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Introduction: The emergence of cross-modal perception and deep learning

technologies has had a profound impact on modern robotics. This study focuses

on the application of these technologies in the field of robot control, specifically in

the context of volleyball tasks. The primary objective is to achieve precise control

of robots in volleyball tasks by e�ectively integrating information from di�erent

sensors using a cross-modal self-attention mechanism.

Methods: Our approach involves the utilization of a cross-modal self-attention

mechanism to integrate information from various sensors, providing robots with

a more comprehensive scene perception in volleyball scenarios. To enhance

the diversity and practicality of robot training, we employ Generative Adversarial

Networks (GANs) to synthesize realistic volleyball scenarios. Furthermore, we

leverage transfer learning to incorporate knowledge from other sports datasets,

enriching the process of skill acquisition for robots.

Results: To validate the feasibility of our approach, we conducted experiments

where we simulated robot volleyball scenarios using multiple volleyball-

related datasets. We measured various quantitative metrics, including accuracy,

recall, precision, and F1 score. The experimental results indicate a significant

enhancement in the performance of our approach in robot volleyball tasks.

Discussion: The outcomes of this study o�er valuable insights into the application

of multi-modal perception and deep learning in the field of sports robotics.

By e�ectively integrating information from di�erent sensors and incorporating

synthetic data through GANs and transfer learning, our approach demonstrates

improved robot performance in volleyball tasks. These findings not only advance

the field of robotics but also open up new possibilities for human-robot

collaboration in sports and athletic performance improvement. This research

paves the way for further exploration of advanced technologies in sports robotics,

benefiting both the scientific community and athletes seeking performance

enhancement through robotic assistance.

KEYWORDS

multimodal perception, volleyball robot, spiking skill, cross-modal self-attention

mechanism, adversarial network, transfer learning

1. Introduction

With the rapid advancement of technology, robotics is gradually permeating various

fields, including sports. This study aims to enhance robotic skills in volleyball through

deep learning and multimodal sensing technology, injecting innovation, and vitality into

the realm of sports (Hong et al., 2021).

High-level sports demand athletes to possess outstanding perceptual, reaction

speed, and motor control abilities. The development of modern technology has

created opportunities for the application of robotics (Siedentop and Van der

Mars, 2022). Robots can serve as ideal practice partners for athletes, enriching
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the levels and enjoyment of competitions, and offering audiences

novel viewing experiences (Siegel and Morris, 2020).

This research is focused on volleyball, a sport characterized

by intense teamwork, demanding athletes to make precise

decisions and immediate reactions in rapidly changing game

scenarios (Oliveira et al., 2020; Weiss et al., 2021). Despite the

increasing utilization of robots in sports, there is still room for

improvement in robot spiking skills in volleyball. Therefore, this

study focuses on improving the skill level of robots in volleyball

matches by integrating multimodal perception and deep learning

methods, aiming to enable their practical use in real competitions.

In recent years, there has been significant interest and

research in the application of robotics technology in the field

of sports (Thuruthel et al., 2019; Chen et al., 2020; Oliff et al.,

2020). However, despite the extensive research in various sports

disciplines, the exploration and study of robotics in volleyball

have been relatively limited. Current research primarily focuses on

aspects such as robot design, perception, and interaction (Ji et al.,

2022; Hu et al., 2023). Nevertheless, there is still a need for further

investigation into the application of multimodal perception and

deep learning in this context (Olaniyan et al., 2022).

In recent years, there has been a growing interest and research

focus on the application of robotics technology in the field of

sports (Thuruthel et al., 2019; Chen et al., 2020; Oliff et al., 2020).

However, despite extensive research across various disciplines in

sports, exploration and research in volleyball robot technology have

remained relatively limited. Current research primarily centers

around aspects such as robot design, perception, and interaction (Ji

et al., 2022; Hu et al., 2023). Jinho So and his colleagues (So

et al., 2021) investigated the precise estimation of soft manipulator

shape using stretchable shape sensors, while Li and Peng (2022)

introduced a monocular visual-tactile sensor to enhance the

robustness of robot manipulation. Nevertheless, there is still a need

for further research on the application of multimodal sensing and

deep learning in this domain (Olaniyan et al., 2022).

The contributions of this paper can be summarized in the

following three aspects:

1. This study introduces a cross-modal self-attention

mechanism designed to holistically address the amalgamation

of diverse multimodal data collected by disparate sensors,

including images and action sequences. Leveraging self-

attention, we seamlessly integrate information from distinct

modalities, enabling robots to comprehensively perceive

cyclic motion scenarios. This innovative approach empowers

robots to execute various operations with heightened accuracy

in repetitive tasks, such as assessing ball velocity, trajectory,

and opponent position in volleyball spiking, thus significantly

elevating spiking proficiency.

2. The successful application of generative adversarial networks

(GANs) to synthesize immersive cyclic motion scenarios

is showcased. Through the generative and discriminative

processes of GANs, we fabricate authentically textured virtual

environments, imbuing robot skill training with heightened

challenge and practicality. This augmentation not only fosters

skill adaptability but also furnishes an expanded pool of

training data, further propelling the prowess of robots.

3. The study maximizes the philosophy of transfer learning,

funneling insights gleaned from alternate cyclic motion

datasets into the enhancement of robotic skills. This

knowledge infusion expedites the robot’s mastery of cyclic

motion domains, facilitating swift adaptation to competitive

settings and accelerated skill growth. This method not only

introduces fresh paradigms for robot training but also widens

the horizons of transfer learning’s applicability in the realm

of robotics.

