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Target assignment and path planning are crucial for the cooperativity of multiple

unmanned aerial vehicles (UAV) systems. However, it is a challenge considering

the dynamics of environments and the partial observability of UAVs. In this

article, the problem of multi-UAV target assignment and path planning is

formulated as a partially observable Markov decision process (POMDP), and a

novel deep reinforcement learning (DRL)-based algorithm is proposed to address

it. Specifically, a target assignment network is introduced into the twin-delayed

deep deterministic policy gradient (TD3) algorithm to solve the target assignment

problem and path planning problem simultaneously. The target assignment

network executes target assignment for each step of UAVs, while the TD3

guides UAVs to plan paths for this step based on the assignment result and

provides training labels for the optimization of the target assignment network.

Experimental results demonstrate that the proposed approach can ensure an

optimal complete target allocation and achieve a collision-free path for each UAV

in three-dimensional (3D) dynamic multiple-obstacle environments, and present

a superior performance in target completion and a better adaptability to complex

environments compared with existing methods.

KEYWORDS

multiple unmanned aerial vehicles, target assignment, path planning, deep reinforcement

learning, partially observable Markov decision process

1 Introduction

Recently, unmanned aerial vehicles (UAV) have been widely applied to a variety of fields

due to their advantages of high flexibility, low operating cost, and ease of deployment. In

the military field, UAVs have become an important part of modern warfare and can be

used for missions such as reconnaissance (Qin et al., 2021), strikes (Chamola et al., 2021),

and surveillance (Liu et al., 2021), reducing casualties and enhancing combat efficiency. In

the field of agriculture, UAVs have good applications in plant protection (Xu et al., 2019;

Chen et al., 2021), agricultural monitoring (Zhang et al., 2021), and so on, improving the

efficiency and precision of agricultural operations. In the field of environmental protection,

UAVs are extensively employed in environmental monitoring (Yang et al., 2022), pollution

source tracking (Liu et al., 2023), nature reserve inspection (Su et al., 2018), and other

tasks, effectively supporting environmental protection work. In addition, for search and
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rescue tasks (Fei et al., 2022; Lyu et al., 2023), UAVs can quickly

obtain disaster information through airborne sensors to provide

efficient and timely assistance for subsequent rescue. However, it is

difficult to apply lone single UAVs to complex and diverse missions

due to their limited functionality and payload. Cooperation

between multiple UAVs (Song et al., 2023) has greatly expanded

the ability and scope of task execution, and has gradually replaced

the single UAV as the nontrivial technology for various complex

tasks. The key to solving the multi-UAV cooperative problems

(Wang T. et al., 2020; Xing et al., 2022; Wang et al., 2023) is target

assignment and path planning for UAVs, which is the guarantee of

task completion.

The above problem consists of two fundamental sub-problems.

Target assignment (Gerkey and Matarić, 2004) means assigning

one UAV for each target to maximize the overall efficiency or

minimize the total costs. It has many effective solutions such as

the Genetic algorithm (GA) (Tian et al., 2018) and the Hungarian

algorithm (Kuhn, 1955). Lee et al. (2003) introduced greedy

eugenics to GA to improve the performance of GA in weapon-

target assignment problems. Aiming at the multi-task allocation

problem, Samiei et al. (2019) proposed a novel cluster-based

Hungarian algorithm. Path planning (Aggarwal and Kumar, 2020)

refers to each drone planning an optimal path from its initial

location to its designated target with the collision-free constraint.

It has been studied extensively, and A* (Grenouilleau et al.,

2019), rapidly-exploring random tree algorithm (RRT) (Li et al.,

2022) and particle swarm optimization (PSO) (Fernandes et al.,

2022) are classical methods. Fan et al. (2023) incorporated the

artificial potential field method into RRT to reduce the cost of

path planning. He W. et al. (2021) proposed a novel hybrid

algorithm for UAV path planning by combining PSO with the

symbiotic organism search. While most previous works tackle

the problem in static environments, and a common feature

of these solutions is that they rely on global information of

the task environment for explicit planning, which may lead to

unexpected failure in the face of uncertain circumstances or

unpredictable obstacles.

