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Jorge Acosta-Hernández10, Soraya Alfonsin7,8,
Vebjørn Andersson1, Abhilash Anand11, Victor Ayllón12,
Aleksandar Babic13, Asma Belhadi14,15, Cindy Birck16,
Ricardo Bruña7,9,17, Naike Caraglia3, Claudia Carrarini18,
Erik Christensen19, Americo Cicchetti20, Signe Daugbjerg20,
Rossella Di Bidino20, Ana Diaz-Ponce16, Ainar Drews21,
Guido Maria Giu�rè3,4, Jean Georges16, Pedro Gil-Gregorio22,23,
Dianne Gove16, Tim M. Govers24, Harry Hallock13,
Marja Hietanen25, Lone Holmen1, Jaakko Hotta26,
Samuel Kaski27,28, Rabindra Khadka14,15, Antti S. Kinnunen6,
Anne M. Koivisto26,29,30, Shrikanth Kulashekhar6, Denis Larsen14,15,
Mia Liljeström5,6, Pedro G. Lind14,15, Alberto Marcos Dolado9,31,
Serena Marshall13, Susanne Merz5, Francesca Miraglia18,
Juha Montonen6, Ville Mäntynen6, Anne Rita Øksengård32,
Javier Olazarán33, Teemu Paajanen34, José M. Peña12, Luis Peña12,
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More than 10 million Europeans show signs of mild cognitive impairment (MCI),
a transitional stage between normal brain aging and dementia stage memory
disorder. The path MCI takes can be divergent; while some maintain stability or
even revert to cognitive norms, alarmingly, up to half of the cases progress to
dementia within 5 years. Current diagnostic practice lacks the necessary screening
tools to identify those at risk of progression. The European patient experience
often involves a long journey from the initial signs of MCI to the eventual
diagnosis of dementia. The trajectory is far from ideal. Here, we introduce the
AI-Mind project, a pioneering initiative with an innovative approach to early risk
assessment through the implementation of advanced artificial intelligence (AI)
on multimodal data. The cutting-edge AI-based tools developed in the project
aim not only to accelerate the diagnostic process but also to deliver highly
accurate predictions regarding an individual’s risk of developing dementia when
prevention and intervention may still be possible. AI-Mind is a European Research
and Innovation Action (RIA H2020-SC1-BHC-06-2020, No. 964220) financed
between 2021 and 2026. First, the AI-Mind Connector identifies dysfunctional
brain networks based on high-density magneto- and electroencephalography
(M/EEG) recordings. Second, the AI-Mind Predictor predicts dementia risk using
data from the Connector, enriched with computerized cognitive tests, genetic
and protein biomarkers, as well as sociodemographic and clinical variables. AI-
Mind is integrated within a network of major European initiatives, including The
Virtual Brain, The Virtual Epileptic Patient, and EBRAINS AISBL service for sensitive
data, HealthDataCloud, where big patient data are generated for advancing digital
and virtual twin technology development. AI-Mind’s innovation lies not only in its
early prediction of dementia risk, but it also enables a virtual laboratory scenario
for hypothesis-driven personalized intervention research. This article introduces
the background of the AI-Mind project and its clinical study protocol, setting the
stage for future scientific contributions.
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AI-Mind

1 Introduction

Dementia affects nearly 10 million new individuals every
year, with Alzheimer’s disease (AD) dementia accounting for
about 60–80% of cases (Roberts et al., 2014). Crucially, AD and

other forms of dementia types represent a growing global crisis,
particularly in regions where life expectancy has risen notably over
recent decades (GBD 2019 Dementia Forecasting Collaborators,
2022). The original description of AD is based on macroscopic
brain atrophy, primarily behind the central sulcus and within
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the mesiotemporal regions. These changes are typically associated
with memory deficits. Additionally, pathophysiological markers
include extracellular amyloid plaques, intracellular neurofibrillary
tangles, and synaptic loss. Importantly, the time from memory
disorder diagnosis of any type to the death of a patient has
increased significantly due to more timely diagnostic assessments
and better medical and social care, especially in developed countries
(Livingston et al., 2020). Consequently, dementia now imposes
a substantial socioeconomic burden on health systems, families,
and caregivers (Jetsonen et al., 2021). Therefore, there is a critical
need for timely and accurate diagnostics, highlighting the need for
innovative disease-modifying therapies, including pharmacological
and non-pharmacological interventions for those at risk for
dementia development.

The prodromal phase of dementia is most frequently
characterized by mild cognitive impairment (MCI), corresponding
to “mild neurocognitive disorder,” classified as 6D71 in ICD-
11 (World Health Organization, 2019), and as 331.83 in DSM-
5-TR (American Psychiatric Association, 2022). MCI refers to
an objective impairment in cognitive functioning that goes
beyond normal age-related changes yet does not significantly
impact daily activities. Although individuals with MCI can
remain stable, or revert to a cognitively intact state, the risk
of conversion to dementia is notably high, and MCI is thus
typically considered a transitional stage between normal cognitive
changes associated with aging and dementia (Petersen et al.,
2001). MCI is often classified into two clinical subtypes: amnestic
MCI and non-amnestic MCI, each associated with different
etiologies and outcomes, where the former is more often associated
with a prodromal dementia phase. Recently, biomarkers such
as cerebrospinal fluid (CSF) analysis and positron emission
tomography (PET) imaging have been introduced to detect
amyloidopathy and tauopathy in vivo (Jack et al., 2018). While
biomarker positivity has been suggested to identify the MCI
prodromal to AD and predict dementia onset, a significant
proportion of cognitively unimpaired individuals with biomarker
positivity do not progress over time (Dubois et al., 2021). Moreover,
a substantial number of cognitively unimpaired individuals over
the age of 70 years display β-amyloid pathology (Knopman et al.,
2003). Therefore, biomarkers alone may not accurately identify
preclinical AD if other measures of cognitive reserve and resilience
are not considered. Importantly, MCI progression is influenced by
several partially independent factors, including the presence of AD
pathology, APOE ε4 status, and comorbid conditions (Katabathula
et al., 2023). These factors collectively contribute to the diversity
of MCI outcomes, emphasizing the need for new methods to
understand the condition’s etiology and progression.

