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Navigating robots with precision in complex environments remains a significant

challenge. In this article, we present an innovative approach to enhance robot

localization in dynamic and intricate spaces like homes and o�ces. We leverage

Visual Question Answering (VQA) techniques to integrate semantic insights into

traditional mapping methods, formulating a novel position hypothesis generation

to assist localization methods, while also addressing challenges related to

mapping accuracy and localization reliability. Our methodology combines a

probabilistic approach with the latest advances in Monte Carlo Localization

methods and Visual Language models. The integration of our hypothesis

generation mechanism results in more robust robot localization compared to

existing approaches. Experimental validation demonstrates the e�ectiveness of

our approach, surpassing state-of-the-art multi-hypothesis algorithms in both

position estimation and particle quality. This highlights the potential for accurate

self-localization, even in symmetric environments with large corridor spaces.

Furthermore, our approach exhibits a high recovery rate from deliberate position

alterations, showcasing its robustness. By merging visual sensing, semantic

mapping, and advanced localization techniques, we open new horizons for

robot navigation. Our work bridges the gap between visual perception, semantic

understanding, and traditional mapping, enabling robots to interact with their

environment through questions and enrich their map with valuable insights.

The code for this project is available on GitHub https://github.com/juandpenan/

topology_nav_ros2.

KEYWORDS

visual question answering, robot localization, robot navigation, semantic map, robot

mapping

1 Introduction

Precision navigation in intricate environments poses a fundamental challenge that
engages the interests of researchers and engineers. In contrast to humans, who can
adeptly navigate urban landscapes and complex terrains, replicating these abilities in
robots is a complex task, especially in dynamic and intricate spaces such as homes
and domestic environments. Despite notable advancements in indoor autonomous robot
navigation, challenges persist when navigating in environments that lack predefined maps
and discernible geometric landmarks. This is particularly evident in settings like office
buildings, healthcare facilities, and structures with extensive corridor networks, where
classical localization methods can encounter difficulties (Wu et al., 2021).
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Robot navigation primarily relies on two critical components:
accurate mapping and reliable localization. Mapping involves
creating a representation of the environment, typically in the form
of either geometric maps (Hornung et al., 2013) or semantic
maps (Huang et al., 2023), which help robots understand their
surroundings. On the other hand, localization is the process
of pinpointing a robot’s exact position within this mapped
environment. Achieving these components seamlessly presents a
substantial challenge. This challenge arises from the fact that many
classical methods use particle populations that may converge to
incorrect positions, close to the robot’s actual position (Wu et al.,
2021; Ge et al., 2022). To address this, we propose leveraging
the semantic characteristics found in different environments, such
as hospital and office buildings, which possess room numbers,
door colors, and other features, by harnessing machine learning
techniques resulting in a valid robot position hypothesis.

Recent developments in artificial neural network models have
showcased their potential for integration into various robotic
applications. This is notably evident in the case of Visual Language
Models and Large Language Models (Ahn et al., 2022; Huang
et al., 2022; Driess et al., 2023; Wu et al., 2023; Xiao et al.,
2023), as well as VQA technologies (Deng∗ et al., 2021; Kamath
et al., 2021; Amodeo et al., 2022). These advancements have paved
the way for robots to augment classical methods in navigation,
localization, mapping, and manipulation by grounding their
capabilities in language and visual embedding. By integrating these
sophisticated neural network models, robots are endowed with
the ability to interact with their environment in a more natural
and intuitive manner. They can understand and respond to verbal
and visual cues, enabling smoother human-robot interactions.
Moreover, these models facilitate a broader scope of robotic tasks.
Robots can effectively analyze and interpret visual data from their
surroundings, leading to improved decision-making capabilities.
They can also leverage language understanding to comprehend
instructions and queries from humans, enhancing their adaptability
in diverse scenarios. As a result, the integration of artificial neural
networks into robotics promises not only increased efficiency
in navigation and manipulation but also more user-friendly and
effective interactions between robots and humans.

