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Introduction: Decades of research have been dedicated to overcoming the

obstacles inherent in synthetic aperture radar (SAR) automatic target recognition

(ATR). The rise of deep learning technologies has brought a wave of new

possibilities, demonstrating significant progress in the field. However, challenges

like the susceptibility of SAR images to noise, the requirement for large-scale

training datasets, and the often protracted duration of model training still persist.

Methods: This paper introduces a novel data augmentation strategy to address

these issues. Our method involves the intentional addition and subsequent

removal of speckle noise to artificially enlarge the scope of training data through

noise perturbation. Furthermore, we propose a modified network architecture

namedweighted ResNet, which incorporates residual strain controls for enhanced

performance. This network is designed to be computationally e�cient and to

minimize the amount of training data required.

Results: Through rigorous experimental analysis, our research confirms that

the proposed data augmentation method, when used in conjunction with the

weighted ResNet model, significantly reduces the time needed for training. It also

improves the SAR ATR capabilities.

Discussion: Compared to existing models and methods tested, the combination

of our data augmentation scheme and the weighted ResNet framework achieves

higher computational e�ciency and better recognition accuracy in SAR ATR

applications. This suggests that our approach could be a valuable advancement

in the field of SAR image analysis.

KEYWORDS

weighted residual network, data augmentation, synthetic aperture radar (SAR), automatic

target recognition (ATR), deep learning—artificial intelligence

1 Introduction

Due to its ability to operate independently of atmospheric and sunlight conditions,

synthetic aperture radar (SAR) offers advantages over optical remote sensing systems.

Automatic target recognition (ATR) is a crucial application of SAR systems, traditional

techniques relied on handcrafted features such as the shape, size, and intensity of objects

in the images (Oliver and Quegan, 2004). However, these techniques faced limitations as

they required manual feature extraction and were susceptible to variations in conditions,

object orientations, and configurations Wu et al. (2023a) and Yuan et al. (2023). In recent

years, numerous approaches have emerged with the advancement of learning algorithms

such as generative neural networks, multilayer autoencoders (Wu et al., 2022), long short-

term memory (LSTM), and highway unit networks (Deng et al., 2017; Lin et al., 2017; Song

and Xu, 2017; Zhang et al., 2017). However, it is important to note that even state-of-the-art

machine learning algorithms may encounter challenges when applied to SAR ATR, such as

the limited availability of training samples and the issue of model overfitting.
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To address these challenges, Chen et al. (2016) have introduced

all-convolutional networks (A-ConvNets) as a solution, reducing

the number of free parameters in deep convolutional networks and

thus mitigating the overfitting problem caused by limited training

images. Furthermore, several SAR image data augmentation

methods have been proposed in recent years, such as the works

by Zha (1999), Ding et al. (2016), Wagner (2016), Xu et al. (2017),

and Pei et al. (2018a), aiming to tackle the issue of limited training

data.

In order to enhance the training data for SAR target

recognition, several methods have been proposed. Zha (1999)

suggested generating artificial negative examples by permutating

known real SAR images to increase the dataset size. Wagner

(2016) utilized positive examples to improve robustness against

imaging errors. Pei et al. (2018a) developed a multi-view deep

learning framework that generates a large amount of multi-

view SAR data for training. This approach expands the training

dataset by incorporating the spatial relationships between target

images, resulting in improved recognition accuracy. Additionally,

techniques such as suppressing speckle noise through fusion

filters (Xu et al., 2017) and adding simulated speckle noise with

varying parameters to training samples (Ding et al., 2016) were

employed to enhance the SAR image data.

Among deep learning networks, Convolutional Neural

Networks (CNNs) appear to be the most popular choice for

SAR target recognition (Chen et al., 2016). However, severe model

overfitting related to deep CNNs in SARATRwas observed, leading

them to propose an alternative solution called all-convolutional

networks (A-ConvNets) to reduce the number of free parameters.

A-ConvNets consist of sparsely connected layers instead of fully

connected layers, providing a means of adjusting the model

training process by improving network architecture.