Therefore, some studies resort to learning-based approaches

such as deep learning (DL) (Kouris and Bouganis, 2018; Mansouri

et al., 2020; Pan et al., 2021). Pan et al. (2021) combined DL and

GA to plan the path for UAV data collection. The proposed method

collected various paths and states in different task environments

by GA, and used them to train the neural network of DL,

which can give an optimal path in familiar scenarios with real-

time requirements. Kouris and Bouganis (2018) proposed a self-

supervised CNN-based approach for indoor UAV navigation. This

method used an indoor-flight dataset to train the CNN and utilized

the CNN to predict collision distance based on an on-board

camera. However, Deep learning-based approaches require labels

for learning and they are infeasible when the environment is

highly variable.

Unlike DL methods, reinforcement learning (RL) (Thrun and

Littman, 2000; Busoniu et al., 2008; Zhang et al., 2016) can optimize

strategies directly through trial-and-error iteration interacting with

the environment without prior knowledge, which is adaptable to

dynamic environments. Moreover, deep reinforcement learning

(DRL) (Mnih et al., 2015) combines DL and RL to implement

end-to-end learning. It makes RL no longer limited to low-

dimensional space and greatly expands the scope of application

of RL (Wang C. et al., 2020; Chane-Sane et al., 2021; He L.

et al., 2021; Kiran et al., 2021; Luo et al., 2021; Wu et al., 2021;

Yan et al., 2022; Yue et al., 2023; Zhao et al., 2023). Wu et al.

(2021) introduced a curiosity-driven method into DRL to improve

training efficiency and performance in autonomous driving tasks.

Yan et al. (2022) proposed a simplified, unified, and applicable DRL

method for vehicular systems. Chane-Sane et al. (2021) designed

a new RL method with imagined possible subgoals to facilitate

learning of complex tasks such as challenging navigation and

vision-based robotic manipulation. Luo et al. (2021) designed a

DRL-based method to generate solutions for the missile-target

assignment problem autonomously. He L. et al. (2021) presented an

autonomous path planning method based on DRL for quadrotors

in unknown environments. Wang C. et al. (2020) proposed DRL

algorithm with nonexpert helpers to address the autonomous

navigation problem for UAVs in large-scale complex environments.

DRL is suitable to solve the target assignment problem and path

planning problem of UAVs, but there are still some challenges when

multiple UAVs perform tasks in dynamic environments. The first

challenge is inefficient target assignment. Typically, UAVs execute

target assignment first and then perform path planning based

on the result of the target assignment. However, the dynamism

and uncertainty of the environment always lead to an inaccurate

assignment result, which directly affects the subsequent path

planning. In this respect, UAVs need to perform autonomous target

assignment and path planning simultaneously. There are only a few

scholars who have studied this field. Qie et al. (2019) constructed

the multiple UAVs target assignment and path planning problem as

a multi-agent system and used the multi-agent deep deterministic

policy gradient (MADDPG) (Lowe et al., 2017) framework to train

the system to solve two problems simultaneously. They traverse

all targets and select the agent closest to each target after each

step of the agent, which often results in an incomplete assignment

of targets when two agents are at the same and shortest distance

from one target. Han et al. (2020) proposed a navigation policy for

multiple robots in a dynamic environment based on the Proximal

Policy Optimization (PPO) (Schulman et al., 2017) algorithm. The

target assignment scheme was proposed depending on the distance

between robots and targets. However, this assignment method does

not take into account the obstacles in the task environment, which

is vulnerable to leads to inaccurate allocation in a multi-obstacle

environment similar to the real world. The second challenge is

that UAVs’ onboard sensors have limited detection range. The real-

time decision-making of UAVs depends on observation returned

by sensors, especially in dynamic and uncertain environments. If

the detection range of sensors is limited, the current state cannot

fully represent the global environmental information, which greatly

increases the difficulty of autonomous flight.