This article delves into the capabilities of VQAmodels (Kamath
et al., 2021) in robotics. It shows how these models can add valuable
information to traditional costmaps environment representation
with semantic insights from statistical environmental models. This
work proposes a coarse-to-fine localization paradigm, blending
these semantic clues with a classic LiDAR-based method (Garcia
et al., 2023) for robust navigation, by changing its map-matching
hypothesis generation with our semantic position clues method.
Our approach seamlessly fits into the widely used Robot Operating
System (ROS 2) framework (Macenski et al., 2022), while extending
the capabilities of Navigation 2 (Nav2) (Macenski et al., 2020);
an illustration of our method can be seen in Figure 1. This smart
integration boosts our approach’s reliability, pushing for smarter
and more adaptable robots in complex environments. Thus, the
main contributions of this work are:

• Introduction of a novel approach for environment
representation, leveraging semantic information to bridge
the gap between language models and traditional mapping

techniques. This representation also enables the incorporation
of essential environmental characteristics grounded in natural
language.

• Development of an observation model capable of generating
robot state hypotheses by inquiring about the surroundings,
harnessing the advantages offered by VQA models.

• Comparison and evaluation of the proposed observation
model with classical map-matching techniques (Garcia et al.,
2023).

In the subsequent sections, we delve into the details of our
methodology, present experimental validations, and discuss the
implications of our findings for the broader field of robotics.

2 Materials and methods

Two pillars in robot navigation are the mapping and
localization process. Most of the efforts in this field have focused
on particle filtering (Marchetti et al., 2007; Teslić et al., 2010; Pak
et al., 2015) and graph optimization methods (Xuexi et al., 2019;
Debeunne and Vivet, 2020), relying mostly on LiDAR sensors. One
of the most important algorithms is the Adaptive Monte Carlo
Localization (AMCL) (Pfaff et al., 2006). It has become a robust
approximation for robot navigation applications, and the state-of-
the-art robot navigation framework Nav2 (Macenski et al., 2023),
implemented in ROS 2 (Macenski et al., 2022), relies on.

Another approach to robot localization is to use multiple
hypotheses, improve robot localization precision, and improve
localization methods to apply complete uncertainty, such as
the kidnapped robot problem (Engelson and McDermott, 1992).
Current work on this method has been focused on taking advantage
of different sensors with available navigation algorithms, such as Ge
et al. (2022), which combines visual features of the environment,
identifying spaces in the map tagged with numbers. Another
work that employs visual features for hypothesis generation is the
one proposed by Yun and Miura (2007), where the lack of GPS
precision was compensated with visual information. Furthermore,
the incorporation of different types of sensors has been used
to produce multiple hypotheses of robot position, such as radio
sensors (Xiong et al., 2022), GPS (Schuessler and Axhausen, 2009),
visual SLAM (Chan et al., 2018), and Bluetooth Low Energy (BLE)
beacons (Zhuang et al., 2016). Map matching techniques have
also been successfully implemented for robot localization, which
is the case for Garcia et al. (2023), where the map resolution is
changed to efficiently scan the whole environment, searching for
the hypothesis.

As discussed above, recent advances in natural language
processing using neural networks and the robustness of more
classical mapping and localizationmethods have recently generated
significant enthusiasm to improve robot navigation (Salas-Moreno
et al., 2013; Huang et al., 2023). So far, most efforts have been
focused on object detection, adding landmarks to the map based on
the object classes. More recently, work has been focused on taking
advantage of large pre-trained visual language models, generating
novel map representations using the embedded spaces of such
models. On the contrary, our methods rely on VQA, enabling a
conversational way to improve current map representations.
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FIGURE 1

Localization process overview.

VQA models have emerged as a means for robots to gather
information about their environment by asking questions about
what they perceive (Ahn et al., 2022). These models leverage
visual inputs such as images and natural language questions to
provide answers. Various architectures, including Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
have been employed for VQA tasks (Kamath et al., 2021). Our
work aligns with this trend, utilizing a VQA model to obtain
semantic clues from the environment. By generating questions and
interpreting answers, our method enriches the robot’s map with
valuable insights beyond geometric data.