There have been additional studies combining CNNs

with assistant approaches, particularly in the context of data

augmentation (Zhang et al., 2022; Wu et al., 2023b). The

data augmentation methods used in SAR ATR can be broadly

categorized into spatial information-related methods (Wagner,

2016; Pei et al., 2018a) and speckle noise-related methods (Xu et al.,

2017). For spatial information-related approaches, Pei et al. (2018a)

proposed a multiview deep learning framework that generates a

large amount of multiview SAR data. This includes combinations

of neighboring images with different azimuth angles but the same

depression angle. By expanding the training dataset through this

multiview SAR generation system, the spatial relations among

target images are taken into account, resulting in higher model

accuracy. Another typical method involves generating artificial

images through distortion and affine transformation (Wagner,

2016).

Regarding the approach related to speckle noise, Xu et al.

(2017) proposed a data augmentation technique utilizing a fusion

filter-based noise suppression approach. This approach aims to

address the low recognition rate and low robustness of traditional

classification methods toward speckle noise. Other works have

also focused on incorporating speckle noise characteristics in

data augmentation techniques (Chierchia et al., 2017) and

CNN models (Ma et al., 2019). Also, researchers are seeking

to modify traditional CNN structures to better cater to SAR

ATR requirements. These efforts include altering the learning

parameters (Pei et al., 2018b), optimizing the network structure,

and integrating speckle noise-related factors during model

training (Kwak et al., 2019). In their work, the speckle noise was first

suppressed using the fusion filter, and then the noise-suppressed

images were used for network training to enhance model accuracy.

In SAR ATR tasks, CNNs have been extensively applied

due to their effectiveness. Neural network structures, such as

convolutional highway units, have been employed to train deeper

networks with limited SAR data (Lin et al., 2017). However, it is

important to consider the special characteristics of SAR images and

adjust them accordingly to network models.

Although existing SAR ATR works have primarily utilized

machine learning frameworks, particularly neural networks, and

made significant efforts in adapting SAR images to networkmodels,

SAR images require special attention due to their uniqueness

as remote sensing data. For instance, the application of deep

convolutional highway units demonstrated promising results in

training deeper networks with limited SAR data, the introduction

of extra parameters, and the potential invalidation of layers due to

shortcut connections need to be considered (Lin et al., 2017).

Literature has shown that data augmentation, particularly

noise-related methods, can improve model accuracy (Ding

et al., 2016). Some works have been done to simulate and

incorporate speckle noise with different parameters into the

training samples (Ding et al., 2016). However, evaluating

handcrafted images against ground-truth data and predicting

real-world recognition processes presents challenges. It is also

important to consider image samples with noise cancellation in

addition to noise addition, as both can contribute to the network

training process.

Furthermore, to address the limitations of the CNN structure,

other improvements can be considered in terms of the training

process. CNNs are known for their strong feature extraction

capability, resulting in success in image processing-related areas.

However, when applying CNNs to SAR ATR, it is crucial to

address the limited quantity of ground truth images, which

are more difficult to acquire compared to optical RGB format

images (Hochreiter and Schmidhuber, 1997; He et al., 2016).

Overfitting can become a problem when training CNN models on

SAR data.

Motivated by these considerations, this paper proposes a

modified version of the Residual Network (ResNet) for SAR ATR,

incorporating data augmentation to enhance recognition accuracy.

Specifically, a residual strain control is introduced to modify

the ResNet structure proposed by He et al. (2016), which has

demonstrated superior training depth and accuracy compared to

other CNNs. The proposed modification reduces training time

and enlarges the SAR image dataset by both canceling and

adding speckle noise, leading to improved recognition accuracy.

Experimental results show that the proposed weighted ResNet,

combined with data augmentation, enhances computational

efficiency and recognition accuracy.

The main contributions of this paper can be summarized as:

1) This paper proposes a data augmentation method related to

speckle noise in SAR images, which enhances the size and quality

of the SAR image dataset. This augmentation, which involves both

the addition and removal of noise, resulted in a more robust and

accurate CNN model for SAR ATR.
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2) A weighted ResNet is proposed which incorporates a unique

residual strain control factor in its framework. By adjusting the

residual strain of each weight layer, the weighted ResNet managed

to enhance the model’s computational efficiency, accuracy, and

convergence speed, offering a major step in model optimization.

3) This paper presents comprehensive experiments to validate

the effectiveness of the proposed algorithm. It further compared

the weighted ResNet with other prominent CNNs, verifying its

superiority in terms of training depth, model accuracy, and

accelerated convergence.