To overcome these challenges, this article models the multi-

UAV target assignment and path planning problem as a partially

observable Markov decision process (POMDP) (Spaan, 2012)

and designs a simultaneous target assignment and path planning

method based on DRL to settle it. Among the DRL-based

methods, the twin-delayed deep deterministic policy gradient

(TD3) (Fujimoto et al., 2018) is a state-of-the-art (SOTA) DRL
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FIGURE 1

Schematic diagram of multi-UAV target assignment and path planning.

algorithm and has been widely used in training the policy of UAVs.

It significantly improves the learning speed and performance of

deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015)

algorithm by reducing the overestimation of DDPG. Zhang et al.

(2022) introduced the spatial change information of environment

to the TD3, and used it to guide a UAV to complete navigation

tasks in complex environments with multiple obstacles. Hong et al.

(2021) proposed an advanced TD3 model to perform energy-

efficient path planning at the edge-level drone. In this regard, a

more effective DRL algorithm based on TD3 is proposed to solve

the POMDP in this article.

The main contributions of this article can be summarized

as follows:

• A DRL framework for multi-UAV target assignment and

path planning is developed in 3D dynamic multiple obstacles

environments, where the target assignment and path planning

problem is modeled as a POMDP.

• A simultaneous target assignment and path planning

method taking into account UAVs, targets, and moving

obstacles is proposed, which can achieve an optimal target

assignment and complete collision-free path planning for

each UAV simultaneously.

• A 3D stochastic complex simulation environment is built to

train an algorithm, and the experimental results validate the

effectiveness of the proposed method.

The remainder of this article is organized as follows: The

background is presented in Section 2, Section 3 introduces the

formulation of the multi-UAV problem. In Section 4, a detailed

introduction to our method is provided. Section 5 presents the

simulation experiments and results. Finally, the conclusion of this

paper and future work are summarized in Section 6.

2 Background

This section gives a brief introduction to the multi-UAV

target assignment and path planning problem in this article first,

followed by the multi-UAV problem formulated as a POMDP in

3D dynamic environments.

2.1 Multi-UAV target assignment and path
planning problem

The multiple UAVs target assignment and path planning

scenario of this paper is shown in Figure 1:

(1) A series of UAVs are commanded to fly across a 3Dmission area

until they reach the targets distributed in different locations.

(2) The mission area is scattered with some static or irregularly

moving obstacles.

(3) UAVs are required to avoid collision with each other

and obstacles.

(4) UAVs are isomorphic and targets are identical.

The object of multi-UAV target assignment and path planning

is to minimize the total flight path length of all UAVs [Equation

(1)] under the constraints of target completely assignment and

collision-free:

min(
∑NU

i
di) (1)







⋃NU

i=1
Ti = T, i ∈ {1, . . . ,NT},

Ti 6= Tj, i 6= j.
(2)







∥

∥

∥
Ut
i ,U

t
j

∥

∥

∥
> 2ru, i, j = 1, 2, . . . ,NU ,

∥

∥Ut
i ,O

t
k

∥

∥ > ru + ro, i = 1, 2, . . . ,NU , k = 1, 2, . . . ,M.
(3)

where Ti ∈ T, i ∈ {1, . . . ,NT} denotes the targets, Ui, i =

1, 2, . . . ,NU denotes the UAVs and Ok, k = 1, 2, . . . ,M denotes

the obstacles.Ut
i , O

t
k
represents the positions of UAV i and obstacle

k at time t, respectively. di is the flight length of UAV i, ru and

ro are the radius of UAVs and obstacles. Equation (2) denotes the

target complete assignment constraint, which means each target

is only assigned to one UAV. Equation (3) defines the collision-

free constraint, where the first one means any two UAVs cannot
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FIGURE 2

Multi-UAV reinforcement learning process in partially observable

environment.

collide at all times, while the second defines each UAV’s path is

collision-free with obstacles.