Epidemiological studies generally agree that ∼35–50% of
individuals with MCI (without established neurodegenerative
disease) will experience progressive cognitive decline and develop
dementia within 3–5 years from symptom onset (Roberts et al.,
2014; Vega and Newhouse, 2014). Indeed, the risk of dementia
is over 20 times higher for individuals with MCI compared to
the cognitively healthy elderly population. The annual conversion
rate during the MCI phase of dementia progression ranges from 5
to 20%, depending on the diagnostic criteria used (Marcos et al.,
2016). Consequently, MCI serves as the harbinger of most new

dementia cases annually. However, current clinical investigations
of MCI are both time-consuming and require significant expertise,
and they possess limited power in predicting dementia risk.
Moreover, the MCI population is heterogeneous concerning
known risk factors and comorbidities, such as endocrine-
metabolic diseases, cardiovascular disease, diabetes, tobacco and
alcohol use, obesity, depression, dyslipidaemia, diet and sedentary
lifestyle, and sensory impairments (Livingston et al., 2020).
Addressing such modifiable risk factors is an essential preventive
dementia care objective. Furthermore, once disease-modifying
treatments will become available worldwide, an effective screening
method for early diagnosis must be established. Currently, the
clinical diagnosis of MCI is based on neuropsychological testing.
While neuropsychological testing effectively predicts dementia
progression in the later stages of MCI (Robert et al., 2006; Sarazin
et al., 2007), it fails to differentiate individuals in the early phase.

Furthermore, MCI diagnostics suffer from poor inter-rater
reliability and non-harmonized diagnostic guidelines (Dubois
et al., 2014; Jack et al., 2018), and a lack of standardized
biomarkers for large populations (Frisoni et al., 2013). Current
clinical and instrumental diagnostics are neither cost-efficient,
widely accessible, non-harmful, nor user-friendly. All state-of-
the-art AD biomarkers (e.g., cerebrospinal fluid, CSF; magnetic
resonance imaging, MRI; positron emission tomography, PET)
present significant limitations. The widespread use of these
methods remains restricted due to their low availability, perceived
invasiveness, high costs, and various contraindications. Equitable
technologies and procedures must be developed to address the
rising demand due to the aging population (Bertens et al.,
2019). Moreover, individuals with MCI who are completely
independent in their daily activities and only have a partial risk
of developing dementia should not undergo needless diagnostic
procedures, unwarranted worries, and costly and risky treatments.
Crucially, delayed MCI diagnosis and subsequent dementia
confirmation hinder healthcare professionals from identifying
the optimal intervention window for delaying or reversing the
dementia onset.

Recent years have witnessed an accelerated development
of promising blood biomarkers (Cicognola et al., 2021) and
multimodal AI algorithms based on classical machine and
novel deep learning (Hou et al., 2019; Qiu et al., 2022) to
identify earlier opportunities for intervention in the disease
progression. Nevertheless, these approaches are still used primarily
in research settings and clinical trials, often without robust external
validation in everyday clinical routine. Naturally, their successful
deployment in clinical practice will require resource demanding
feasibility and health technology assessments. Furthermore, a
better understanding of how the blood biomarkers interact with
individual clinical characteristics and tissue-level pathological
changes at different disease stages is increasingly essential. Initial
neurodegenerative changes occur years before structural changes
can be detected using current imaging methods. In AD-type
neuropathology, synaptic dysfunction stands as an early risk sign
(Terry et al., 1991) causing brain network disturbances observable
with electrophysiological methods (electroencephalography, EEG;
magnetoencephalography, MEG). Indeed, recent EEG and MEG
studies on MCI subjects have shown promising accuracy in
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predicting the conversion from MCI to AD (Pusil et al., 2019;
Miraglia et al., 2020).

Here, we introduce AI-Mind1, a 5-year initiative funded
by a European Research and Innovation Action (RIA, H2020-
SC1-BHC-06-2020, no. 964220). AI-Mind’s core objective and
primary outcome is to develop and provide an automated
instrument for standardized population-based screening of the
progression risk from MCI to dementia using cost-effective
and non-invasive measures. This risk assessment will allow
healthcare systems to concentrate pharmacological, rehabilitative,
and lifestyle initiatives on high-risk subjects. Leveraging AI to
extract relevant features from functional brain network data
derived from M/EEG, digital cognitive assessment, genetic testing
(APOE), and blood biomarker information (P-tau), we aim to
achieve the overarching goal of predicting the risk of dementia at
an early and personalized stage. While the anticipated AI-Mind
tools represent a novel technological advancement, their intent
is to complement, rather than replace, existing diagnostic tools
for dementia. The project also addresses the ethical, social, and
practice-related implications of AI-based risk prediction, involving
patients, their relatives, and health professionals, in order to ensure
responsible implementation.

One of the primary endpoints of AI-Mind is to optimize
the use of EEG in dementia risk assessment as an established,
globally accessible, and cost-effective technology. The primary
objective of the AI-Mind Connector is to generate representations
of synaptic-neuronal dysfunction inferred from M/EEG using
AI-supported approaches. This outcome will be enriched with
results from computerized cognitive testing and other risk markers
(genetics, blood biomarkers, and clinical characteristics), creating
the AI-Mind Predictor. Based on the large sample of MCI
subjects evaluated in AI-Mind, the Predictor will estimate the
individual’s risk of developing dementia. Two AI-based approaches
in the design will be considered: first, classical machine learning
(ML) models, known for interpretability, and deep learning (DL)
models, which excel in performance at the potential cost of
interpretability and explainability. The ultimate outcome aligns
with improved patient care, resource optimization, and enhanced
outcomes for individuals with an increased risk of dementia. This
proactive identification of the potential trajectory toward dementia
empowers patients by enabling referrals for early risk stratification
and even consideration for novel pharmacological interventions, all
aimed at offering a more hopeful future (Robinson et al., 2015).
Earlier identification can also motivate proactive management
of modifiable non-neurological risk factors, which, importantly,
may lead to a significantly extended duration of the initial stages
of cognitive decline, and thus slow the progression of dementia
(Livingston et al., 2020).

The advancement of digital and virtual twin technologies has
become increasingly crucial in addressing the pressing needs of
personalized healthcare and medical research. In a planned effort
to contribute to this advancement, the AI-Mind project aims to
implement data simulation and synthetizing methodologies to
generate so-called hybrid models, enabling virtual lab scenarios
for investigating hypothesis-driven individualized intervention

1 www.ai-mind.eu

possibilities. This innovation not only paves the way for more
timely clinical personalized investigations and treatment options
but may also demonstrate the potential of such virtual labs in
revolutionizing healthcare in a broader context. This collaborative
effort is made possible by the establishment of a European clinical
network, eBRAIN-Health, aimed at generating comprehensive
patient datasets on a high-security cloud platform. Moreover,
the possible fusion of DL algorithms from EBRAINS partners
AI-Mind, the Virtual Epileptic Patient (Jirsa et al., 2017), and
The Virtual Brain (Sanz Leon et al., 2013; Schirner et al., 2022),
holds great promise for authentic human knowledge driven brain
modeling. By personalizing simulations and dissecting large brain
imaging datasets, these technologies may offer new insights into
brain function and possibly innovative therapies for neurological
disorders, guided by the combination of EEG data synthesis, real
life high-quality data, and coordinated computational resources by
the federated EBRAINS infrastructure. A detailed account of this
coordinated action is not in the scope of the current article and will
be documented in collaboration with the eBRAIN-Health project
elsewhere as the initiative progresses.