The rest of the paper is organized as follows: Section 2 presents

the proposed data augmentation method based on noise removal

and addition. Section 3 provides details on the design of the

modified residual network. Section 4 presents experimental results,

while Section 5 presents the conclusions. The weighted ResNet

structure includes a residual strain control factor added to the

last layer of each shortcut unit. Compared with other CNNs, the

improved network structure has advantages in terms of training

depth and model accuracy, as well as accelerated convergence

compared to the original ResNet. For data augmentation, an

approach incorporating speckle noise addition and cancellation

is proposed, resulting in an expanded dataset encompassing both

ground-truth and noisy samples. Efficient data augmentation and

improved network model accuracy in SAR ATR are achieved

compared to other methods by rearranging the training and

test datasets.

2 Data augmentation methodology

In this section, we shall present a data augmentation method

based on the noise perturbation. More precisely, we augment the

dataset by both canceling and adding noise.

2.1 Speckle noise in SAR images

It is known that SAR imaging suffers from speckle noise.

Assume that the radar works under single looking mode, the

observed scene can be modeled with multiplicative noise as

I = s · n (1)

where I represents the observed intensity, s is the radar cross

section (RCS) and n denotes the speckle noise. The amplitude of

the RCS obeys exponential distribution with unit mean and the

speckle noise is a kind of multiplicative noise. Hence, to generate

a SAR image without speckle noise, we first obtain the speckle

noise estimate by dividing the ground-truth images by the RCS

estimate as

n̂ = I/ŝ (2)

where ŝ represents the RCS estimate obtained by applying the

median filter.

2.2 Noise based data augmentation

Unlike existing data augmentation approaches, we propose to

expand the dataset via noise suppressing as well as noise adding.

FIGURE 1

Data augmentation and network training process.

Figure 1 describes the overall system of the proposed method. It is

noticed that the whole process can be in general divided into three

parts: data augmentation process, model training, and classification

accuracy test.

Following (1) and (2), it is not difficult to imagine that we can

utilize the estimated speckle noise n̂ to enlarge the training dataset

by adding the speckle noise through multiplication and canceling

suppressing through division. By doing so, it is able to get lower

signal to noise (SNR) images and higher SNR images, which can be

expressed as

IlowerSNR = I · n̂

IhigherSNR = I/n̂ (3)

For data augmentation, both the lower SNR images and higher SNR

images are taken as effective support.

3 Deep residual network design

In this section, we shall present the weighted ResNet structure,

which has shortcut block units modified by introducing a residual

strain control parameter in the second convolutional layer. The

weighted ResNet results in less training time compared to its

original counterpart.

3.1 Network structure unit

As evaluated in the ILSVRC 2015 classification task, ResNet

achieves a 3.57% error on the ImageNet test set, which won

1st place (He et al., 2016). Equipped with shortcut connections,

ResNet excels in both learning depth and recognition accuracy

compared to plain convolutional neural networks. The essential

idea of the ResNet is that it learns the residual function

instead of the underlying mapping. The residual function,

defined as the difference between the underlying function and

the original intensity function (input), automatically includes

reference from the input. However, in common CNN networks,

the mapping function is learned as a new one in the stacked
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FIGURE 2

Weighted ResNet shortcut connection.

layers. In other words, the layers are reformulated as residual

functions with reference to the layer inputs rather than learning

unreferenced functions.

It may have overwhelming advantages, but problems also

clearly exist.While conducting experiments with popular networks,

we found that ResNets are less likely to converge even after other

networks are well trained. This computational shortcoming drove

us to explore the reason behind it and left room for improvements.

Consequently, we introduced a weighted ResNet variant in our

MSTAR data implementation. For a clearer explanation, the

supporting theory and analysis will follow the introduction of the

network structure.

Figure 2 shows a single shortcut connection of the weighted

ResNet, where the fourth and back layers are skipped for the sake

of simplicity. The underlying mapping functionH(x) is defined as

y = H(x) = F
(

x,Wi

)

+Wsx (4)

where x denotes the input intensity and Ws is a linear projection

which matches the dimensions of x with an modified residual

function F(·) as

F
(

x,Wi

)

= cτσ
(

W2σ (W1x)
)

(5)

where σ (·) stands for the rectified linear unit (ReLU) function and

the biases are omitted for simplicity, and cr ∈ [−0.5, 0.5] denotes

the residual strain control parameter. As can be seen from Figure 2,

the residual unit is modified by adding a residual strain control after

the ReLU process. During model training, the control parameter cr
is constrained by

cr ←











−0.5 cr + η ·1cr <= −0.5

cr + η ·1cr −0.5 < cr + η ·1cr < 0.5

0.5 cr + η ·1cr >= 0.5

(6)

where η is the learning rate, 1cr is the graident of parameter cr .