2.2 Modeling multiple UAVs problem as an
POMDP

The multi-UAV problem can be modeled as POMDP, which

is composed of a tuple 〈N, S,O,A,P,R〉. In this tuple, N =

{1, 2, · · · ,N} represents the collection of N UAVs, S is the state

space of UAVs, O = {o1, o2, · · · , oN} is the observation of all

UAVs, where oi represents the observation of UAV i. When the

environment is partially observable, at time t, each UAV only

obtains its own local observation ot,i ∈ oi. A = {a1, a2, · · · , aN} is

the action collection of UAVs, where ai is the action taken by UAV

i; P : S× A× S′ ∈ [0, 1] denotes the probability that state transfers

from S to S′ after performing action A; R = {R1,R2, · · · ,RN} is the

reward collection of UAVs, where Ri denotes the reward of UAV i

received from the environment.

The multi-UAV reinforcement learning process in a partially

observable environment is shown in Figure 2. At each epoch t, UAV

i selects its optimal action at,i based on the policy π to maximize

the joint cumulative reward of all UAVs, and π(a |s ) = P[At =

a |St = s ] represents the probability of action a under state s. Then

the joint action At = {at,1, at,2, . . . , at,N} of UAVs is executed to

control the movement of UAVs, the joint state is changed to St+1

and the reward received by the UAV i is Rt,i. The cumulative reward

of UAV i is defined as Equation (4),

Ji
π =

T
∑

t=0

γ tRt,i (4)

where γ ∈ [0, 1] is the discount factor that balances the current

rewards and the future rewards.

3 Problem formulation

UAVs use onboard sensors to acquire their internal state

information and environmental state information, execute actions

according to the DRLmodel, and obtain the corresponding reward.

Figure 3 describes the problem formulation.

3.1 State space

The state space consists of the internal state of the UAV and

the environmental information within the max detection distance

ddet of onboard sensors. The state space of UAV i can be defined

as si = (sui, oi). sui = (pi, vi, ri) is the internal state of UAV i,

which is composed of the position pi = (xi, yi, zi), the velocity vi
and the radius ri of UAV i. oi = (sT , sU , sO) is the environmental

information observed by UAV i, where sT = (pt , rt) is the relative

position pt = (xt − xi, yt − yi, zt − zi) to the target with the

radius rt , sU = (pu, vu, ru) is the relative position pu = (xu −

xi, yu − yi, zu − zi) to other UAVs with the velocity vu and the

radius ru. sO represents the state of obstacles. If obstacles are within

the max detection range, sO = (po, vo, ro) is the relative position

po = (xo − xi, yo − yi, zo − zi), the velocity vo and the radius ro of

the obstacles, otherwise, sO = (±ddet,±ddet,±ddet, 0, 0).

3.2 Action space

In this paper, the action space of UAV i is defined as

ai = (FiX , FiY , FiZ ) as shown in Figure 3B, where the FiX , FiY , FiZ
represent the component forces applied to UAV i in X, Y , and Z

three directions, respectively. The force produces an acceleration to

change the velocity of the UAV.

3.3 Reward function

In this paper, the goal of the reward function is to guide

UAVs to fly to the assigned target without any collision. In order

to address the problem of underperforming training efficiency

caused by sparse rewards, the reward function in this article uses a

combination of guided rewards and sparse rewards. In the process

of interacting with the environment, if a UAV reaches the target,

collides with other UAVs, or hits an obstacle, a sparse reward

is applied; when none of these three situations occurs, a guided

reward is applied.

(1) Approaching the target

This reward function is to guide the UAV to head for the target

and reach the target. When a UAV moves away from the target, it

will receive a larger penalty related to the distance between the UAV

and the target, and a reward of value 0 will be given to the UAV

when it arrives at the target. Consequently, the reward for UAV i
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FIGURE 3

Problem formulation. (A) State space. (B) Action space. (C) Reward design.

approaching the target can be defined as Equation (5),

Rti =

{

0, if dti < ru + rt
−dti , else

(5)

where dti denotes the distance between UAV i and the target, ru is

the radius of UAVs, rt is the radius of targets.

(2) Avoiding collision with other UAVs

This reward is to avoid collision with other UAVs in the process

of approaching the target. When the distance between UAV i and

UAV j is shorter than their minimum safe distance, a collision will

occur and the penalty value is set as Equation (6),

R
j
i =

{

−1, if d
j
i ≤ du

safe

0, else
(6)

where d
j
i represents the distance between UAV i and UAV j, du

safe
=

2ru is the minimum safe distance between UAVs.