In this paper, we will introduce the clinical study protocol of
AI-Mind and present briefly some of the clinical, ethical, social,
and technical challenges the project addresses. While mentioned
superficially here, other aspects of the AI-Mind project, including
the AI and electrophysiological methodology, and regulatory
framework, will be discussed in depth in future publications.

2 Materials and methods

2.1 Clinical study design and sites

The study includes a clinical assessment (for inclusion), a
baseline visit (V1), and three follow-up visits (V2, V3, and V4),
each separated by 8 months. The clinical assessment is repeated
at V4. Table 1 summarizes the procedures conducted at each
visit. The five clinical centers involved in recruitment and data
collection are the Department of Neurology, Oslo University
Hospital, Norway (OUS); the Memory Clinic at the Catholic
University of the Sacred Heart, Rome, Italy (UCSC-MC); IRCCS
San Raffaele, Rome, Italy (IRCCS); Helsinki University Hospital,
Finland (HUS); and Universidad Complutense de Madrid, Madrid,
Spain (UCM). The AI-Mind research activities are conducted in
parallel with national state-of-the-art (SOA) procedures for MCI
and progressive dementia diagnostics. The study does not include
any new pharmacological treatments.

2.2 Participants and measures of
progression

2.2.1 Target sample and recruitment
The AI-Mind study aims to recruit 1,000 MCI participants

aged between 60 and 80 years, consisting of 250 participants per
each of the four involved countries. The target sample size was
estimated with a statistical power analysis, assuming that the AI-
Mind Predictor will achieve minimum specificity and sensitivity
levels of 0.90–0.95 in the target population where the prevalence
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TABLE 1 Research activities in the AI-Mind protocol.

Procedure Performed at time point (months since inclusion)

Inclusion (M0) V1 (M0) V2 (M8) V3 (M16) V4 (M24)

128-channel resting-state EEG X X X X

Computerized cognitive testing (CANTAB R©) X X X X

Blood sampling (APOE, p-tau) X OUS X

MEG (at UCM and HUS only) HUS UCM, HUS

Sociodemographic data X

Global cognitive screening (MoCA/MMSE) X X X X

Clinical Dementia Rating (CDR) X X X X

Clinical interview (Case Report Form, CRF) X X

Registering data on pharmacological treatments X X X X

Self-administered memory questionnaire X X

Neuropsychological assessment X X

The clinical interview (summarized in a Case Report Form; CRF) comprises a record of the participant’s anamnestic history, including risk factors, and somatic and psychiatric comorbidities,
and scales for measuring depression, alcohol consumption, and activities of daily living (ADL).
APOE, Apolipoprotein E; CANTAB R© , Cambridge Neuropsychological Test Automated Battery; CDR, Clinical Dementia Rating; EEG, electroencephalography; MEG,
magnetoencephalography; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; p-tau, plasma phosphorylated tau.

of MCI presenting a prodromal stage of dementia and that of other
etiologies are both∼50% (Cowley et al., 2019).

As of 1 September 2023, close to 900 participants have been
included since the recruitment initiation. The recruitment aims at
equal distribution of participants across the four countries. Due to
differences in the national healthcare systems in the participating
countries, the outreach strategy varied among countries. In Finland
and Italy, participants were recruited directly from the hospitals’
outpatient clinics (HUS, UCSC, and IRCCS). In Spain (UCM),
participants were recruited from various neurological clinics
in the proximity of Madrid and from community centers. In
Norway (OUS), participant outreachwas conducted through online
distribution of a self-assessment questionnaire of memory and
other cognitive functions (The Finnish Medical Society Duodecim,
2021). Those unable to sign the consent form or fill in the
questionnaire online were offered the alternative to complete the
forms on paper. People who reported mild cognitive symptoms
and increased worry over their cognitive status in the questionnaire
were invited for a comprehensive clinical examination and
neuropsychological assessment.

2.2.2 Inclusion and exclusion criteria
The AI-Mind study inclusion and exclusion criteria are listed

in Tables 2, 3. The inclusion criteria were based on the criteria
suggested by Winblad et al. (2004) and Bondi et al. (2014).
These criteria include cognitive concerns (subjective complaints),
objective cognitive impairment (beyond expected norms),
preservation of functional independence, and absence of dementia.
For inclusion and exclusion, the candidates are clinically evaluated
by health personnel at their respective clinical centers. The clinical
evaluation comprise global cognitive screening (see below), and
anamnesis for family history of dementia/neurodegenerative
diseases, possible risk factors associated with cognitive decline,

somatic comorbidities, psychiatric symptoms, including
questionnaires for depression (Beck’s Depression Inventory,
BDI; Beck et al., 1961; or Montgomery–Åsberg Depression
Rating Scale, MADRS; Montgomery and Asberg, 1979) and
alcohol consumption (Alcohol Use Disorders Identification Test,
AUDIT; Babor, 2001), and current pharmacological treatments.
The objective cognitive impairment is determined through
performance on standardized neuropsychological tests (see below):
either >1.5 SD below the mean of the norm data in one test
score (Winblad et al., 2004) or >1 SD below the mean in two
test scores of the same cognitive domain or in three tests of all
different domains (Bondi et al., 2014). Level of daily functioning
is addressed with the (Instrumental) Activities of Daily Living
(I/ADL; Lawton and Brody, 1969) scale or similar measures. The
inclusion procedures (Table 1; M0) are carried out prior to V1
and they will be repeated at V4. Considering the importance
of the neuropsychological evaluation for the study, only native
speaker subjects were recruited to eliminate language bias in the
cognitive testing.

2.2.3 Global cognitive screening
The global level of cognitive performance is assessed with the

Mini Mental State Examination (MMSE; Folstein et al., 1975) and
the Montreal Cognitive Assessment (MoCA; Nasreddine et al.,
2005), depending on the local practices. In AI-Mind, the cut-off
scores for inclusion are MMSE ≥ 24 and MoCA ≥ 17 (see Table 2;
Trzepacz et al., 2015).

2.2.4 Neuropsychological assessment
Neuropsychological assessment is conducted to evaluate the

MCI status. Performance is assessed in the following cognitive
domains: memory, language, attention/executive function, and
visual-constructive ability. Verbal and visual memory are tested
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TABLE 2 Criteria and assessment of MCI and dementia progression in the AI-Mind protocol.

MCI criteria for inclusion MCI assessment Progression
assessment

- Cognitive concern reported.
- Objective evidence of impaired cognitive domain (Petersen/Windblad and Jak/Bondi criteria).
- Preserved independent functioning.
- Not demented (cognitive changes do not significantly impede social function or work
activities).