Figure 3 draws a single shortcut connection of the proposed

improved ResNet. Again, it can be found that, compared to the

basic ResNet, the main difference is that a residual strain control

unit is added. In this figure, the two blocks are termed identity block

(IB) and transformational block (TB), respectively.

3.2 Weighted ResNet structure

In brief, the weighted ResNet involves 20 convolutional layers,

in which an average pooling layer and a dense layer are the last two

layers. Specifically, it takes the following form as

Input + Conv + IB× 3 + TB + IB× 2

+ TB + IB× 2 + AvgPool + Linear (7)

The main architecture and flow chart of the weighted ResNet

are given in Table 2 and Figure 4, respectively.

In weighted ResNet, a weight factor, denoted as Cr , is

introduced to the residual connections of the traditional ResNet

architecture. This mechanism can assign different weights to

different layers or features depending on their contribution to the

final output. This allows important features to have more impact on

the output and less significant features to have less impact.

The intention behind introducing a weighting mechanism

varies depending on the specific application or task at hand. For

example, in some contexts, introducing weights can help deal with

class imbalance in the dataset. In other cases, it may be used

to increase model robustness against noise or other irregularities

within the data. The weights may be learned during training,

using backpropagation and gradient descent, or might also be

assigned based on preset criteria defined by the researchers. The

methodologies can vary in different incarnations of weighted

ResNet models.

3.3 Residual strain control for ResNet
modification

Although deeper network depth and higher model accuracy

are well-noticed, ResNets suffer from untoward convergence. We

may first find the outstanding learning ability surprising, but it

prompts further thinking and exploration post-implementation.

The pain point arises when the residual information and the

underlying information are merged. As observed in the Basic

and Basic Inc architectures, ReLU will be applied on the residual

information channel before the merger. This eventually hampers

the seamless integration of the two channels. For the underlying

channel, the value is in the range of (−∞,+∞), whereas the

value set of the residual channel is significantly limited to merely
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FIGURE 3

Comparison of the identity block [IB, (left)] and transformational block [TB, (right)] between basic ResNet with our proposed weighted ResNet.

positive after the ReLU operation. The raw merger operation in

original ResNets leads to a bias far from the underlying channel,

which suppresses the cognition. This will not only shorten the

representation ability of networks, but also tie down the overall

training process. Therefore, ResNets fall behind other CNNs in

convergence inevitably.

To keep the goodness as well as speed up the training, the

residual strain control parameter plays a role. As taken values in

the range of [−0.5, 0.5], the residual control parameter cr shifts

the residual channel to both negative and positive values. And this

turbocharge in turn results in a better fusion of the two channels.

Significant improvements in convergence have been achieved in

modified ResNets after the multiplication of cr .

It is worth noting that our optimization method does not add

any extra structures or computational operations, thus maintaining

the computational complexity, measured in FLOPS, at the same

level as the base ResNet model.

3.4 Network training

Given the image dataset with S training samples and the

corresponding ground-truth labels xi, yi, i ∈ S, we adopt a training

cost function with L2 regularization as

L = −
1

S

∑

i∈S

log pyi (xi, θ , cr)+ λ1 ‖ θ ‖22 +λ2 ‖ cr ‖
2
2 (8)

where pyi represents the predicting probability for each target class,

θ is the trainable parameter of the network, λ1 and λ2 are the L2

regularization parameters.

On the basis of the cross-entropy loss, the cost function has

been equipped with two L2 regularization factors as terms. One

corresponds to the model parameters, denoted by θ , and the other

FIGURE 4

Network architecture for weighted ResNet.

to our residual strain control parameter cr . Here, the regularization

parameters λ1 and λ2 are set to constants at training time. Although

the weighted ResNet adds an upgraded structure, the training

methods forminimizing its cost function and adaptively optimizing

the trainable parameters are similar. We can use backpropagation
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FIGURE 5

Example SAR images of the eight di�erent classes.

for gradient computation, which has been discussed in depth in

previous work. In this work, we employ one of the most popular

gradient updating techniques, the momentum stochastic gradient

descent (SGD) (Ruder, 2017; Tian et al., 2023) to optimize the

modified residual network, which will be discussed briefly in this

subsection. It is also important to note that the residual strain

control parameter cr is also being updated during the training

process using the error back-propagation method.