(3) Avoiding obstacles

The aim of this reward function is to keep UAVs away from

obstacles. If the obstacle appears within the detection range ddet,

the UAV will obtain a punishment, and the closer the UAV gets to

the obstacle, the greater the penalty. When the distance between
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the UAV and the obstacle is less than their minimum safe distance,

a penalty of−1 will be given to the UAV.

Roi =











−(ddet − doi ), if d
o
i < ddet

−1, if doi ≤ do
safe

0, else

(7)

In Equation (7), doi is the distance between UAV i and the

nearest obstacle within the detection range, do
safe
= ru + ro is the

minimum safe distance between UAV and obstacles, ro is the radius

of obstacles.

In conclusion, the reward function received by UAV i can be

summarized as Equation (8),

Ri = Rti + R
j
i + Roi (8)

As can be seen from the reward function designed in this article,

the guided reward functions are all negative. It means that each

additional step taken by the UAV will have a negative value as a

step penalty before reaching the target. Therefore, the reward value

in this article can reflect the length of the flight path. A longer flight

path corresponds to a smaller reward value.

4 Algorithm

In this section, the proposed algorithm, TANet-TD3, is

illustrated in detail.

FIGURE 4

TD3 algorithm architecture.

FIGURE 5

The framework of TANet-TD3.
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4.1 TD3 algorithm

This paper uses the TD3 as a basic algorithm to address the

multi-UAV target assignment and path planning problem. As an

improvement of the DDPG algorithm, TD3 also uses an Actor-

Critic structure, but it introduces three technologies to prevent the

overestimation problem of DDPG:

(1) Clipped double-Q learning.

TD3 has two Critic networks Qθn parameterized by θn, n = 1, 2

and two Critic target networks Qθ ′n parameterized by θ ′n, n = 1, 2.

The smaller one of two targetQ-values is used to calculate the target

value function y [Equation (9)] to alleviate the overestimation

problem of the value function, as shown in (1) of Figure 4.

y = R(s, a)+ γ min
n=1,2

Qθ ′n (s
′, a′) (9)

Therefore, the two Critic networks are updated by minimizing

the loss function as Equation (10),

FIGURE 6

The framework of target assignment.

FIGURE 7

Simulation environment. (A) The 3D simulation environment. (B) The simulation environment from X–Y view. (C) The simulation environment from

Y–Z view. (D) The simulation environment from X–Z view. The color spherical shade around UAV in (A) denotes the detection range of UAV.
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θn ← argminθnN
−1

∑

(Qθn (s, a)− y)2, n = 1, 2 (10)

(2) Delayed policy update.

TD3 updates the policy after getting an accurate estimation of

the value function to ensure more stable training of the Actor-

network. Usually updating the Actor once when the Critic is

updated twice, as shown in (2) of Figure 4.

(3) Target policy smoothing.

The policy in DDPG is susceptible to influence by the function

approximation error. TD3 adds the clipped noise into the target

policy to make the value estimate more accurate, as shown in (3)

of Figure 4.

a′(s′) = πφ′ (s
′)+ ε, ε ∼ clip(N(0, σ̃ ),−c, c) (11)

In Equation (11), s′ and a′ represent the state and action at the next

time, respectively. πφ′ represents the Actor target network with the

parameter φ′ and ε denotes the clipped noise.