3 Methodology

The proposed localization method employs the discrete Bayes
filter algorithm (Cassandra et al., 1996). Central to this approach is
the measurement model, which derives its efficacy from semantic
features extracted from the environment using a VQA model
(Kamath et al., 2021). The robot’s belief state, denoted as bel(xt),
encapsulates its position xt = (x, y,ψ)T at time t. Here, x and y

represent the coordinates aligned with the map’s origin, while ψ
signifies a discretized version of the yaw angle.

The computation of this position is facilitated by employing
the VQA model. By posing a series of predefined questions in
tandemwith themost recent camera data, a series of semantic clues,
S = {s0, s1, ..., sT}, is generated. Each element si within this series
corresponds to a vectorized response to queries such asWhat is the

object that is in front of me? or Is there any door?. By comparing the
model’s answers with a predefined semantic map M, a discretized
probability grid emerges, offering a nuanced characterization of the
robot’s current belief state bel(xt).

Within this grid, the greatest values are extracted to form
a population of particles. These particles, representative of the

semantic clues, are continuously updated using data from the
robot’s odometry sensor measurements A = {a0, a1, ..., aT},
ensuring the robot’s state is consistently updated and accurate.
This methodology is further enhanced by integrating traditional
techniques that utilize LiDAR sensors. The result is a robust
localization method with the ability for autonomous self-
localization. This capability is achieved by refining the initial visual
semantic clues through established methods such as AMCL (Pfaff
et al., 2006) or MH-AMCL (Garcia et al., 2023).

3.1 Semantic map generation

To generate an appropriate map, we combine classical costmap
definitions (Hornung et al., 2013) with semantic information
extracted from the environment. This approach enriches a precise
geometric map definition, such as the costmap, with valuable
semantic insights. Formally, we define the map as MH×W×A×S,
whereH andW represent the dimensions of the top-down costmap
(H,W ∈ R). A ∈ R indicates the grid discretization of the robot’s
orientation angle ψ , and S is a vector of n tuples containing both
the answers t and the model’s scores q:

S =
[

(t1,1, q1,2, ..., t1,k, q1,k), ..., (tn,1, qn,2, ..., tn,k, qn,k)
]

(1)

Based on the last definition, creating a new map involves
three fundamental assumptions: first, a set of pre-defined questions
related to the environment are selected; second, the availability of
odometry data; and finally, the existence of a costmap, to append
semantic information.

In order to generate the costmap where the semantic map will
be built, relying on laser and odometry sensors, the mathematical
equation used to build a costmap is:
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FIGURE 2

Costmap and angle discretization flattening process to append semantic features.

p(m|Z1 : t ,X1 : t) =
∏

i

p(mi|Z1 : t ,X1 : t) (2)

The equation denoted as (2) characterizes a probability density
function representing the probability of the costmmap’s accuracy
(m), given all available laser sensor measurements (Z1 : t) and the
robot’s positions (X1 : t) up to time t. The symbol

∏

i indicates a
product taken over each individual element (mi) within the map
m. Each term p(mi|Z1 : t ,X1 : t), signifies the likelihood of a specific
costmap element mi being correct, taking into account all the
collected sensor data and robot positions.

Before appending the semantic information into the costmap,
a series of questions have to be defined. Those are formulated
based on characteristic objects in the environment. For instance,
any unique piece of furniture, a distinctive wall color, or a special
combination like, Is the blue chair next to the door? could be
employed to enhance localization performance. More general
questions can also be formulated, such as asking about any object
in front of the robot. We have determined that employing one or
two general questions in conjunction with more specific ones could
yield enhanced results.

With the grid map in place, odometry information available,
and the questions defined. Extracting semantic information to
build the environment involves the robot capturing images while
navigating the map. These images are labeled using a geometric
index I ∈ N, computed by flattening the first three dimensions
of the map MH×W×A as shown in Figure 2. For each index, a
series of images are captured and stored on disk. It can be seen
in Algorithm 1, how the robot uses the odometry information to
compute a single index by converting the map data structure into
an array of flat indices.

After all images have been collected, the VQAmodel comes into
play. This model is an extension of DETR (Carion et al., 2020),
it combines image and text features to enhance object detection.
It leverages a shared embedding space, utilizing a cross encoder
and a transformer decoder to predict object boxes. The model is
pre-trained and evaluated on tasks, including the CLEVR dataset
(Johnson et al., 2016).