- Presence of objective longitudinal decline for no more than 3 years.
- Substantial vascular causes ruled out.

- CDR ≤ 0.5
- MMSE ≥ 25 or MoCA ≥ 17
- (I)ADL ≥ 70%

- CDR > 0.5
- MMSE < 25 or MoCA < 17
- (I)ADL < 70%

MCI, Mild cognitive impairment; CDR, Clinical dementia rating scale; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; (I)ADL, (Instrumental) Activities of
Daily Living.

TABLE 3 Exclusion criteria in the AI-Mind protocol.

Exclusion criteria

- Documented history of cerebrovascular disease (i.e., major stroke
episodes).

- Clinically verified positive AUDIT (alcohol dependency) score.
- Severe medical disorders associated with cognitive impairment
(organ insufficiency, chronic infections, and endocrine disorders).

- Severe head trauma with structural brain lesions and/or previous
brain surgery.

- Severe mental disorders (schizophrenia, known major depression, or
bipolar disorder).

- Neuroimaging evidence of other potential causes of cognitive
decline (e.g., subdural haematoma, brain malignancy, and metabolic
encephalopathy).

- History of non-brain malignancy during the last 5 years.
- Recent (<3 month) introduction of psychotropic drugs including
acetylcholinesterase inhibitors (AChEI) and/or memantine.

- Participation in trials with experimental drugs.

AUDIT, Alcohol Use Disorders Identification Test.

with both active recall and recognition of a word list in the Rey
Auditory Verbal Learning Test (RAVLT) and of a copied figure
in the Rey-Osterrieth Complex Figure Test (ROCFT). Language
functions are assessed with the Boston Naming test (BNT), as well
as with the semantic and phonological Verbal Fluency (VF) tasks.
Attention/executive function is assessed with the Trail-making
test (TMT) A and B. Visual-constructive ability is assessed with
the figure copying task in ROCFT. The selected tests have been
demonstrated to differentiate between healthy aging, MCI, and
dementia (e.g., Estévez-González et al., 2003; Ashendorf et al., 2008;
Baerresen et al., 2015; Ellendt et al., 2017; McDonnell et al., 2020;
Venugopalan et al., 2021). The tests are administered in the local
language at each site. In Finland, due to the lack of applicable norms
for RAVLT and ROCFT, the equivalent tests from the Consortium
to Establish a Registry for Alzheimer’s Disease (CERAD) battery
are used. CERAD is administered on a separate day from the
other neuropsychological tests. The neuropsychological assessment
is administered at baseline and will be administered again at V4.

2.2.5 Progression assessment
Table 2 lists the dementia progression evaluation criteria used

throughout the project. At each visit, in addition to screening the
participant’s global cognitive status using either MoCA orMMSE, a
clinical evaluation guided by the Clinical Dementia Rating (CDR) is
conducted. CDR has a 5-point scale ranging from normal cognition
to severe dementia. The score is based on the qualitative assessment

of cognitive and functional status across six domains relevant to
dementia. At each visit, a semi-structured interview focused on
changes in cognitive functioning is conducted. The participant’s
responses are evaluated in comparison to information provided
by a reliable informant (e.g., a family member or a close friend)
and other qualitative and quantitative information available to
determine a CDR score. If a participant has a stable CDR score
at 1 or above at V2 or V3, the comprehensive neuropsychological
assessment is conducted immediately (instead of at V4) to assess
the progression of cognitive symptoms/conversion to dementia.

2.3 Neurophysiological recordings

2.3.1 Electroencephalography
EEG is collected similarly at all five clinical sites. The recording

protocol includes resting-state data acquired in four successive
5-min runs of alternating eyes-open and eyes-closed conditions.
In addition, a standardized artifact registration run (harmonized
in content and sequence across sites) is recorded prior to the
resting-state data acquisition. The registered artifacts include
instructed eye blinks, horizontal and vertical eye movements, head
movements, facial muscle activity, chewing, coughing, yawning,
and environmental auditory noise, and will be used to aid the
automatic detection of these artifacts in the participant’s resting-
state data.

EEG is recorded at a sampling rate of 2,000Hz with an
anti-aliasing filter with a cut-off frequency of 520Hz, using
126 cephalic electrodes prewired in an elastic cap (ANT neuro
WaveguardTM), in addition to two auxiliary electrodes placed
below the left eye (electro-oculogram; EOG), and on the right
clavicle bone (electrocardiogram; ECG). In the evaluation of
functional connectivity and network-based metrics, high-density
EEG is advantageous compared to lower-density (Hatlestad-
Hall et al., 2023). The electrodes are labeled according to the
10-5 system derived from the standardized 10-20 and 10-10
international systems (Oostenveld and Praamstra, 2001), and
their impedances are kept as low as possible, preferably below
25 k�. The ground electrode is placed on the left mastoid,
while the CPz electrode serves as the reference during recording.
The signals are amplified by an eegoTM mylab EE-228 amplifier
system and digitalized and stored using eegoTM software, both
provided by ANT neuro/eemagine Medical Imaging Solutions
GmbH, Berlin, Germany.
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During the eyes-open recording, participants are instructed to
sit in a relaxed position and maintain their gaze on the center of
a cross that is positioned in front of them. They are instructed to
avoid movement of the eyes and face muscles but are permitted
to blink. For the eyes-closed recording, participants are instructed
to refrain from falling asleep. On the day of the EEG recording,
the participants are asked to minimize their intake of products
containing caffeine.

All the EEG data, independent of the site of acquisition, will
be analyzed similarly. The data will be preprocessed using an
automated pipeline developed during the project, which includes
detection and management of signal noise and prominent artifacts.
Various methods for data cleaning are to be evaluated post-hoc by
assessing their impact on the AI model performance. The similarity
of measurement devices and protocols will minimize the data
variability across sites, facilitating the harmonization of the data. It
is important to note that the level of environmental electromagnetic
noise may still vary across measurement sites. This mimics the
every-day clinical practice, and thus any algorithm developed in the
project should generalize over such differences.

2.3.2 Magnetoencephalography
Simultaneous EEG and MEG data is collected at two clinical

sites (HUS and UCM). The MEG recordings are performed
in magnetically shielded rooms with corresponding 306-channel
whole-head MEG devices at each site (Elektra Neuromag TRIUX
in HUS, and TRIUX neo in UCM, both manufactured by
MEGIN Oy, Helsinki, Finland). The MEG devices consist of
triplet sensors of two planar gradiometers and one magnetometer
at 102 locations, with each gradio-/magnetometer coupled to a
Superconducting Quantum Interference Device (SQUID). Five
head-position-indicator (HPI) coils are attached to the EEG
cap to enable continuous head position monitoring during the
measurement, and one bipolar EOG and ECG electrode and
separate ground are applied. Data is collected at a sampling rate of
2,000Hz and using an online band-pass filtered between 0.01 and
660Hz. The MEG recording protocol is the same as that used for
the EEG alone. The synchronization of the simultaneous EEG and
MEGmeasurements is conducted using trigger pulses generated by
the MEG system at given time intervals. MEG recordings will be
acquired at V1 and V4 at HUS, and at V4 at UCM. Due to the
global scarcity of the technology, MEG data does not constitute a
mandatory input to the AI-Mind algorithms. The inclusion ofMEG
at two of the study sites is primarily motivated by scientific interest,
enabling comparative analysis between MEG and EEG signals.