The logical structure of this article is as follows. In Section 2,

methods, the technical methods used in this study are introduced in

detail, including cross-modal self-attentionmechanism, adversarial

network, and transfer learning. In Section 3, experiments, the

experimental environment and data are described, and the

evaluation indicators are introduced. At the same time, the

experimental results were analyzed in detail, the performance

of different methods and data sets were compared, and the

effectiveness of the technical method was verified. In Section 4,

discussion and conclusion, the research results are summarized,

the significance and contribution of the research are evaluated, the

limitations of the research are pointed out, and prospects for future

work are proposed.

2. Methodology

In the method part of Chapter 3, we will introduce the overall

algorithm flow of this research in detail, and show how to improve

the spiking skills of volleyball robots through key technologies

such as cross-modal self-attentionmechanism, adversarial network,

and transfer learning. This comprehensive algorithm process will

provide the basis for subsequent experiments and comparative

analysis, and also present the overall framework of this study for

readers. The overall algorithm flow chart is shown in Figure 1.

2.1. Cross-modal self-attention mechanism

When dealing with multimodal data, attention mechanisms are

powerful tools that allow the model to focus on the most relevant

information from different modalities. We leverage a cross-modal

self-attention mechanism to effectively integrate data from various

sensors for enhancing the skills of our volleyball robot (Wang et al.,

2021). Attention mechanisms are widely used in deep learning,

enabling models to selectively attend to important parts of the

data while disregarding irrelevant portions. There are two types

of attention mechanisms: self-attention and cross-attention (Niu

et al., 2021). Self-attention involves interactions and fusion of

information within the same modality. For example, in a language

model, self-attention allows each word to adjust its representation

based on the context. Cross-attention involves interactions and

fusion of information between different modalities. For instance,

in visual question-answering tasks, cross-attention can establish

correspondences between questions and images. The cross-modal

self-attention mechanism is illustrated in Figure 2.

The key to the self-attention mechanism is to calculate the

attention weight. One of the classic methods is to use Scaled

Dot-Product Attention. Given a set of query vectors (Q), key

vectors (K), and value vectors (V), it can compute attention weights
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FIGURE 1

Overall algorithm flowchart.

FIGURE 2

Cross-modal self-attention mechanism.

by the following formula:

Attention (Q,K,V) = softmax

(

QKT

√

dk

)

V (1)

where dk is the dimension of the query and key vectors. The

dot product operation in this formula expresses the similarity

between the query and the key, and then normalizes using the

softmax function to get the attention weights. Finally, the weighted

values are obtained by multiplying the attention weights with the

value vector.

In our study, we further apply the attention mechanism

to multimodal data. To synthesize information from different

sensors, we introduce a cross-modal self-attention mechanism.

In this approach, we take the feature representations of

different modalities as queries, keys and values, so that

the model can automatically learn the correlation between

different modalities.
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Formally, suppose we have two modalities M1 and M2 with

corresponding queries, keys, and values Q1,K1,V1 and Q2,K2,V2,

respectively. We can compute the cross-modal self-attention

weights as follows:

Cross-Modal Attention (Q1,K2,V2) = softmax

(

Q1K
⊤
2

√

dk

)

V2

(2)

Similarly, we can calculate the attention weight of modalityM2

to modalityM1.

In practical applications, we also need to consider optimization

methods such as loss function and gradient descent to train

our model. A commonly used optimization function is the

cross-entropy loss function, which has good results in multi-

classification tasks. For neural network training, we usually use

the backpropagation algorithm to calculate gradients and perform

parameter updates. Its formula is as follows:

CrossEntropy (p, q) = −
∑

i

pi log(qi) (3)

where p is the actual probability distribution, q is the probability

distribution predicted by the model, and i represents the index

of the category. By minimizing the cross-entropy loss, the model

can better fit the training data, thus improving the accuracy

of predictions.

During the training process of the neural network, we use the

backpropagation algorithm to calculate the gradient (Zhang, 2019),

and use optimization methods such as gradient descent to update

the model parameters. Backpropagation calculates the gradient of

each parameter to the loss function through the chain rule, and

then uses gradient descent to update the parameters to gradually

optimize the model.

Through the cross-modal self-attention mechanism, we can

extract key information from different sensor data, realizing

the organic fusion and collaboration of multi-modal data. This

provides a more solid foundation for our subsequent Generative

Adversarial Network and transfer learning. Next, we will detail how

to further improve the skills of volleyball robots with the help of

Generative Adversarial Network.

2.2. Generative adversarial networks

Generative Adversarial Networks (GANs) are a deep learning

framework that consists of two neural networks called a generator

and a discriminator (Mi et al., 2020). The goal of a generator

is to generate data, such as images, audio, etc., from a random

noise vector that has a distribution similar to real data. The

goal of the discriminator is to distinguish the data generated by

the generator from the real data and give a probability value

indicating its authenticity. There is an adversarial relationship

between the generator and the discriminator, that is, the generator

tries to deceive the discriminator, and the discriminator tries to see

through the generator. By alternately training the two networks,

the generator is finally able to generate high-quality data, while

the discriminator cannot distinguish between real and fake. The

confrontation network is shown in Figure 3.