To incorporate semantic features into the map, the VQAmodel
is used for predefined questions and their respective indices. Both
the acquired answer and the model score are then added to the
costmap. Algorithm 2 provides a clear illustration of how themodel
is invoked to obtain the answer along with its associated score,
which is subsequently appended to the costmap using a unique
index to denote its spatial location. In particular, since multiple
images are captured for each index, recurring answers are averaged
before being integrated into the map. The map generation process
is depicted in Figure 3.

1: procedure STORE_DATA(image_msg, odom_msg)

2: world_x ← Get x-coordinate from

odom_msg.pose.pose.position

3: world_y ← Get y-coordinate from

odom_msg.pose.pose.position

4: world_yaw ← Calculate yaw from

odom_msg.pose.pose.orientation

5: occupancy_x, occupancy_y ← _get_occupancy_x_y

(world_x,world_y)

6: state_index ← occupancy_x_y_to_topological_index

(occupancy_x, occupancy_y,world_yaw)

7: Save the tagged image with index to disk

8: return True

9: end procedure

Algorithm 1. Capture images from environment.

3.2 Position hypothesis generation
algorithm

The localization algorithm focuses on extracting information
from the camera sensor. This process begins with capturing the
most recent image taken by the robot, which is then input to
a VQA model, prompted with a predefined set of questions Q.
Those questions explore possible features the robot can use to
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locate itself, Table 1 shows some question examples that can be
used. Once the answers are obtained, a comparison is made against
the pre-existing semantic map. Specifically, current answers are

1: procedure SAVE_MAP_TO_DISC(costmap,

images_folder_path)

2: Map ← SemanticMap(costmap,

angle_discretization_resolution, questions_qty)

3: for all images in images_folder_path do

4: index ← tagged_image

5: for question in all predefined questions do

6: answer, score ← forward_vqa_model(image, question)

7: if answer already in answers then

8: compute score mean

9: Map ← append at index the answer

10: Map ← append at index the score mean

11: else

12: Map← append at indexanswer

13: Map← append at indexscore

14: end if

15: end for

16: end for

17: Save map to disk

18: end procedure

Algorithm 2. Generate semantic map.

looked up in the semantic map, for those that there is a match, we
compute the inverse of the distance between the model’s current
score to the map-recorded values. Additionally, our observation
model rewards the possible position if multiple answers align
with the map. This is achieved by applying the Bayesian rule and
multiplying the probabilities of each answer. The entire process
of obtaining a weighted accuracy based on semantic information
can be seen in Algorithm 3. It is important to consider that
the assumption of independence between answers holds. The top
values are clues generated by our measurement model, those are
then updated based on the input from actuators. This involves
convolving the current distribution on the map to ensure that
it remains consistently up-to-date. This forms the initial stage of
the localization process. At this stage, the map is populated with
potential locations where the robot could be located.

Subsequently, our approach takes advantage ofmore traditional
methods (Garcia et al., 2023), capitalizing on the precision offered

TABLE 1 Sample questions.

Question examples

What object is in front?

Is there any human?

What is the ceiling color?

Is there any X object?

FIGURE 3

Mapping process overview.
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by LiDAR sensors. We establish a particle population for the top
four most probable locations, for each population, a predetermined
number of particles is generated and continuously updated until
convergence. Periodically, the algorithm checks for new particle
populations based on the input of the camera sensor. If the existing
particles have not yet converged or lack quality, the algorithm
generates new particles to replace them.

This approach supersedes map-matching techniques that often
prove computationally intensive for large maps. Unlike the need to
iterate through the entire map to generate new particle populations,
our approach already incorporates this step by leveraging the VQA
model. The overall localization process can be seen in Figure 4.

