IEEE Trans. Ind. Electron 69, 2588–2598. doi: 10.1109/TIE.2021.3070514

Xin, J., Zhao, H., Liu, D., and Li, M. (2017). “Application of deep reinforcement
learning in mobile robot path planning,” in Proceedings of the 2017 Chinese Automation
Congress (CAC) (Jinan: IEEE), 7112–7116. doi: 10.1109/CAC.2017.8244061

Xu, J., Zhang, H., and Qiu, J. (2022). A deep deterministic policy gradient
algorithm based on averaged state-action estimation. Comput. Electr. Eng. 101, 108015.
doi: 10.1016/j.compeleceng.2022.108015

Yu, J., Su, Y., and Liao, Y. (2020). The path planning of mobile robot by
neural networks and hierarchical reinforcement learning. Front. Neurorobot. 14, 63.
doi: 10.3389/fnbot.2020.00063

Zhao, M., Wang, G., Fu, Q., Guo, X., Chen, Y., Li, T., et al. (2023). A meta-learning
based decision-making method for collaborative UAV swarm. Front. Neurorobot. 17,
1243174. doi: 10.3389/fnbot.2023.1243174

Zhu, Z., Zhang, D., Li, L., Li, K., Qi, J., Wang, W., et al. (2023). Knowledge-
guided multi-granularity GCN for ABSA. Inf. Process. Manag. 60, 103223.
doi: 10.1016/j.ipm.2022.103223

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1281166
https://doi.org/10.1016/j.aei.2021.101360
https://doi.org/10.1007/s10586-021-03235-1
https://doi.org/10.1007/s10489-020-02095-3
https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1023/A:1017988514716
https://doi.org/10.48550/arXiv.2007.07358
https://doi.org/10.1016/j.oceaneng.2021.108709
https://doi.org/10.1109/TCYB.2021.3053414
https://doi.org/10.1109/TIE.2021.3070514
https://doi.org/10.1109/CAC.2017.8244061
https://doi.org/10.1016/j.compeleceng.2022.108015
https://doi.org/10.3389/fnbot.2020.00063
https://doi.org/10.3389/fnbot.2023.1243174
https://doi.org/10.1016/j.ipm.2022.103223
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Prioritized experience replay in path planning via multi-dimensional transition priority fusion
	1 Introduction
	2 Analysis of experience replay adopted in DDPG
	2.1 DRL-based path planning formulation
	2.2 Network structure of DDPG
	2.3 Prioritized experience replay in DDPG
	2.4 Problem analysis of PER

	3 The proposed experience replay
	3.1 Multi-dimensional priority calculation of transitions
	3.2 Priority increasing of positive transitions
	3.3 Priority decay of positive transitions
	3.4 Algorithm descriptions

	4 Experimental results and analysis
	4.1 Experimental setting
	4.2 Results and analysis of algorithm training
	4.2.1 Validity test of priority calculation of multi-dimensional transitions
	4.2.2 Effectiveness test of adaptive adjustment of experience transition priority
	4.2.2.1 Effectiveness of priority increasing
	4.2.2.2 Effectiveness of priority decay
	4.2.2.3 Effectiveness of MPF-PER

	4.3 Results and analysis of algorithm testing
	4.4 Comparison with other algorithms

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