The basic objective function of GAN can be expressed as:

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pZ(z)[log(1− D(G(z)))] (4)

In this study, we use this method to enhance the spiking

skills of a volleyball robot. Our method can effectively utilize the

idea of adversarial learning, enabling the generator to learn useful

knowledge from other sports game data and transfer it to volleyball

games. Our method consists of the following three steps:

1. Data preprocessing. We used a video feature extraction tool to

extract the features of each frame in the volleyball video and save

it as a feature vector. This tool can use a variety of pre-trained

models (such as I3D, I3D-non-local, SlowFast, etc.) to extract

powerful video features.We divide each video into segments and

label each segment indicating whether the segment contains a

smashing action. We regard the clips containing the smashing

action as positive samples and the clips not containing the

smashing action as negative samples.

2. GANs are trained. We used a Conditional Generative

Adversarial Networks to train our model (Xu et al., 2019).

Conditional Generative Adversarial Networks is a method

of introducing additional information into GANs, such as

category labels, text descriptions, etc. The objective function

of Conditional Generative Adversarial Networks can be

expressed as:

minmaxGV(D,G) = Ex∼pdata(x),y∼pdata(y)[logD(x|y)]

+Ez∼pz(z),y∼pdata(y)[log(1− D(G(z|y)))] (5)

Among them, V(D,G) is the objective function of

GANs,D(x) is the probability that the discriminator gives the

input x is real data, G(z) is the data generated by the generator

from the noise vector z, pdata(x) is the real data distribution, and

pz(z) is the noise vector distribution. y is extra information, such

as category labels. In our method, we use a textual description

as additional information, indicating the requirement of the

smashing action, such as “the smashing angle is 45 degrees, and

the force is 80%”. The training process of GANs can be regarded

as a zero-sum game, that is, the discriminator and the generator

compete with each other so that the objective function reaches

the Nash equilibrium, namely:

G∗ = argminmax
G

V(D,G) (6)

3. GANs application. We use a decoder to restore the sequence

of feature vectors of the video clips produced by the generator

to a sequence of images, which are stitched into a single video.

We compare the generated videos with real volleyball match

videos to evaluate their quality and authenticity. We also use

the generated videos as training data for the volleyball robot

to improve its spiking skills. The output of the decoder can be

expressed as:

x̂t = fdec(ht) (7)
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FIGURE 3

Generative adversarial networks.

Among them, x̂t is the image generated at the t-th moment,

fdec is the decoder function, and ht is the feature vector output

by the generator at the t-th moment.

During training, the generator and discriminator are

optimized through adversarial learning, specifically, the

generator tries to minimize V(D,G), while the discriminator

tries to maximize V(D,G). This leads to a dynamic balancing

process at which the samples generated by the generator

are realistic enough that the discriminator cannot effectively

distinguish real samples from generated samples. In terms of

optimization functions, for the generator G, we can use the

following optimization functions to update the parameters of

the generator:

min
G

V(D,G) = Ez∼pz(z)[log(1− D(G(z)))] (8)

In practical applications, through methods such as

backpropagation and gradient descent, the parameters of

the generator and discriminator can be gradually optimized to

achieve the goal of training GANs.

By introducing GANs, we can further improve the skills of

volleyball robots and generate more realistic and diverse game

scenes, thus laying a more solid foundation for the improvement of

robot skills. Next, we explore how transfer learning can be applied

to skill improvement for volleyball robots.

2.3. Transfer learning

We use a transfer learning method called domain adaptation

(Zhuang et al., 2020). In this approach, we improve the

generalization of themodel on the target domain byminimizing the

domain difference between the source and target domains. Transfer

learning is shown in the Figure 4.

Assuming we have source domain data Dsouree and target

domain data Dtarget , our goal is to transfer the knowledge on

the source domain to the target domain. We can achieve this

by minimizing the distribution difference between the source

and target domains. A common method is Maximum Mean

Difference (MMD):

MMD (Dsource,Dtarget) =

∥

∥

∥

∥

∥

1

nsource

nsource
∑

i=1

φ(xisource)

−
1

ntarget

ntarget
∑

j=1

φ(x
j
target)

∥

∥

∥

∥

∥

∥

2

(9)

Among them, xisource and xitarget denote samples in the source

domain and target domain, respectively, and φ(.) is a mapping

function that maps samples into a latent space. By minimizing

MMD, we can reduce the distribution difference between source

and target domains, thus enabling transfer learning.

Another common approach is Domain Adversarial Neural

Network (DANN) (Ajakan et al., 2014). In DANN, we introduce

a domain classifier whose goal is to distinguish samples in the

source and target domains. At the same time, we train a feature

extractor to generate features that are indistinguishable to domain

classifiers. This can be achieved by minimizing the loss function of

the domain classifier:

Ldomain = −
1

n

n
∑

i=1

logD(f (xi)) (10)
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FIGURE 4

Interaction with key modules through transfer learning, including feature extractors, self-attention mechanisms, and robot controllers. These

modules were optimized by transfer learning to achieve better performance.

Among them, D(.) is the domain classifier, f (.) is the feature

extractor, and E is the sample. By minimizing Ldomain, we

can make features more consistent across domains, enabling

transfer learning.

In addition, there is a common method of transfer learning

by training an initial model on the source domain, then using the

parameters of this model as the initial parameters of the target

domain model, and then fine-tuning the model parameters on the

target domain. This can be achieved by minimizing a loss function

over the target domain:

Ltarget(ftarget,Dtarget) = E(x,y)∼Dtarget

[

ℓ(ftarget(x), y)
]

(11)

Among them, ftarget is the model on the target domain, Dtarget

is the data distribution of the target domain, (x, y) is the sample of

the target domain, and ℓ represents the loss function.