1: function PERCEPTIONUPDATE

2: Input: VQA features

3: for each feature in VQA Features Data do

4: occurrences ← FindOccurrencesIn

TopologicalMap(feature)

5: current_question_occurrences ←

FilterOccurrencesForCurrentQuestion(occurrences)

6: unique_indexes ← GetUniqueIndexes

(current_question_occurrences)

7: for each unique index in unique_indexes do

8: Calculate weighted accuracy:

9: acc = 1/(|vqa_features.score−mean_map_stored_score| + 0.2)

10: Update the localization grid and grid yaw

values using:

11: self ._localization_grid[row, col, yaw_ind]∗ = acc

12: end for

13: end for

14: NormalizeLocalizationGrid()

15: semantic_clues← argmax LocalizationGrid

16: end function

Algorithm 3. Observation model algorithm.

4 Results

To validate our implementation, we performed two
experiments in a realistic scenario; the Tiago mobile manipulator
robot was used. Since the proposed implementation is based on the
reliable and already tested multi-hypothesis localization method
(Garcia et al., 2023). We selected Nav2 as the baseline for all
the experiments. This framework stands as a pivotal initiative in
mobile robotics, offering an advanced system to guide autonomous
mobile robots (Macenski et al., 2023). We ensure that Nav2 outputs
a reliable robot position using a predefined path. Furthermore, we
compared our method with its predecessor, MH-AMCL (Garcia
et al., 2023).

The questions used to semantically describe the environment
in the experiments are the same in both experiments 4.1 and 4.2.
Questions are shown in Table 2.

All experimental trials were conducted on an entire floor of the
building at Rey Juan Carlos University, providing approximately
1200 m2 for navigation. The environment consists primarily of
corridors and a laboratory area, as shown in Figure 5. This setup

allowed us to confirm the suitability of our algorithm for expansive
spaces. For all experiments, data was captured with the rosbag tool 1

using a computer featuring an AMD RyzenTM9 7845HX processor,
32GB of RAM, and an NVIDIA RTX 4060 GPU. The proposed
experiments are described below.

4.1 Experiment 1

This experiment aims to analyze the performance of our
method by comparing it with its map-matching precursor method
(Garcia et al., 2023) while also evaluating its localization precision
by measuring the position error. Three trials were conducted in
which the robot had to navigate through a predefined path. In each
trial, the robot starts from a known position, and the same path is
used throughout all trials, regardless of the method.

First, the baseline position is obtained by following the
predefined path using Nav2. Then, using the same path, the
localization method is switched to MH-AMCL and, finally, the
proposed approach is tested. The same navigation route was
repeated three times. For this experiment, the following variables
have been measured:

• Position error: Absolute error in cm using the Nav2 position
as our real value; this error corresponds to the absolute
difference between each position component, the x and y axis,
as well as the yaw angle.

• Particle number and quality: The quality measurement was
introduced by Garcia et al. (2023) and was used to determine
the best particle population by averaging the likelihood of
the particles with respect to the last sensory perception. This
quality metric assesses the correspondence between predicted
and current laser scans by computing the rate of matched
laser beams. Introducing this metric enables a quantitative
evaluation of particle alignment with laser data. Specifically,
the quality can be calculated as follows:

Quality(Pt) =

∑n
j=0 p

t
j .h

|Zt| · |Pt|
(3)

• ptj .h represents the matching laser hits associated with each
particle ptj in the population Pt.

• n represents the total number of particles in the population.
• |Zt| represents the total number of sensor readings in the

observation Zt.
• |Pt| represents the total number of particles in the

population.

In Figure 6, the paths taken by the compared methods are seen.
The MH-AMCL method deviates in several parts of the route. In
contrast, our method consistently follows the intended positions.

One of the key factors contributing to our algorithm’s ability
to converge to an accurate position is its adeptness in generating
precise position hypotheses. This proficiency is notably attributed
to the meticulous formulation of environmental queries during
the mapping process. As depicted in Figure 7, our hypothesis

1 https://github.com/ros2/rosbag2
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FIGURE 4

Localization procedure.

TABLE 2 Questions used in all experiments.

Questions

What object is in front?

Is there a whiteboard?

Is there a fire extinguisher?

Is there a door?

Is there a brown wall?

Is there a chair?

Is there a trash can?

generation method consistently yields positions in close proximity
to the actual robot position. The image vividly demonstrates how
the input images received by the robot, in conjunction with the
output of the VQA model, contribute to the generation of accurate
robot position hypotheses.