SGD with momentum roots in physical law of motion to go

pass through local optima. By linearly combining the gradient

and the previous update, momentum maintains the update at

each iteration. This keeps the update steps stable and avoids

chaotic jumps. The following formulas show how SGD with

momentum works:

1θi = µ1i−1 − α∇L(θi) (9)

θi = θi−1 +1θi−1 (10)

where θi denotes the model parameter to be estimated, 1θi is

the ith gradient updates, µ is the momentum coefficient, α is

a single learning rate, and ∇L(θi) represents the cost function

degrade. Compared with plain SGD, with the accumulating speed,

the momentum SGD step will be larger than the SGD constant step.

Thus, this trick will not only help to achieve global minimum but

also increase robustness.

4 Experiments

4.1 Dataset

We evaluate our proposed method using a benchmark

dataset from the Moving and Stationary Target Acquisition and

Recognition Program published (Zhao and Principe, 2001) by the

US Defense Advanced Research Projects Agency and the US Air

Force Research Laboratory. The dataset consists of X-band SAR

images of different types of military vehicles (e.g., APC BTR60,

Main Tank T72, and Bulldozer D7) with elevation angles of 15◦ and

17◦. The image resolution is 0.3m× 0.3 m, some example images

of different classes are shown in Figure 5.

To train the weighted ResNet, all the images we used in our

experiments are cropped to 100×100 pixels, with the target located

at the center. We primarily use eight types of target images, and the

number of images used for training and testing is listed in Table 1.

The cropped image dataset contains 8 types of military ground

targets, namely T62, BRDM2, BTR-60, 2S1, D7, ZIL131, ZSU-234,

and T72. Images of each target are collected at depression angles of

15◦ and 17◦ and then turned at an angle of 360◦. We note that one

uses images with a depression angle of 15◦ for training and images

with 17◦ for testing. However, this may shorten the recognition

ability of the trained deep learning network because of the missing

spatial information that could have been included. We stick with

this idea and do training experiments with images of 15◦ and 17◦

with depression angle.

In order to expand the capacity of the original dataset by

removing and adding noise (different filtering or noise distribution

parameters), in our experiments, we use cropped images of 8 targets

to generate image variants, and 400 images are randomly selected

for each target.

For illustration purposes, we take one of the T62 SAR images

as an example to demonstrate the noise removing and adding

behaviors. Figures 6A, B show the original optical image and

the SAR image. Figures 6C–E draw the noise-removing images

generated through median filtering with the templates of 3 × 3, 5

× 5, and 7 × 7, respectively. Figures 6F–H depict the noise-added

images with multiplied exponentially distributed speckle noise with

means (termed as M) of 0.5, 1.0, and 1.5, respectively. Finally,

the whole noise canceled and added images generated from the

cropped images are listed in Table 1. According to our design, the
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FIGURE 6

The original optical image (A) and SAR image (B), and noise perturbed SAR images (C–H).

TABLE 1 List of noise perturbed SAR images (data augmentation).

Target Noise
canceled

3× 3

Noise
canceled

5× 5

Noise
canceled

7× 7

Noise
added
M = 0.5

Noise
added
M = 1.0

Noise
added
M = 1.5

Total

2S1 573 573 573 573 573 573 3, 438

T62 572 572 572 572 572 572 3, 432

BRDM2 572 572 572 572 572 572 3, 432

BTR-60 451 451 451 451 451 451 2, 706

D7 573 573 573 573 573 573 3, 438

ZIL131 573 573 573 573 573 573 3, 438

ZSU-234 573 573 573 573 573 573 3, 438

T72 573 573 573 573 573 573 3, 438

Total 3,887 3,887 3,887 3,887 3,887 3,887 23,322
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TABLE 2 Confusion matrix of the weighted ResNet (without data augmentation).