Optimization methods for transfer learning usually consist

of two steps: feature extraction and fine-tuning. In the feature

extraction stage, we can extract general feature representations

from the source domain through pre-trained models. Then, in the
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fine-tuning stage, we train the extracted feature representations

together with data from the target domain to further adapt to the

target domain. Specifically, the fine-tuning optimization function

can be expressed as:

Ltarget(ftarget,Dtarget)+ λ · Lsource(ftarget,Dsource) (12)

Among them, Lsource represents the loss function on the source

domain, and λ is a hyperparameter that weighs the two losses.

Through transfer learning, we can make full use of the

knowledge of the existing modality in the task of volleyball

robot and improve the performance of the model in the

new modality.

In the Section 2 of this chapter, we propose a method

that comprehensively applies attention mechanisms, GANs, and

transfer learning to improve the skills of volleyball robots.

First, we introduce a cross-modal self-attention mechanism,

which effectively integrates multi-modal sensor data, enabling the

model to automatically learn the correlation between different

modalities. By calculating attention weights, we are able to

extract key information from different sensor data, laying a solid

foundation for the subsequent steps. Then, we introduced the

application of GAN. Through domain adaptation and domain

confrontation neural network, the knowledge transfer between

the source domain and the target domain is realized, thereby

improving the generalization ability of the model in the target

domain. Finally, we explore how to train the initial model on

the source domain and fine-tune the parameters on the target

domain to fit the data distribution of the target domain through

transfer learning. The comprehensive application of these methods

provides strong support for our experimental part. In the next

chapter, we will introduce the experimental design and result

analysis in detail to verify the effectiveness and performance

improvement of our proposed method in improving the skills of

volleyball robots.

3. Experiment

The experimental process of this paper is shown in Figure 5.

3.1. Experimental environment

• Hardware Environment

In this research, we rely on an advanced computing

platform as the hardware environment, which is equipped

with a high-performance AMD Ryzen 7 5800X processor,

equipped with 64GB ultra-high-speed DDR4 memory, and

configured with 2 NVIDIA GeForce RTX 3080 10GB graphics

card. This excellent hardware configuration endows us

with powerful computing and storage capabilities, especially

suitable for training and inference of deep learning tasks.

In addition, we also use multi-channel SSD hard disk to

ensure the high efficiency of data reading and storage. Such

a hardware environment provides strong support for the

smooth progress of the experiment, making the training

process of the model more efficient, stable, and reliable.

• Software Environment

In this study, we used Python and PyTorch to implement

a method for improving the spiking skills of volleyball robots

based on deep learning. As the main deep learning framework,

PyTorch provides us with powerful model building and

training tools, allowing us to flexibly design and optimize

our spiking skill model. In the experiment, we made full

use of PyTorch’s efficient computing power and automatic

differentiation function to speed up the model training

process, so that our model can converge faster and achieve

better results.

3.2. Experimental data

• Volleyball Dataset

Volleyball Dataset is a video action recognition dataset

proposed by Ibrahim et al. of Simon Fraser University in

Canada in 2016. The data set consists of 55 volleyball game

videos, in which 4830 key frames mark the player’s position,

individual action and group behavior. Single action includes

9 categories, such as smash, block, pass, etc. Group behavior

includes 8 categories, such as passing the ball to the left,

scoring from the right, and both sides scrimmage. This

dataset aims to provide a challenging scenario for studying the

recognition and understanding of human actions and group

activities in videos. It can be used for a variety of video analysis

tasks, such as action recognition, group activity recognition,

person tracking, etc. This dataset has been used and cited by

several research papers, demonstrating its value and influence

in the field of video analysis.

• VREN: Volleyball Rally Dataset with Expression

Notation Language

VREN is a video volleyball game dataset proposed by

Xia et al. at the University of California, Santa Barbara in

2022. This dataset contains video clips from professional

and NCAA Div-I indoor volleyball matches, where each

round is annotated with a volleyball description language.

This language can completely describe the player’s action,

position, and volleyball trajectory in the volleyball game. This

dataset aims to provide a rich and high-level benchmark for

studying the skills of robots in volleyball games. Based on

the language, this dataset proposes three tasks for automated

volleyball action and tactical analysis: (1) volleyball round

prediction, which aims to predict the outcome of rounds and

help players and coaches improve decision-making in practice;

(2) setter type and Smash type prediction, helping athletes, and

coaches to prepare for the gamemore effectively; (3) Volleyball

tactics and offensive zone statistics, providing advanced

volleyball statistics to help coaches better understand the

game and opponent’s tactics. The authors conduct a

case study showing how experimental results can provide

insight to the volleyball analysis community. Furthermore,

experimental evaluations on real data establish a baseline

for future research and applications. The research bridges
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FIGURE 5

The flow chart of the experiment.

the gap between the field of indoor volleyball and computer

science.

• UCF101

The UCF101 dataset is a video action recognition dataset

proposed by Soomro et al. at the University of Central

Florida in 2012. The dataset consists of 13,320 real action

videos from YouTube, covering 101 action categories. These

action categories can be divided into five types: human-object

interaction, body movement, human-human interaction,

playing musical instruments, and sports, some of which are

related to volleyball, such as smashing, blocking, passing, etc.

This dataset is an extension of the UCF50 dataset, which has

only 50 action categories. TheUCF101 dataset is highly diverse

and challenging because there are a large number of changes

in camera motion, object appearance and pose, object scale,

viewing angle, background clutter, and lighting conditions in

the video. This dataset aims to facilitate further research in

the field of action recognition by learning and exploring new

categories of real actions.