Figure 8 shows the position error (in cm) separated by the
three main directions, x, y, and yaw. Both MH-AMCL and
our algorithm are presented in the figure. For the proposed
experiments, our method achieved better position estimation in

both X and Y directions. However, the MH-AMCL algorithm
achieves better results on the yaw angle. The observed error
can be attributed to the fact that, although the MH-AMCL
method may diverge in certain segments of the path, as
illustrated in Figure 6, it consistently maintains the correct
orientation. Overall, our method stands out in precision for
large environments.

Figure 9 displays the trends of the MH-AMCL particles
compared to our algorithm. The MH-AMCL approach shows
a direct relation between the quality of the particles and the
hypothesis generated. On the other hand, our method achieves
good-quality particles in the first half of the experiment, although
the number of hypotheses is smaller than the MH-AMCL
algorithm, as seen in Figure 9. In both methods, after 50 s of
experiment execution, the number of particles starts to oscillate
between 2 and 4. The quality trend of our proposed method
exhibits a discrete pattern. Unlike the compared method, MH-
AMCL, scans the entire map to identify geometric similarities from
the laser scan, leading to similar geometric position hypotheses and,
consequently, similar quality outputs. Conversely, our approach
generates hypotheses based on semantic features, which are more
likely to vary in geometry, resulting in a divergence in the quality
metric.
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FIGURE 5

Experiments environment.

FIGURE 6

Followed path by each method in Experiment 1.
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FIGURE 7

Proposed method introspection for the experiment 1. Position hypothesis are the top values generated by Position hypothesis generation process.

FIGURE 8

Absolute error position in X, Y axis and Yaw direction.
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FIGURE 9

Particle analysis for MH-AMCL and proposed method.

4.2 Experiment 2

This experiment aims to gauge the algorithm’s robustness for
self-localization. To assess this, the robot’s position is intentionally
altered every 30 s, and we measured the recovery time as
well as the success rate. The experiment was repeated three
times and values presented in Table 3 represent the average.
The Nav2 baseline was excluded from this experiment as
it does not address the kidnapped robot problem, and its
robustness is insufficient for a meaningful comparison in this
specific scenario.

In Table 3, it is shown how the proposed method improves the
recovery time while maintaining the success rate, this While MH-
AMCL generates hypotheses by scanning the entire cost map, our
method produces hypotheses based solely on the current matched
output model questions with the semantic map. This approach
allows for more efficient and targeted hypothesis generation,
enhancing the overall localization process. This difference can be
also seen at Figure 10 where the computing time of each method is
shown.

5 Discussion

In this paper, we present a novel methodology to improve
robot localization in indoor settings using position hypotheses
derived from the potency of Visual Question Answering VQA
techniques. This approach addresses the challenges associated
with achieving accurate mapping and offers reliable localization
when integrated with traditional methods, especially in complex
and large environments. In particular, these challenges become

TABLE 3 Recovery time.

MH-AMCL Ours

Recovery time (s) 0.028001 0.016917

Success rate 100% 100%

pronounced in spaces characterized by symmetry, which are
frequently encountered in residential, office, and healthcare-related
buildings. We have enriched conventional mapping techniques
by seamlessly integrating semantic insights derived from a VQA
model. This integration has yielded a resilient and versatile
approach to position hypothesis generation for robot localization.

Our experiments demonstrated the effectiveness of our
approach in improving robot localization precision. In Experiment
1, our method showcased superior performance in position
estimation and particle quality compared to the MH-AMCL
algorithm. This indicates the potential of our VQA-based
approach to achieve accurate and efficient self-localization in large
environments.

Furthermore, Experiment 2 highlighted the robustness of our
algorithm in recovering from intentional position alterations. The
low recovery time and 100% success rate underscore the reliability
of our method even in scenarios with deliberate disruptions.