Each UAV executes action a to transform the state s to next

state s′, and obtains a reward R from the environment. The data

(s, a,R, s′) is stored in the replay buffer D as a tuple. Sample a

minibatch transition randomly from D, and input the s′ into the

Actor target network πφ′ to get the next action a′. Then, input the

(s′, a′) into the two Critic target networks Qθ ′1 , Qθ ′2 to calculate

the Q-values and select the smaller one to calculate the target

value y. In the meantime, input (s, a) into the two Critic network

Qθ1 , Qθ2 and calculate the MSE with y to update the parameters

θ1, θ2 of two Critic networks. After that, input the Q-value

acquired from Critic network Qθ1 into the Actor-network πφ , and

update its parameter φ in the direction of increasing the Q-value

as Equation (12),

∇φJ(φ) = N−1
∑

∇aQθ1 (s, a)|a=πφ (s)∇φπφ(s) (12)

Finally, the target Actor network’ parameter φ′ and the two

target Critic networks’ parameters θ ′1, θ ′2 are updated by soft

update as follows Equation (13) and Equation (14),

θn
′ = τθn + (1− τ )θn

′, n = 1, 2, (13)

φ′ = τφ + (1− τ )φ′. (14)

4.2 TANet-TD3

4.2.1 Framework of the TANet-TD3
This paper proposed the twin-delayed deep deterministic policy

gradient algorithm with target assignment network (TANet-TD3),

different from the existing methods that assign targets for the

whole task first and then planning the path according to the

assignment results, TANet-TD3 can solve the multiple UAVs target

assignment and path planning simultaneously in dynamic multi-

obstacle environments. The framework of the TANet-TD3 is shown

in Figure 5, it can be seen that the object of the task is to

minimize the total flight path length of all UAVs with the complete

target assignment constraint and collision-free constraint. TANet-

TD3 introduces a target assignment network into the framework

of TD3 to solve the two problems simultaneously. Among the

overall process, the target assignment network provides the optimal

complete assignment of targets for each step of UAVs (the green

dashed box), and then the TD3 algorithm guides each UAV plan

a feasible path for this step (the blue dashed box) according to

the assigned result (the yellow dashed box). In the meantime, the

training labels of assignment network are obtained from the process

of path planning driven by TD3 algorithm (the purple dashed box).

This method not only takes into account the distance between

UAVs and targets but also considers the dynamic obstacles in task

environments, so it can generate an optimal assignment and path.

4.2.2 Framework of target assignment
Figure 6 illustrates the overall framework of target assignment.

It is composed of three parts, including the target assignment

network, construction of the assignment label, and construction of

the environmental state information with new sequence.

(1) Target assignment network

The network structure of target assignment network is designed

as the middle section of Figure 6, it consists of a (7+ 4(NU − 1)+

4NT + 7NO)× 64× 128× 64×NT fully-connected neural network

FIGURE 8

The network architecture of Actor and Critic in TD3.
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layers, where (7 + 4(NU − 1) + 4NT + 7NO) represents the state

information si = (sui, oi) of each UAV under the scenario of NU

UAVs, NT targets and NO obstacles within the detection range. For

UAV i, after four FCs, the target assignment network maps the state

information si = (sui, oi) to the probability (PiT1 , PiT2 , · · · , PiTNT )

of UAV i flying to targets (T1, T2, · · · ,TNT ). The probability is first

normalized by the Softmax function [Equation (15)],

pij =
piTj

∑NT
j piTj

(15)

and then the Cross-Entropy calculation is performed with the

assigned labels to update the assignment network [Equation (16)],

H(L, P) = −
∑NT

j
lj log pij (16)

(2) Construction of the assignment label

From the bottom section of the Figure 6, it can be seen that

the training labels of the assignment network are provided by TD3

framework. The task objective is to achieve a complete assignment

and minimize the total flight path, but it is not accurate to

only consider the distance between UAVs and targets to make

decisions in random and dynamic environments. As mentioned

in Section 2.2, a multi-UAV problem means to maximize the

joint cumulative reward of all UAVs in DRL, that is, each UAV

will choose the action that maximized the Q-value based on its

current state. Compared with selecting the target only according

to distance, this method determines the assigned target according

to the Q-value comprehensively taking into account UAVs, targets,

and obstacles, even if obstacles are moving, so the targets can get an

optimal assignment.