• MultiSports dataset

The MultiSports dataset is a video multiplayer sports

action detection dataset, which was proposed by Li et al.

of Nanjing University in 2021. The dataset consists of 3200

video clips of sports games from YouTube, covering 4

sports categories: aerobics, basketball, football, and volleyball.

The dataset annotates 37,701 action instances and 902k

bounding boxes, and each action instance has a fine-grained

action category label, such as smashing, blocking, passing,

etc. This dataset aims to provide a rich and challenging

benchmark for studying multi-person video action detection.

The dataset has the characteristics of high diversity, high

density, and high quality, and can reflect real sports

competition scenes.

3.3. Evaluation index

In the assessment process of this research, in order to

comprehensively and objectively measure the effectiveness and

performance of the proposed sports teaching method, a series of

key evaluation metrics were employed. These metrics not only

facilitate a quantitative evaluation of the model’s performance

across various tasks but also provide us with in-depth insights to

better comprehend the strengths and limitations of the method. In

the following section, we will provide a detailed introduction and

analysis of the following keymetrics: accuracy, recall, precision, and

F1 score. These metrics will assist us in objectively evaluating the

efficacy of the proposed method in the context of sports teaching,

thereby providing robust support for the reliability of the research

and the feasibility of its practical application.

• Hit rate

In the skill improvement task of the volleyball robot, the

hitting rate is a critical evaluation metric used to measure

the performance of the proposed method. The hitting rate is

defined as the ratio between the number of events correctly

predicted by the model and the total number of samples.

It provides an intuitive reflection of the model’s prediction

accuracy, aiding in the assessment of its performance. The

hitting rate can be calculated using the following formula:

Hit Rate =
TP + TN

TP + TN + FP + FN
× 100% (13)

In the context of skill enhancement tasks for the volleyball

robot, the hitting rate is a pivotal evaluation metric used to

gauge the performance of the proposed method. The hitting

rate is defined as the ratio between the number of correctly

predicted positive samples (True Positives, TP), indicating the
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number of instances where skill improvement was accurately

identified, and the total number of samples. Similarly, the

correctly predicted negative samples (True Negatives, TN)

represent instances where the absence of skill improvement

was accurately recognized. Conversely, the false positives

(FP) correspond to instances where the model erroneously

predicted positive samples when they were, in fact, negative.

The false negatives (FN) denote cases where the model

inaccurately predicted negative samples as positive.

By calculating the hitting rate, we gain insights into the

model’s accuracy in predicting skill levels, thereby evaluating

the practicality and effectiveness of this approach in real-world

sports teaching scenarios. In our research, the hitting rate will

serve as a critical evaluation metric, assisting us in conducting

a thorough analysis of model performance and providing

robust support for subsequent experimental findings.

• Recall

In the skill enhancement task of the volleyball robot, recall

is a critical evaluation metric used to assess the effectiveness

of the proposed attention-based mechanism in capturing the

skill level of volleyball players. Recall measures the model’s

ability to correctly identify actual positive samples, i.e., the

proportion of samples that the model correctly predicts

out of all actual positive samples. This is of significant

importance for evaluating the model’s overall performance

in sports education. Recall can be calculated using the

following formula:

Recall =
TP

TP + FN
× 100% (14)

In the context of skill enhancement tasks for the volleyball

robot, recall is a crucial evaluation metric used to assess

the model’s ability to correctly identify positive samples.

Specifically, it measures the proportion of samples that the

model accurately predicts as skill level improvements out of

all actual positive samples in the volleyball skill enhancement

task. Conversely, false negatives (FN) represent the positive

samples that the model fails to predict accurately, indicating

instances where skill level improvements were missed.

By computing the recall rate, we gain insights into

the model’s capacity to recognize positive samples, thus

evaluating the effectiveness of the attention-based mechanism

in enhancing the volleyball robot’s skills. In our research,

recall will serve as a vital evaluation metric, enabling us to

conduct an in-depth analysis ofmodel performance, providing

a comprehensive assessment, and supporting subsequent

experimental results.

• Precision

In the context of skill enhancement tasks for the volleyball

robot, precision is a critical evaluation metric used to measure

the accuracy of the attention-based method in predicting

the skill level of volleyball players. Precision assesses the

proportion of samples that the model predicts as positive

samples, which are indeed positive samples in reality. This

is of paramount importance for evaluating the reliability and

accuracy of the model in sports education. Precision can be

calculated using the following formula:

Precision =
TP

TP + FP
× 100% (15)

TP (True Positives): The number of positive samples

correctly predicted by the model, indicating the instances

where skill level improvement was accurately identified. FP

(False Positives): The number of positive samples incorrectly

predicted by the model, signifying the instances where the

model erroneously predicted negative samples as positive.

By calculating precision, we gain insights into the model’s

accuracy when predicting positive samples, thereby evaluating

the effectiveness of the attention-based method in the

volleyball robot’s skill enhancement task. In our research,

precision will serve as a crucial evaluation metric, aiding

us in analyzing model performance, providing a dependable

assessment, and supporting our experimental results.

• F1 Score

In our study of skill enhancement in volleyball robots, the

F1 score serves as a critical evaluation metric employed for

the comprehensive assessment of the method’s performance

in skill improvement. This score takes into account both

precision and recall, thus facilitating the equilibrium between

the model’s accuracy and comprehensiveness in identifying

skill improvement instances. Consequently, it provides a

more comprehensive performance measurement metric. The

formula for calculating the F1 score is as follows:

F1 =
2× Precision× Recall

Precision+ Recall
× 100% (16)

In this formula, we introduce previously discussed

precision and recall as parameters. Precision measures the

accuracy of the model in identifying positive samples

as positive samples, while recall gauges the model’s

comprehensive recognition capability of positive samples.