2.3.3 Co-registration with template anatomical
MRI data

To mimic current clinical practice of many countries,
individual MRIs are not collected within the project. Instead,
MRI templates are used to facilitate data analysis at the source
level. To enable co-registration with, and adaptation of, MRI
templates, individual EEG electrode positions are obtained from
each participant by recording a 3D scan using a Structure Sensor
(Mark II) ST02BTM scanner (XRPro LLC (Structure), Boulder, CO,
USA) attached to an Apple iPadTM (7th Gen, Apple Inc., Cupertino,

CA, USA), and software Scanner—Structure SDKTM (XRPro LLC).
The participant’s nasion and preauricular points are marked for
anatomical referencing. In MEG, digitization of the HPI coils,
anatomical landmarks (nasion/nose, preauricular points/ears), and
a subset of the EEG electrodes (seven electrodes included in the 10-
20 system) is conducted with a FASTRAK digitiser (Polhemus Inc,
VT, USA, provided by MEGIN Oy).

2.4 Computerized cognitive testing

A set of the Cambridge Neuropsychological Test Automated
Battery (CANTAB

R©
; Cambridge Cognition Ltd) tests is

administered at each visit in conjunction with the M/EEG
recordings. The CANTAB

R©
is a cloud-based system for cognitive

testing that is validated for use on an Apple iPad. The CANTAB
R©

enables an operator-independent, technologically augmented, and
relatively language- and culture-independent cognitive assessment.
The AI-Mind study protocol employs six CANTAB

R©
tests

including a motor screening task (Table 4). The tasks were selected
based on the recommendations by the supplier to probe cognitive
functions, including memory and executive processing, that are
typically affected in neurodegenerative conditions such as AD.
In particular, the Paired Associates Learning (PAL) test has been
reported to be sensitive with respect to discrimination between
MCI, prodromal AD, and AD (Egerházi et al., 2007; Junkkila et al.,
2012). All tests feature standardized voice-over instructions in local
languages (Norwegian, Spanish, Italian, and Finnish/Swedish),
which ensures accurate and consistent test administration across
sites. The tests are administered in the tabulated order (Table 4;
note that the delayed PRM task is presented after the SWM task),
a session lasting ∼45–50min depending on the participant’s
performance and the speed at which the participant makes
transitions between tests.

2.5 Genetic and protein analyses

Blood samples for DNA isolation and plasma protein
assessment are collected from participants at V1 and V2 (Oslo
only), with no need for fasting; additional sample collections at
V4 are currently planned. Collection and stocking procedures have
been standardized via a Standard Operating Procedure. Currently,
the APOE ε4 allele is the strongest genetic risk factor for AD
(Corder et al., 1994; Lambert et al., 2009). The presence of this
allele is associated with 10 to 30 times increased risk for both
early-onset and late-onset AD. APOE ε4 status may significantly
add to the value of EEG in predicting the disease progression
in MCI subjects (Vecchio et al., 2018). In the AI-Mind Predictor

model, the genetic data will be classified as increased risk or
not. In addition to genetic biomarkers, we will measure plasma
tau phosphorylated at threonine 217 (p-tau217) and plasma tau
phosphorylated at threonine 181 (p-tau181). These blood-based
biomarkers are associated with AD tau pathology. Emerging data
indicates that these could also be promising screening tools to
identify individuals with underlying amyloid and AD tau pathology
(Janelidze et al., 2020; Ashton et al., 2022).
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TABLE 4 CANTAB
®
tests administered in the AI-Mind protocol.

Full name Cognitive domain and
description

Motor Screening Task (MOT) Test measuring sensorimotor speed and
skills. Supervised administration to
ensure that the participant can perform
the tests with respect to motor and
visual functions

Paired Associates Learning
(PAL)

Test for visual episodic memory and
learning

Pattern Recognition Memory
(PRM)

Includes both immediate and delayed
recognition conditions. Test of visual
pattern recognition memory in a
2-choice forced discrimination
paradigm

Rapid Visual Information
Processing (RVP)

Test for sustained attention

Spatial Working Memory
(SWM)

Test for working memory and strategy

Delayed Matching to Sample
(DMS)

Assesses visual matching and short-term
visual recognition memory for
non-verbalizable patterns

The tests are carried out in a fixed order; MOT, PAL, PRM (immediate), RVP, SWM, PRM
(delayed), and DMS. The minimum time to elapse between the immediate and delayed
conditions of PRM is 20 min.

2.6 Data governance

All data (see Table 1) is stored centrally (Services for Sensitive
Data; SSD) at the University of Oslo (UiO). Metadata, both clinical
(CRF, CDR), sociodemographic, and technical (logs), are collected
with the UiO service Nettskjema (“web form”)2. M/EEG data and
the CANTAB

R©
data from Cambridge Cognition’s storage service,

are imported to the SSD storage area daily. The blood samples
are shipped in bulk (∼125 participants per shipment) to Oslo
University Hospital, Norway, where all samples are stored in the
AI-Mind project-specific biobank. Once analyzed, the APOE allele
and p-tau data are stored in the project’s SSD area. At the file
staging area of the AI-Mind platform (located inside the SSD
infrastructure), developed during the project, the data are verified,
curated, re-processed (if applicable), and prepared for AI model
development. A high-level view of the AI-Mind study data flow is
shown in Figure 1.

2.7 Machine (deep) learning models: AI
framework backend

The Connector and Predictor will be developed using data from
AI-Mind’s clinical study, as described above. The Connector utilizes
M/EEG data, while the Predictor augments Connector output with
additional modalities, including CANTAB

R©
scores, genetic and

protein analysis results, to predict dementia progression risk. The
dataset enables optimal models for both tools. For the machine
learning, we aim at balancing the training and test data sets over
gender, age, education level, APOE ε4 allele status, and use of

2 https://nettskjema.no/?lang=en

acetylcholinesterase (AChE) inhibitors or memantine within each
country. In the following, we briefly outline our development
strategy for the AI-Mind tools.