Our work contributes to robot navigation by bridging the gap
between visual sensing, semantic understanding, and traditional
mapping techniques. By incorporating VQA models, we offer
robots the capability to interact with their environment through
questions, enriching their map with valuable insights beyond
geometric data.
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FIGURE 10

Time comparison of localization algorithm execution.
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Teslić, L., Škrjanc, I., and Klančar, G. (2010). Using a LRF sensor in the
Kalman-filtering-based localization of a mobile robot. ISA Trans. 49, 145–153.
doi: 10.1016/j.isatra.2009.09.009

Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song, S., Bohg, J., Rusinkiewicz,
S., and Funkhouser, T. (2023). Tidybot: personalized robot assistance with large
language models. arXiv preprint arXiv:2305.05658.

Wu, Z., Yue, Y., Wen, M., Zhang, J., Peng, G., andWang, D. (2021). “MSTSL: multi-
sensor based two-step localization in geometrically symmetric environments,” in 2021
IEEE International Conference on Robotics and Automation (ICRA) (Xi’an), 5245–5251.
doi: 10.1109/ICRA48506.2021.9561471

Xiao, T., Chan, H., Sermanet, P., Wahid, A., Brohan, A., Hausman, K., et al. (2023).
Robotic skill acquisition via instruction augmentation with vision-language models.
arXiv preprint arXiv:2211.11736. doi: 10.48550/arXiv.2211.11736

Xiong, J., Xiong, Z., Ding, Y., Cheong, J. W., and Dempster, A. (2022).
Multihypothesis Gaussian belief propagation for radio ranging-based localization
and mapping. IEEE Trans. Instrument. Meas. 71, 8502713. doi: 10.1109/TIM.2022.31
80425

Xuexi, Z., Guokun, L., Genping, F., Dongliang, X., and Shiliu, L. (2019). “Slam
algorithm analysis of mobile robot based on lidar,” in 2019 Chinese Control Conference
(CCC) (Guangzhou), 4739–4745.

Yun, J., and Miura, J. (2007). “Multi-hypothesis outdoor localization using multiple
visual features with a rough map,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation (Rome), 3526–3532.

Zhuang, Y., Yang, J., Li, Y., Qi, L., and El-Sheimy, N. (2016). Smartphone-
based indoor localization with bluetooth low energy beacons. Sensors 16, 596.
doi: 10.3390/s16050596

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1290584
https://doi.org/10.3390/s20072068
https://doi.org/10.48550/arXiv.2303.03378
https://doi.org/10.3390/machines10030169
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.48550/arXiv.2207.05608
https://doi.org/10.48550/arXiv.1612.06890
https://doi.org/10.48550/arXiv.2104.12763
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1016/j.robot.2023.104493
https://doi.org/10.1109/TII.2015.2462771
https://doi.org/10.3929/ethz-b-000019956
https://doi.org/10.1016/j.isatra.2009.09.009
https://doi.org/10.1109/ICRA48506.2021.9561471
https://doi.org/10.48550/arXiv.2211.11736
https://doi.org/10.1109/TIM.2022.3180425
https://doi.org/10.3390/s16050596
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Peña-Narvaez et al. 10.3389/fnbot.2023.1290584

Glossary

Visual question answering

A field of artificial intelligence that involves training models to
understand and respond to questions about visual data, typically
images or videos. It combines computer vision techniques (to
analyze images) with natural language processing (to understand
and answer questions). In the context of the paper, VQA is used
to gather information about the robot’s environment by asking
questions about what it perceives.

Semantic features/insights

Meaningful information and understanding derived from the
analysis of data in a way that considers the context and meaning
of the elements involved. In the context of the paper, it involves
extracting meaningful information about the environment from
VQA models answers, those can go beyond just geometric data,
incorporating elements like object and rooms identification, colors,
etc.

Monte carlo localization

A probabilistic technique used in robotics for estimating
the position of a robot within an environment. It works by
maintaining a large number of hypothetical positions (particles)
and updating their likelihood based on sensor measurements.
Over time, as the robot moves and receives sensor data,
the particles converge to a more accurate estimate of the
robot’s position.

Robot mapping

Creating a representation of the environment in which a
robot operates. This representation is typically in the form
of a map that helps the robot understand and navigate its
surroundings. Mapping can be done using various sensors,
such as LIDAR, cameras, or other types of detectors, and it
can include both geometric information (like distances and
angles) as well as semantic information (like object labels or
room identifications).
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