T62 BRDM-2 BTR-60 2S1 D7 ZIL131 ZSU-234 T72 Total

T62 895 10 0 3 24 15 13 0 93.23

BRDM-2 13 930 0 6 1 10 0 0 96.88

BTR-60 6 12 891 4 36 0 9 2 92.81

2S1 6 3 8 909 10 21 0 3 94.69

D7 0 0 20 0 938 0 2 0 97.71

ZIL131 19 3 28 5 0 890 1 14 92.71

ZSU-234 3 16 15 0 9 0 917 0 95.52

T72 0 0 32 0 16 10 3 899 93.64

Total – – – – – – – - 94.56

TABLE 3 Confusion matrix of the weighted ResNet (with data augmentation).

T62 BRDM-2 BTR-60 2S1 D7 ZIL131 ZSU-234 T72 Total

T62 954 2 0 1 0 0 3 0 99.38

BRDM-2 0 960 0 0 0 0 0 0 100.00

BTR-60 3 0 953 2 0 1 0 1 99.27

2S1 0 0 0 958 0 2 0 0 99.79

D7 0 0 0 0 960 0 0 0 100.00

ZIL131 3 4 0 3 0 950 0 0 98.96

ZSU-234 0 0 2 0 0 0 958 0 99.79

T72 0 0 0 0 0 0 0 960 100.00

Total – – – – – – – – 99.65

SSIMs for the filters of both noise removal and noise adding are set

by 90%, 82.5%, and 75%, respectively.

4.2 Classification results

We first conducted experiments to validate our proposed

speckle noise-based method. The confusion matrix of our weighted

ResNet can be found in Tables 2, 3 as comparisons of data

augmentation. The classification accuracy of weighted ResNet

using non-augmented training data is 94.56% (7,269/7,680). Table 2

shows the confusion matrix of weighted ResNet using non-

augmented training data. Each row in the confusion matrix

represents the actual target class, and each column denotes the

class predicted by the weighted ResNet. The classification accuracy

of weighted ResNet using augmented training data is 99.65%

(7,653/7,680). Table 3 shows the confusion matrix of weighted

ResNet using augmented training data. Each row in the confusion

matrix represents the actual target class, and each column denotes

the class predicted by the weighted ResNet.

The classification accuracy of weighted ResNet with data

augmentation is up to 99.65%, increasing by almost 5.1%.

Additionally, the weighted ResNet structure has a relatively lower

classification performance on the ZIL131 (92.71%) and BTR-60

(92.81%), followed by T62 (93.23%). After the dataset extension,

the classification accuracy of ZIL131 is up to 98.96%. A similar

improvement is seen in the BTR-60 and T62, each with nearly a 5%

increment. This indicates that the speckle noise perturbation based

data augmentation method is valid. Moreover, the recognition rate

of armored personnel carriers is relatively low, which suggests that

the distribution of those targets is near in the feature space. The

above results are consistent with the trends observed in which has

been published in Kang et al. (2017), a contributor in SAR ATR

feature exaction. Further, in Figure 7, we show some instances of

misclassification, where we selected only one example from each

category for presentation. A→B means cases where a sample with

the label A is incorrectly classified as B by the model.

4.3 Network performance comparsion

In our experiments on weighted ResNet and ResNet, the

following setups are applied: the mini-batch size is 128, the epoch

number is 160, the dynamic learning rates are 1.0 for the first

80 epochs, 0.1 for the next 40 epochs and 0.01 for the remaining

epochs, the momentum coefficient starts from 0.9. For weighted

ResNet and ResNet, the L2 regularization parameters are 0.0001.

In addition, taking into account the model difference between

AlexNet and VGG networks, the training parameters designed for

AlexNet and VGG are: mini-batch size 128, epoch number 200,
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FIGURE 7

Examples of misclassified samples in each category, with only one example selected per category. The text below the image, A→B, signifies that the

expected category is (A), but the model mistakenly classified it as (B).

TABLE 4 Accuracy comparison with other methods.