The Connector identifies dysfunction based on spatiotemporal
M/EEG measures. Its development will consider a wide range
of established M/EEG features derived from multivariate time
series and frequency data, and adjacency matrices obtained from
functional connectivity analysis. These include power spectral
density, synchronization measures (e.g., phase locking value and
amplitude envelope correlation), and graph theory metrics (e.g.,
clustering and efficiency). Both classical ML and DL methods are
evaluated. Classical ML, including Bayesian approaches (Gillberg
et al., 2016; Leppäaho et al., 2019), incorporating prior expert
knowledge is used as a benchmark for comparison to more
expert-independent approaches based on the DL paradigm.
Relevant DL approaches to M/EEG data include computer vision-
based models and complex network analyses like Graph Neural
Networks, Generative Adversarial Networks, and Convolutional
Neural Networks. A detailed account of AI-based approaches to
M/EEG analysis is beyond the scope of the current article (for a
comprehensive review, see Roy et al., 2019). Future publications
from the AI-Mind project will detail its AI-related development.

AI-Mind faces a shortage of labeled data crucial for ML and
DL model training due to ongoing data collection. To address
this, the models initially rely on unsupervised techniques such
as clustering and dimension reduction. As more labeled data
becomes available, the focus will shift to semi-supervised learning,
improving the models’ overall performance. Consequently, we
anticipate that the AI framework of AI-Mind will increase its
performance over time. The Predictor incorporates additional data
to the Connector output, merging genetics, biomarkers, cognitive
assessment, and demographic data, using DL-based dimensional
reduction. This enables comparing “new” DL-identified variables
with “conventional” variables.

Model bias arises from data imbalances in which
underrepresented groups are excluded and needs to be addressed.
Model variance occurs with scarce data in the subgroups, and
outcome noise stems from unconsidered variables affecting
predictions. To counter this, we will identify subgroups that
require more discriminative variables and incorporate known
metadata, while maintaining an awareness that metadata are not
necessarily unbiased (Vyas et al., 2020), and thus reduce negative
effects on fairness across different demographic groups. We will
employ tools such as IBM’s Fairness 360 and clustering algorithms
to discover the bias due to overfitting, limited subgroup data,
or outcome noise. Importantly, the AI-Mind study implements
several measures to minimize bias. Recruitment, data collection,
and storage/transfer across countries have been harmonized.
Representative samples from European MCI populations ensure a
balanced dataset. Cross-validation is used in the classifier building,
and an independent test set validates the model performance. As
data will be collected from five different locations, using identical
hardware but under different conditions, we will use leave-one-
center-out techniques to ensure robustness to site-specific patterns
in the data. Lastly, the models will undergo uncertainty assessment,
with epistemic (parameter uncertainty due to data scarcity) and
aleatory (randomness-induced) uncertainty analyses. Epistemic
uncertainty for a given decision (per sample uncertainty) is
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FIGURE 1

High-level AI-Mind study data flow.

assessed using mainly an ensemble of deep learning models. The
overall model uncertainty will be evaluated using bootstrap and
cross-validation methods.

2.8 Model cards and digital interface: AI
framework frontend

The AI-Mind’s AI framework (AIF) includes a frontend
interface. On the highest level, it takes AI-Mind data as input
and generates model cards (Mitchell et al., 2019). These model
cards inform the AI developer about model implementation and
architecture, and later convey model details to users after the
MCI prediction models are optimized. The AIF is designed to
be automated and accessible to AI developers (and in the future,
clinicians), comprising sequential steps.

1. Parameter and hyper-parameter definition, along with
the choice of DL architecture. Users can modify these
parameters and input additional information, such as ethical

considerations and bias sources, which will be incorporated
into the model card.

2. Preparation of “hidden” parameters that define the specific
modeling architecture (for AI team’s use).

3. Access to training and validation datasets, formatted
uniformly for input.

4. Selection or parallel execution of different architectures and
model types.

5. Training and testing of models, yielding performancemetrics,
loss curves, and (epistemic) uncertainty measures.

6. Compilation of model cards based on the preceding
steps’ outcomes.

For both Connector and Predictor, the AIF primarily provides
a performance assessment of the models being tested, both
for categorical and numerical outcomes. Additionally, in step 5
above, the Connector extracts mathematical expressions of learned
features, which often represent linear combinations or functions of
the original variables (M/EEG), offering insights into the original
variable relevance and relationships.
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2.9 Ethical approvals and informed consent

The national ethics committees in all countries with
collaborating clinics approved the study and the related data
transfer (documented in the AI-Mind Data Transfer Agreement).
Participant data are pseudonymized in a standardized manner.
Only the clinical center in which the participant is enrolled
has access to individual identities. This access is regulated by
national and institutional guidelines. Written informed consent
is obtained from all study participants according to national and
AI-Mind-specific guidelines posed by the European Commission.
An Informed Consent tracking log has been created for each
clinical site to record any further amendments in the potentially
changing documents. Informed Consents are signed on paper in
all sites, except for Norway (OUS) where the consent is signed
digitally (participants who refuse digital signing for any reason
are given the alternative to sign on paper). The signed documents
are stored according to current local clinical site requirements,
following the Personal Data Act/GDPR.

In Norway, the ethical committee considered the study
results to have such important clinical implications that all
Norwegian participants must be informed about individual test
results. Consequently, each participant is not only registered
in a research registry, but an individual electronic journal file
has been created and will be monitored from the clinical
perspective until the end of the project. Interestingly, between
50 and 90% of people report that they would be interested
in knowing the results of a “predictive” or “reliable” test of
their risk of developing dementia (Milne et al., 2018). Therefore,
The AI-Mind project protocol includes the ethical and social
implications of the use of this technology from the perspective
of, and in relation to, current and future people with MCI and
their relatives.

2.10 The AI-Mind consortium

AI-Mind is a multidisciplinary and public–industry
consortium that brings together transdisciplinary hands-on
expertise from clinics, industry, neuroscience research, and
computer and data science in a multi-stakeholder setting. It
consists of medical experts and opinion leaders on dementia,
international experts in brain signal analysis and computer
science, health technology assessment experts, small-medium
enterprises (SMEs) and academic spin-off companies, one
large industry organization, and patient and professional
stakeholders. The consortium partners are listed in Table 5.
Furthermore, AI-Mind maintains close collaborations with the
European EBRAINS organization. Through a combination of
our partners’ expertise coupled with a strong stakeholder policy,
we ensure that the AI-Mind tools will meet the regulatory
and ethical standards for neurological AI diagnostic tools,
while respecting European values and striving for quality and
representativeness. AI-Mind promotes a unified EU-based
diagnostic approach, addressing a major health challenge and
supporting the development of an EU-based health system through
path-to-market strategies.