The F1 score combines the accuracy and

comprehensiveness of the model in skill improvement

cases, making it a crucial evaluation metric in the volleyball

skill enhancement study. By calculating the F1 score, we can

gain a more comprehensive understanding of the method’s

performance, ensuring that the model achieves accurate and

comprehensive results in skill improvement.

Algorithm 1 represents the algorithm flow of the training in

this paper.

3.4. Experimental comparison and analysis

In the preceding sections, we provided a comprehensive

introduction to the design and implementation of the multimodal

perception-based deep learning approach for enhancing volleyball

robot spiking skills. In this chapter, our focus shifts toward

a comparative analysis of experimental results, aiming to

comprehensively evaluate the effectiveness and superiority of

the proposed methods. By conducting experiments on multiple

datasets, our goal is to delve into the contributions of different
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1: Input: Volleyball Dataset, VREN Dataset, UCF101

Dataset, MultiSports Dataset

2: Initialize Trans-GAN Net parameters: θ

3: Initialize discriminator parameters: D

4: Define cross-modal self-attention mechanism:

Attention(X)

5: for each epoch do

6: for each dataset in [Volleyball, VREN, UCF101,

MultiSports] do

7: Load batch of data: X

8: Compute attention weights: W = Attention(X)

9: Compute transformed features: X′ = W × X

10: Generate fake data: Xfake = TransGAN(X′)

11: Compute discriminator loss: LD = − log(D(Xfake))

− log(1− D(X))

12: Compute generator loss: LG = − log(D(Xfake))

13: Backpropagate and update θ and D using LD

and LG

14: end for

15: if epoch % transfer interval == 0 then

16: Perform transfer learning by copying

features to next layers

17: end if

18: Compute evaluation metrics on validation set:

19: Hit Rate:
∑N

i=1 1(yi=ŷi)
N

20: Recall:
∑N

i=1 1(yi=ŷi and yi=1)
∑N

i=1 1(yi=1)

21: Precision:
∑N

i=1 1(yi=ŷi and yi=1)
∑N

i=1 1(ŷi=1)

22: F1 Score: 2× Precision×Recall
Precision+Recall

23: if F1 Score > best score then

24: Save best model

25: end if

26: end for

Algorithm 1. Training of Trans-GAN Net.

models and their combinations in enhancing volleyball robot skills,

as well as to validate the applicability of our approach across

various scenarios. This process of experimental comparison and

analysis not only directly showcases the practical effectiveness

of our approach but also provides deeper insights, guiding us

toward optimizing and advancing the technological trajectory of

sports robots.

Through comparing experimental results across different

datasets, we will uncover the performance of the multimodal

perception-based deep learning approach in varying contexts.

Simultaneously, we will integrate the evaluation metrics

introduced earlier, such as hit rate, recall rate, precision, and

F1 score, to conduct a comprehensive assessment of the overall

model performance. We will also analyze the introduction of

different modules, exploring the specific roles of cross-modal

self-attention mechanisms, GANs, transfer learning, and other

methods in enhancing volleyball robot skills. In-depth analysis of

the experimental results will allow us to understand the interplay

between different modules and their impact on enhancing

robot skills.

Furthermore, we will compare the experimental results with

those of the baseline models to quantify and illustrate the

superiority of our approach. Through comparative analysis, we can

accurately evaluate the performance improvement brought about

by the multimodal perception-based deep learning approach in

enhancing volleyball robot skills. These comparative and analytical

results will further validate the feasibility and practicality of our

approach, providing robust support and references for research and

applications in the field of sports robotics.

Next, we will meticulously dissect the experimental results,

comprehensively showcasing the performance of our model

across different datasets and metrics, providing readers with a

comprehensive understanding of the model’s capabilities and its

potential value in real-world applications.

From the data in Table 1 above, it can be seen that our method

outperforms other research works on both the Volleyball dataset

and the VREN dataset. Specifically, on the Volleyvall data set,

after removing our method, compared with the research method

of Salim et al., who achieved the highest hit rate of 91.66% and

the F1 score of 90.77%, our hit rate It has increased by 4.45%,

and the F1 score has also increased by 3.98%. At the same time,

our precision and recall rate have also reached the optimal value

of all methods, reaching 95.41 and 94.57%, respectively, and the

performance on the VREN data set is also better than other

methods, our hit rate and The F1 score is 8.33 and 6.31% higher

than the research method of Kautz et al., and 7.03 and 4.28%

higher than the method of Liang et al. In general, from the

evaluation results on these two classic volleyball datasets, it can

be seen that our new deep learning method with multi-modal

information learning and deep generative network as the backbone

is effective in identifying and predicting volleyball. There is a

significant advantage in action. It can better learn and mine the

visual and motion features in volleyball, so it has higher precision

and recall. This shows that the method has great potential in

improving the motion control skills of volleyball robots. Finally,

we compared and visualized the results in Table 1, as shown in

Figure 6.