Method Without data augmentation With data augmentation

SVM (Zhao and Principe, 2001) 90.00% –

Ensemble CNN (Lin et al., 2017) 99.09% –

A-convNet (Chen et al., 2016) 99.13% –

CNN-1 (Ding et al., 2016) – 94.56%

CNN-2 (Morgan, 2015) – 92.30%

CNN-3 (Furukawa, 2017) 98.75% 99.56%

AlexNet (Krizhevsky et al., 2012) 93.71% 97.28%

VGG16 (Simonyan and Zisserman, 2014) 94.12% 98.97%

ResNet (He et al., 2016) 94.58% 99.65%

Weighted ResNet 94.65% 99.65%

initial momentum coefficient 0.9, and regularization parameters

0.0005. The dynamic learning rates for AlexNet are 0.1 for the first

25 epochs and 0.0001 for the remaining epochs, while the learning

rates for VGG are 0.1 for the first 20 epochs and 0.01 for the next

20, then 0.001 for the next 20 epochs and 0.0001 for the following

rest. One may notice that we picked the learning rate by 1.0 for the

first 80 epochs in training weighted ResNet, which is much higher

than what had been shown in previous literature. The reason is

that we took advantage of momentum SGD in network training.

Momentum SGD is not sensitive to learning rate mis-specification

or curvature variance, and will tolerate a relatively wide range

of learning rates. Thus no unusual signs were observed during

the training process. Another reason may refer to the experiences

gained while conducting network training experiments on different

network structures with large volumes of other data sets. Here we

train the ResNet and weighted ResNet without loading pre-trained

models. The method is robust against noise and momentum SGD

training will skip local optimal solutions.

In order to illustrate its advantages, the weighted ResNet

is compared to its original counterpart (He et al., 2016), SVM

(Zhao and Principe, 2001), A-convNet (Chen et al., 2016),

and Ensemble CNN (Lin et al., 2017), CNNs [(Morgan, 2015;

Ding et al., 2016; Furukawa, 2017), as well as other two deep

neural networks [AlexNet (Krizhevsky et al., 2012) and VGG16

(Simonyan and Zisserman, 2014)] for SAR image classification.

As shown in Table 4, there is a 0.81% accuracy rise for CNN-

3, while nearly 3.57% on AlexNet, and over 4% increase noted

in VGG16, ResNet, and weighted ResNet. Table 4 clearly shows

that ResNet has a higher recognition accuracy than other

networks. Other modified networks without data augmentation

can achieve accuracy over 99% (Chen et al., 2016; Lin et al.,

2017).
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FIGURE 8

Comparison of the accuracies vs. training time.

Recognition accuracies along with training time curves are

displayed in Figure 8. Without a shortcut connection structure, the

AlexNet and VGG can converge much faster than ResNet. The

original ResNet (400 min) takes nearly twice the time of AlexNet

and nearly four times the VGG. While weighted ResNet (165

min) easily passes over VGG and nearly catches AlexNet, which

is delightful. It should be pointed out that although the weighted

ResNet does not provide an ultimate accuracy improvement, it can

considerably shorten the training time as demonstrated in Figure 8.

In fact, in the case of limited training time, e.g., <400 min, the

weighted ResNet achieves the highest recognition accuracy among

the networks we have tested.

5 Discussion and conclusion

In this paper, we presented a weighted ResNet model for

SAR ATR. Our method tackled problems usually associated

with conventional CNN models such as overfitting due to the

constrained quantity of ground truth images and the unique

complexities presented by speckle noise in SAR images. We

incorporated data augmentation and introduced a distinctive

residual strain control method, which together contributed to the

generation of a weighted ResNet with increased computational

efficiency, boosted recognition accuracy, and faster convergence.

The data augmentation method proposed in this paper, which

involved the addition and cancellation of speckle noise, successfully

expanded the quality and size of the SAR image dataset and

made the model more resilient. This step was critical, as it

provided a practical solution to the issue of scarce ground truth

images.

Our novel introduction of a residual strain control to adapt the

ResNet model contributed to significant improvements in model

efficiency and recognition accuracy and reduced training time. It

efficiently managed the residual strain of each weight layer, leading

to faster convergence and improved optimization.

Experimental results displayed the superiority of our proposed

weighted ResNet model when compared to other prominent

CNNs. The accelerated convergence, remarkable training depth,

and improved model accuracy showcased our model’s effectiveness

and robust capabilities in SAR ATR.

While our research and results are promising, the continuous

advancement in AI and deep learning applications will consistently

present avenues for growth. Future work can focus on further

enhancements of the weighted ResNet model for improved model

stability and generalization capabilities. Additionally, exploring

more sophisticated data augmentation techniques can help in

producing even more robust models capable of handling different

SAR ATR scenarios. Applying the developed model to other similar

imaging techniques can also be an interesting aspect to look into.
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