3 Discussion

The AI-Mind project is a public health-orientated research
and innovation initiative that aims at developing a screening
tool for individuals concerned about their cognitive and brain
health, and for determining the risk of dementia in mild cognitive
impairment (MCI). As MCI serves as the precursor to a substantial
majority of dementia cases, the accurate identification and timely
treatment of MCI patients displaying an elevated risk of dementia
progression have taken on an increasingly urgent significance. This
imperative is particularly pronounced in the face of the global aging
pandemic. Presently, both subjective concerns regarding cognitive
function and objective cognitive impairments are often erroneously
disregarded and attributed to normal aging processes rather than
considered for further assessment (Sabbagh et al., 2020). This
situation is partially rooted in the prevailing European clinical
practice, which mainly relies on individual medical practitioners’
judgments. The conventional approach to clinical investigations,
involving extensive neuropsychological evaluations, has historically
posed a bottleneck for healthcare systems, contributing to extensive
waiting lists on a global scale.

To address these issues, the AI-Mind initiative conducts a
comprehensive longitudinal clinical study focusing on subjects with
MCI. Based on this study, the AI-Mind project develops two AI-
based diagnostic support tools, namely, the Connector and the
Predictor. The cornerstone of this endeavor is the construction of an
extensive and standardized dataset, carefully assembled according
to the outlined study protocol. This dataset is key in the realization
of the project’s objectives. Furthermore, the standardized and
automatedConnector and Predictor tools are designed to streamline
the application of these methodologies in future investigations.
This includes their potential application, e.g., in cross-cultural
validation with diverse MCI populations. By deploying these tools,
the AI-Mind initiative aims to contribute to a future of enhanced
diagnostic capabilities and improved management strategies for
individuals facing cognitive health concerns.

AI is increasingly considered a key technology to enable more
efficient prediction of neurodegenerative disease risk in near-future
healthcare. However, the technical, ethical, and societal challenges
associated with the emergence of this new medical technology have
not been sufficiently investigated, including their safe use in routine
clinical activities and public health programmes (Rossini et al.,
2022; Schmitz-Luhn et al., 2022). While the AI methods are capable
of classifyingmeaningful patterns from large amounts of data, naïve
integration of AI into traditional clinical work cannot camouflage
the inherent limitations posed by such algorithms’ input. Model
input is susceptible to adverse influences, which in a medical
setting may include unclassified comorbidities and inequal clinical
resource access. Thus, despite recent advancements combining
AI with classic diagnostic tools for predictive medical purposes
in the industrialized world, its use comes with significant ethical
challenges. For example, while the introduction of AI in radiology
and nuclear medicine is considered a success, the accessibility of
1.5T MRI scanners varies substantially, e.g., 0.35 units per 100,000
in western countries compared to <0.0004 units per 100,000 in
Africa (Jalloul et al., 2023). The global distribution of PET scanners
is even more concerning. On the other hand, lumbar puncture
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TABLE 5 Alphabetical list of consortium partners.

Partner name Partner nationality Partner main contribution

Accelopment Schweiz AG Switzerland Project management

Aalto University Finland AI, machine learning

Alzheimer Europe Luxembourg Patient and user representation

BrainSymph AS Norway Medical technology, commercialization

Det Norske Veritas (DNV) Norway Data warehouse; data quality

Helsinki University Hospital Finland Clinical partner, neurophysiology

Scientific Institute for Research, Hospitalization and Healthcare,
San Raffaele, Roma (IRCCS)

Italy Clinical partner, neurophysiology

Lurtis Rules S.L. Spain Software architecture, commercialization

Neuroconnect Srl Italy Medical technology, commercialization

Oslo Metropolitan University Norway AI, deep learning

Oslo University Hospital Norway Project coordinator, clinical partner

Pre Diagnostics AS Norway Blood biomarkers, commercialization

Radboud University Medical Center The Netherlands HTA

Tallinn University Estonia User experience

Universidad Complutense de Madrid Spain Clinical partner, neurophysiology

Universitá Cattolica del Sacro Cuore Italy Clinical partner, HTA

AI, Artificial Intelligence; HTA, Health Technology Assessment.

for CSF biomarker analysis is often perceived as invasive and
poses a greater risk for adverse events than other procedures for
dementia diagnostics. Thus, while promising in terms of accuracy,
existing tools for dementia diagnostics, even when AI-supported,
are not necessarily eligible for implementation as population-
based screening methods (for a review, see Stephan et al., 2010).
Furthermore, most of the current research of AI in healthcare
focuses primarily on technical limitations and uncertainty, while
the ethical and social dimensions of prediction accuracy are
often ignored. It is crucial to consider the inevitable impact of
algorithmic performance on global health responsibilities. Aside
from pharmaceutical sponsored trials, few initiatives have been
based on public-health oriented approaches and considered global
transfer possibilities, with some exceptions (Rossini et al., 2019).

Although technical challenges have received considerably
more attention than the social and ethical aspects of AI in
healthcare, AI technology remains in its infancy with regards
to medical applications. The training of classification models
in classical machine learning typically relies on vast databases
of labeled data. However, in medicine, most big data do not
meet such requirements, in part due to the lack of standardized
data infrastructure, but also because of medical data’s inherent
complexity. Another challenge pertaining to AI in medicine is
the adaptation of AI architectures to the plethora of medical data
modalities. In AI-Mind, the principal modality of investigation
is time-series data derived from EEG. While classical machine
learning techniques have demonstrated promising results on
diagnostic classification based on features selected by human
experts (e.g., Maestú et al., 2015; Vecchio et al., 2020), relatively
little research has applied unsupervised deep learning techniques
to raw EEG data (for a review, see Roy et al., 2019). In the AI-Mind

study, as outlined previously, both classic machine learning and
deep learning strategies will be employed, bearing in mind that
both these families of techniques must tackle the challenge of
transparency and explainability for their final use as supportive
clinical decision-making tools.

Prognosis is intrinsically more complex than the final diagnosis
in the context of AI, as it involves a projection into the future and is
thus inherently uncertain. For AI to evolve and improve healthcare,
the solutions developed must be perceived as trustworthy by
patients, caregivers, health professionals, and other stakeholders.
In AI-Mind, trustworthiness will be considered methodologically
and ethically from three perspectives: explainability, fairness, and
uncertainty quantification. Explainability, defined as a facet of
transparency by the European Commission-appointed High-Level
Expert Group on Artificial Intelligence, requires that a decision
made by an AI system can be traced and understood by a
human (HLEG on Artificial Intelligence, 2019). In addition to
novel and transparent technical solutions, explainability involves
an interdisciplinary effort between experts in medicine and AI.
Fairness deals with the prevention of biased decisions to ensure
an equal and just distribution of both benefits and costs, and that
individuals and groups are free from unfair bias, discrimination,
and stigmatization. Importantly, biased AI decisions can arise
as a consequence of using non-representative data for model
development or algorithmic bias. In AI-Mind, the former source
of bias is mitigated by careful allocation of holdout data for
internal model validation to the representativeness of our test
data set, while algorithmically embedded bias will be addressed
using various bias mitigation techniques. The AI development
carried out in the AI-Mind project closely follows the principles
outlined in the “White Paper on Artificial Intelligence: a European
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approach to excellence and trust” (European Commission, 2020).
Importantly, to develop explainable and non-biased AI models,
the features and their algorithmic classification, and the relative
contributions that lead to decisionmakingmust be understood. For
this purpose, we are investigating basic biological characteristics,
for example, sex and age, to elucidate their impact on the
predictive power of diagnostic AI models. Preliminary results
indicate that in a deep learning context, EEG can be accurately
classified according to sex and age. This and related findings
(Jochmann et al., 2023) suggest that such factors may constitute
biases in AI-supported decision making based on EEG data.
The third technical element of trustworthiness considered in
AI-Mind is uncertainty quantification, which is an aspect often
disregarded when AI-supported decision-making systems are used.
Importantly, uncertainty quantification in AI-supported systems
has been shown to increase the accuracy of human decision-making
(Abdar et al., 2021). Quantification of uncertainty will not only lead
to more secure AI-supported human decision-making but can also
aid prioritizing.