According to the comparative data of Hit Rate, Recall,

Precision, and F1 Score of different methods on the two

datasets in Table 2 above, it can be seen that our method has

significant advantages over other methods. On UCF101 dataset

and MultiSports dataset, compared with the work of Kautz et al.

using the same dataset, our proposed method achieves 9.57%

higher hit rate and 7.79% higher recall rate on UCF101 dataset,

F1 The score is 8.48% higher; the hit rate is 7.85% higher in the

MultiSports dataset, the recall rate is 6.78% higher, and the F1

score is 7.46% higher. At the same time, excluding our method,

compared with Salim et al.’s study on UCF101 which obtained

the highest recall rate of 90.81%, our recall rate improved by

3.86%. Compared with Tang et al. who obtained F1 score of

88.20% in the MultiSports dataset, our F1 score increased by

6.88%. Furthermore, we exceed the main evaluation metrics of

other methods such as Liang et al. and Wenninger et al. on

these two action datasets. This shows that the method shows

stronger generalization ability in learning joint motion and action

features, and can better identify and classify different types of

sports actions. Overall, its excellent performance on two large-

scale general-purpose motion datasets once again confirms the

advantages of this method in the field of action recognition.

We compared and visualized the results in Table 2, as shown in

Figure 7.
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TABLE 1 Comparison of Hit Rate, Recall, Precision, and F1 Score indicators based on di�erent methods under Volleyball and VREN datasets.

Model Datasets

Volleyball dataset (Ibrahim et al., 2016) VREN dataset (Xia et al., 2022)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

Kautz et al. (2017) 87.28 87.41 88.87 88.13 86.69 87.23 88.37 87.8

Li and Tian (2023) 88.24 87.75 87.93 87.84 86.54 88.73 88.15 88.44

Tang (2021) 89.02 88.88 88.47 88.67 87.82 89.74 89.46 89.6

Liang and Liang (2022) 89.47 89.57 88.59 89.08 87.99 89.79 89.88 89.83

Wenninger et al. (2020) 89.98 90.68 88.96 89.81 89.81 89.89 91.76 90.82

Salim et al. (2019) 91.66 90.95 90.59 90.77 90.02 89.99 92.31 91.14

Ours 96.11 95.41 94.57 94.99 95.02 92.02 96.29 94.11

FIGURE 6

Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators based on di�erent methods under Volleyball and VREN datasets.

According to the data in Table 3 above, with the improvement

of the model structure, the performance of our proposed method

on the two classic volleyball data sets has been significantly

improved. Specifically, compared with the baseline model, after

adding the self-attention mechanism, the hit rate on the Volleyball

dataset increased by 6.78%, the recall rate increased by 11.76%,
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TABLE 2 Comparison of Hit Rate, Recall, Precision, and F1 Score indicators based on di�erent methods under UCF101 and MultiSports datasets.

Model Datasets

UCF101 dataset (Soomro et al., 2012) MultiSports dataset (Li et al., 2021)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

Kautz et al. (2017) 86.71 86.88 87.84 87.36 88.83 86.75 88.51 87.62

Li and Tian (2023) 85.87 87.32 88.11 87.71 89.3 86.67 87.98 87.32

Tang (2021) 86.89 88.41 89.35 88.88 90.49 87.56 88.84 88.2

Liang and Liang (2022) 87.36 89.69 90.3 89.99 91.19 88.83 90.05 89.44

Wenninger et al. (2020) 89.54 90.29 91.04 90.66 91.74 89.7 91.27 90.02

Salim et al. (2019) 90.6 90.81 91.58 91.19 92.06 90.22 91.34 90.78

Ours 96.28 94.67 97.03 95.84 96.68 93.53 96.68 95.08

FIGURE 7

Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators based on di�erent methods under UCF101 and MultiSports

datasets.

and the F1 score increased by 7.15%; the corresponding increase

in the VREN dataset They are 7.49, 5.27, and 6.41%, respectively.

After adding the generative adversarial network to the attention

model, the indicators of the two data sets have been further

improved. Among them, the hit rate and F1 score of the

Volleyball data set have increased by about 9.73 and 7.5%,
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TABLE 3 Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators of di�erent modules based on Volleyball and VREN datasets.

Module Dataset

Volleyball dataset (Ibrahim et al., 2016) VREN dataset (Xia et al., 2022)

Hit rate (%) Recall (%) Precision
(%)

F1 Score
(%)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

baseline 65.49 64.34 67.57 65.92 66.52 67.09 67.39 67.24

+satt 72.27 76.10 70.28 73.07 74.01 72.36 74.99 73.65

+gan 82.00 78.58 82.67 80.57 80.12 84.36 77.02 80.52

+satt gan(our) 95.81 93.72 95.71 94.70 96.15 94.85 96.15 95.49

“satt” is the self-attention mechanism, and “gan” is the generative adversarial network.

FIGURE 8

Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators of di�erent modules based on Volleyball and VREN datasets.

TABLE 4 Comparison of Hit Rate, Recall, Precision, and F1 Score indicators of di�erent modules based on UCF101 and MultiSports datasets.

Module Dataset

UCF101 dataset (Soomro et al., 2012) MultiSports dataset (Li et al., 2021)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

Hit rate
(%)

Recall (%) Precision
(%)

F1 Score
(%)

baseline 63.21 66.84 67.32 67.07 66.81 68.0 69.24 68.61

+satt 68.22 70.31 72.65 71.46 68.81 70.62 78.24 74.23

+gan 75.41 80.73 82.94 81.82 77.33 76.29 85.39 80.58

+satt gan(our) 96.18 95.91 96.32 96.11 94.5 95.68 96.28 95.98

“satt” is the self-attention mechanism, and “gan” is the generative adversarial network.

respectively; Indicators increased by 6 to 7%. In the end, these

two key modules were applied in series, not only achieved

the highest hit rate of more than 95% on the two data sets,

the precision index also exceeded 95 and 96%, and the recall

rate was increased to 93.72 and 94.85% of the top level. This

fully confirms the important role of attention mechanism and

adversarial learning in improving the ability of deep network

action recognition, and also highlights the advantages of our

improved method in mining multi-modal features. At the same

time, we compared and visualized the results in Table 3, as shown

in Figure 8.