For UAV i, a 1 × NT Q-value list
(

Qi1,Qi2, . . . ,QiNT

)

can be

obtained for each step from the initial position by considering

each target Tj, j = 1, 2, . . . ,NT as the destination the UAV i will

eventually reach, and for NU UAVs, a NU × NT value matrix is

formed as Equation (17) by traversing all targets,











Q11, Q12, . . . , Q1NT

Q21, Q22, . . . , Q2NT

. . . , . . . , . . . , . . . ,

QNU1, QNU2, . . . , QNUNT











(17)

In order to ensure the constraints of complete target

assignment, among many methods, the Hungarian algorithm has

fast solution speed and stable solution quality, and with the aid of

the independent 0 element theorem, it can obtain the exact solution

of the problem by making elementary changes for the matrix with

finite steps. Therefore, the Hungarian algorithm is introduced to

achieve a complete allocation for targets in this article. After the

Hungarian transformation, the Q-value matrix can be transformed

into a permutation matrix with only 0 and 1 elements such as in

Equation (18)











Q11, Q12, . . . , Q1NT

Q21, Q22, . . . , Q2NT

. . . , . . . , . . . , . . . ,

QNU1, QNU2, . . . , QNUNT











Hungarian
−−−−−−→

j

i















1 · · · 0 · · · 0

0 · · · 0 · · · 0

0 · · · 1 · · · 0

0 · · · 0 · · · 0

0 · · · 0 · · · 0















NU×NT

(18)

if element 1 of row i is located in column j, it means that the

j-th target is assigned to the i-th UAV. Thus, the target assignment

can be achieved according to the Q-value Q̃i,j of each step, and the

result of Hungarian transformation is used as the training label of

the target assignment network.

(3) Construction of environmental state information with a

new sequence

After the target assignment network of UAV i has been fully

trained, a list of probabilities of UAV imoving to each target in the

current state can be obtained, among which the assigned target has

the largest probability in the list. As shown in the top section of the

Figure 6, if the targetTj is assigned toUAV i, then the index of target

Tj can be calculated by Equation (19),

index(Tj) = argmax(Pi1, Pi2, . . . , PiNT ) (19)

The original environmental state information oi =

(sT1 , sT2 , · · · , sTNT , sU , sO) can be transformed into the

environmental state information with new targets sequence

õi = (sTj , sT1 , · · · , sTj−1 , sTj+1 , · · · , sTNT , sU , sO), that is the assigned

target Tj is placed in the first place of the target sequence to guide

UAV i to recognize its own target.

The target assignment network realizes the optimal target

assignment every step in the dynamic environment, and then UAV

i uses the TD3 algorithm to plan the path for the assigned target

according to the new state information s̃i = (sui, õi). The Actor

network updates according to the Q̃i,n and the state information

s̃i with new sequence using Equation (20),

∇φi J(φi) = N−1
∑

∇aQ̃θi,1 (s̃i, ai)|a=πφi(s̃i)
∇φiπφi (s̃i) (20)

the TANet-TD3 is described in Algorithm 1.

5 Experiments and results

In this section, the simulation environment is

introduced first. Then, the training experiments, testing

experiments, and statistical experiments are presented

to verify the effectiveness of the proposed method in

different scenarios.

TABLE 1 The hyperparameters of TANet-TD3.

No Hyperparameters Values

1 Max episodes number of TD3 5,000

2 Max episodes number of TANet-TD3 10,000

3 Max episodes length 100

4 Discount factor 0.9

5 Critic learning rate 1E-3

6 Actor learning rate 1E-4

7 Reply buffer size 5E5

8 Batch size 256

9 Soft update factor 0.01
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1: Initialize Critic networks Qθi,1, Qθi,2 and
Actor-network πφi with random parameters θi,1,
θi,2, φi for each UAV i;

2: Initialize target networks for each UAV i,
θi,1
′ ← θi,1, θi,2

′ ← θi,2, φi
′ ← φi;

3: Initialize rely buffer D;
4: For episode=1 to Max-episodes do
5: For step=1 to Max-step do
6: Select action with exploration noise

for each UAV i

7: Observe reward R and new state s′i.
8: Store transition tuple (si, a,R, s

′
i) in D

9: Randomly sample a mini-batch samples
from D

10: Calculate target actions using
Equation (11)