In addition to communicating the technical description of
predictive AI tools in diagnostics, AI-Mind aims to direct
attention to and facilitate the discussion of the socioeconomic
and ethical aspects of such technology deployment, and its
potential impact on the global society. It is our intention that
AI-Mind should stimulate the future clinical use of AI-supported
decision-making tools in European and other hospitals in a
reliable and trustworthy manner. In collaboration with both
global and EU-based scientific communities, included in the
European infrastructure for sensitive data3 and the eBRAIN-Health
infrastructure4, we aim to deliver quality AI model training data.
The data will thus be accessible for future intervention studies
in a virtual lab scenario, where the AI-Mind data and algorithms
may be combined with simulation and synthesis technologies to
effectively mitigate the technological limitations of deep learning
and the scarcity of human expertise. By enhancing accuracy and
efficiency, hybrid models may elevate medical diagnosis precision,
enabling tailored treatment strategies based on individual needs.
This paradigm shift augments outcomes for patients confronting
neurological diseases’ complexity. Furthermore, this initiative
offers hospitals and clinical research groups the opportunity
to test our tools, adapt and improve our algorithms, and
transparently conduct performance comparisons in new cohorts
using a federated learning approach. These opportunities are
facilitated by the continuous integration of AI-Mind into the
EBRAINS infrastructure, where maintaining compatibility with
its Knowledge Graph and openMINDS metadata schema5 is a
key target. Thus, convenient and secure data reuse is guaranteed,
and future needs, such as cross-cultural algorithm adaptation,
are facilitated.

Developing and implementing AI tools in healthcare raises
legal concerns, including liability, patient rights, data and subject
protection, health technology assessment (HTA) requirements,
medical device regulations, and sustainability requirements.

3 www.healthdatacloud.eu

4 www.ebrain-health.eu

5 www.ebrains.eu/data/find-data/find-data

AI-Mind is committed to the content of the European AI
strategy (European Commission, 2020), and adapts to the future
liability and legislation framework of the European Union,
which is a probable scenario during the project period. To
bring the AI-Mind innovations into the clinics, it is crucial
for the tools to meet these requirements, both in each nation
and on the level of the European Union. Furthermore, the
development and implementation of AI-Mind decision-support
tools will require extensive processing of personal data inside
a secure data framework. AI-Mind data processing strictly
adheres to the General Data Protection Regulation (GDPR) of
the European Union, in addition to any applicable national
legislation concerning data processing and privacy issues. This
compliance is guaranteed internally by the project’s use of the
University of Oslo’s SSD server services, as well as within the
EBRAINS infrastructure. All medical devices used in the AI-
Mind study have been routinely employed clinically for several
decades. All device deficiencies (including malfunction, user
errors, and inadequate labeling) are documented and reported by
the local investigator throughout the clinical investigation and
appropriately addressed by the management support team of the
AI-Mind project.

To meet the United Nations’ sustainable development goals
for the 2030 healthcare agenda (United Nations, 2015), the EU
aims to create an ecosystem of excellence with a strong value
chain involving research, innovation, and eventually stronger
exploitation. The European Commission’s White Paper on
Artificial Intelligence (European Commission, 2020), the OECD’s
High-Level Expert guidelines published in April 2019 (OECD
Legal Instruments, 2019) and the WHO’s ethical considerations
for health policy and systems research [Alliance for Health Policy
and Systems Research (WHO) with the Global Health Ethics
Unit (WHO), 2019] stress the need for value-based research
and innovation during the expansion of AI-supported healthcare
technologies. Proactive adaptation of traditional clinical MCI
diagnostic procedures to the digital AI age is essential for the
sustainability of European healthcare systems in the face of
increasingly aging societies and limited health budgets. The AI-
Mind Connector and Predictor will identify MCI patients who
are at risk of dementia, and will thus facilitate timely preventive
strategies in such individuals. On the other hand, the tools will
also reduce the costs and burden of unnecessary investigations
on low-risk individuals. Moreover, the timely selection of subjects
to treat with novel innovative disease-modifying drugs, which
are expensive and with a non-marginal risk of side-effects (i.e.,
brain oedema and hemorrhage), will benefit significantly from
the development of the AI-Mind tools. Thus, the project will
potentially have significant social and economic implications
for both healthcare systems and those personally affected by
MCI and dementia. Indeed, allowing for timely identification
of at-risk individuals will pave the way for broader and faster
access to adequate care and disease-modifying treatments, leading
to improved patient care, optimized resource allocation, and
better outcomes for individuals affected by MCI. Therefore, the
expected academic output from AI-Mind will not only reflect
scientific and technical insights in the context of AI-supported
medicine, but also socioeconomic and ethical considerations for
global health.
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4 Conclusions

In this article, we have provided an overview of the AI-
Mind initiative’s background and its clinical study protocol. Going
forward, the scientific publications from the AI-Mind project
will expand upon the topics introduced here. These include
describing M/EEG features, AI frameworks for AI-Mind data,
managing data governance, addressing neuropsychological and
cognitive aspects, examining health technology assessment (HTA),
and ethical implications. Moreover, the clinical study outlined
in this article is anticipated to significantly contribute to future
discussions about the clinical assessment of AI-Mind across four
European countries. This discussion will cover health, economic,
and technological considerations. Presently, the project involves
more than 70 associated employees on a regular basis, and
it also includes representation from two major user groups:
Alzheimer Europe and the International League Against Epilepsy.
Importantly, neurological conditions are currently the leading
cause of combined morbidity and mortality. This necessitates
innovative, scalable, socioeconomically efficient, and sustainable
solutions for our global society. With collective efforts, our
consortium aims to introduce the AI-Mind platform and tools as
a novel screening method for assessing dementia risk within the
MCI population.
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