From the data in Table 4 above, it can be seen that with the

continuous optimization of the model structure in our proposed

method, the action recognition ability on these two large-scale

general-purpose action datasets UCf101 and MultiSports has been

greatly improved. Specifically, in comparison with the baseline

module, after only adding the self-attention module, the three

core evaluation indicators on the MultiSports dataset, namely hit
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FIGURE 9

Comparison and visualization of Hit Rate, Recall, Precision and F1 Score indicators of di�erent modules based on UCF101 and MultiSports datasets.

rate, recall rate and F1 score, have been improved by more than

2%, respectively; UCf101 dataset The corresponding improvements

on the above are even greater, reaching 6.78, 11.76, and 7.15%,

respectively, which has verified the role of the attention mechanism

in extracting cross-modal correlation features. After adding deep

adversarial training on this basis, the improvement of evaluation

indicators on the two data sets continues to expand. Among

them, the three indicators of the UCf101 dataset all improved

within the range of 2 to 9%; the corresponding indicators of

the MultiSports dataset increased the most, reaching 10.52, 8.29,

and 11.97%, respectively, which further verified how adversarial

learning can effectively improve model generalization ability.

Finally, the optimization model that integrates attention and

confrontation mechanism is adopted, not only makes multiple

indicators on UCf101 and MultiSports data sets break through the

high level of about 94% for the first time, but also has a recall rate

of more than 95.68% on the MultiSports data set; this shows the

effectiveness of our method. The optimization effect has achieved

generalizability on different types of large-scale action recognition

tasks. We compared and visualized the results in Table 4, as shown

in Figure 9.

In conclusion, the multimodal deep learning-based robot

action recognition method proposed in this study demonstrates

significant advantages in experiments conducted on multiple

classic volleyball datasets and a large-scale diverse action dataset.

By leveraging attention mechanisms to integrate visual and

motion features, along with the incorporation of deep adversarial

mechanisms to enhance model generalization, the accuracy and

recall rate of action recognition have both been notably improved.

Particularly, with the integration of the optimized model structure,

our method achieves impressive recognition performance across all

tested datasets, thus fully validating the reliability and potential of

this approach in action recognition tasks.

Through detailed data comparison and analysis, we can clearly

witness how the seamless integration of various modules within

the model’s structure drives the continuous enhancement of

recognition capabilities. This not only underscores the correctness

of the deep learning architectural approach but also confirms

the vital roles of attention mechanisms and adversarial learning

in multimodal feature learning. While rooted in the context of

volleyball robot requirements, experimental results indicate its

promising applicability to other action recognition tasks, further

showcasing the method’s versatility.

In summary, this work successfully designs and implements a

deepmultimodal learning algorithm to optimize action recognition

capabilities, laying down a methodological foundation for the

advancement of robotic sports skills.

4. Conclusion

In preceding chapters, we provided an extensive account

of the application of multimodal deep learning methods to

enhance robotic cyclic motion skills. In this chapter, we

delve into a comprehensive discussion of research outcomes,

summarizing key findings from experiments, exploring the

significance and contributions of this study, analyzing the strengths

and limitations of our approach, and outlining potential avenues for

future research.

Through meticulous experimentation and analysis, we

observed substantial accomplishments in enhancing robotic skills

via multimodal deep learning. The introduction of the cross-modal

self-attention mechanism proficiently fuses information from

distinct sensors, culminating in comprehensive scene perception.

Leveraging Generative Adversarial Networks (GANs) imbues the

model with superior data generation and training capabilities,

enriching the diversity and practicality of skill training. The

implementation of transfer learning further expedites skill

augmentation, minimizing the temporal cost of relearning in

new environments. The confluence of these modules facilitates

remarkable skill enhancement across several pivotal metrics,

presenting a positive contribution to the realm of sports robotics.
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The significance of this study resides in its insightful and

empirical contribution to the progression of cyclic motion robotics.

The seamless integration of multimodal perception and deep

learning not only elevates robotic prowess in volleyball matches but

also ushers in novel prospects for intelligent sports competition and

human-robot collaboration. Our research not only theoretically

validates this approach but also substantiates its practical efficacy,

offering a valuable reference for researchers in related domains.

Throughout this study, we harnessed the inherent advantages

of multimodal perception, synergizing information from diverse

sensors. This multimodal data processing strategy not only

heightens model performance but also enhances robot scene

awareness. Simultaneously, our research introduces pivotal

technologies such as self-attention mechanisms, GANs, and

transfer learning, fully harnessing the potential of deep learning

and providing diverse tools and avenues for skill augmentation.

However, we acknowledge certain limitations, such as potential

model generalization issues stemming from experimental data

distribution and the possible challenges and constraints in

real-world applications.

Future research directions could encompass the expansion

of our approach to diverse sports domains, unraveling the

broader potential of multimodal perception and deep learning.

Concurrently, optimizing model architectures and algorithms

could enhance the efficacy and swiftness of skill augmentation.

Furthermore, applying our approach to real volleyball match

scenarios could authenticate its viability and efficacy in actual

competition. Ultimately, we anticipate our continued research and

practical efforts will contribute significantly to the advancement of

sports robotics and intelligent sports competition.
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