11: Calculate Q-targets using Equation (9)
12: Update θi,1 and θi,2 using Equation (10)
13: Calculate the

(

Qi1,Qi2, . . . ,QiNT

)

for each
UAV i

14: Obtain the assignment label using
Equation (18)

15: Update target assignment network using
Equation (16)

16: Construct the observation s̃i with the
new sequence

17: If t mod d then
18: Update Actor using Equation (20)
19: Update target networks:
20: Update θ ′i,1 and θ ′i,2 using Equation

(13)
21: Update φ′i using Equation (14)
22: End if
23: End for
24: End for

Algorithm 1. TANet-TD3

5.1 Experimental settings

A 3D simulation environment with two-dimensional three

views is constructed based on the OpenAI platform to implement

multi-UAV simultaneous target assignment and path planning in

dynamic multiple obstacle environments. As shown in Figure 7,

the simulation environment covers a 2 × 2 × 2 cubic area,

UAVs, targets, and obstacles are simplified to a sphere and

randomly initialized in this area. The radius of UAVs ru = 0.02,

and the maximum detection range ddet of UAVs is set as 0.5,

which is denoted by the color spherical shades around UAVs.

The radius of targets is set to rt = 0.12. The obstacles have

static mode and mobile mode with a radius ro = 0.1, In

motion mode, they move in a linear motion with a randomly

initialized direction and velocity vi ∈ [−0.05, 0.05], i ∈

[X, Y , Z]. vi represents the sub-velocity of obstacles in the

X, Y , Z three directions. When it hits the boundary of the

simulation environment, it moves in the opposite direction with

the same velocity.

In this paper, the network of TD3 is shown in Figure 8, N

UAVs include N Actor-Critic structures. For UAV i, the Actor

network is constructed by si × 64 × 128 × 64 × ai, where

the input si represents the state of UAV i, and the output ai
represents the action performed by UAV i. The first three layers

use a rectified linear unit (Relu) as the activation function, and

the last layer uses a hyperbolic tangent (tanh) activation function

to limit the output of action within the range of [−1,1]. The

Critic owns a network structure of (si + ai) × 64 × 128 ×

64 × Qi, after three fully connected neural network layers

(FCs) activated by Relu, the Critic maps the combination of

state and action of UAV i to the Q-value evaluated by UAV

i. The hyperparameters of TANet-TD3 and TD3 are given in

Table 1.

5.2 Training experiments

Training experiments include two sections, the first section

is to verify the advantages of TD3 in path planning, and the

second section is to validate the effectiveness of TANet-TD3 in

multi-UAV simultaneous target assignment and path planning.

These algorithms have been trained in dynamic and mixed task

environments as depicted in Figure 7, and in each episode, UAVs,

targets, and obstacles are randomly initialized in the task area.

There are three indicators used to measure the performance of

training shown in Equation (21), including the average reward, the

average arrival rate and the average target completion rate, where

Nver is the number of verification episodes, Ri-th is the reward of

the i-th verification episode, NU
i is the number of UAVs that reach

the target in the i-th verification episode and NT
i is the number of

targets that have UAV reached in the i-th verification episode.



















































Average reward =

Nver
∑

i=1

Ri−th/Nver

Average arrival rate =

Nver
∑

i=1

NU
i /(Nver × NU )

Average target completion rate =

Nver
∑

i=1

NT
i /(Nver × NT)

(21)

5.2.1 Training experiments for path planning
tasks

Firstly, the TD3 algorithm is trained in single-UAV and multi-

UAV dynamic scenarios respectively. Scenario I: one UAV, one

target, and 20moving obstacles; Scenario II: three UAVs, one target,

and 20 moving obstacles. Each experiment is trained for 5,000

episodes, and 50 episodes of verification are conducted after every

10 episodes of training. The average reward and average arrival

rate of these 50 verification episodes are counted to evaluate the

algorithm. As a comparison, the DDPG algorithm is trained in

the same task scenarios as TD3 with the same hyperparameters in

Table 1.

As can be seen from the training results depicted in

Figures 9A, B, after adequate training, the TD3 algorithm has a

good average arrival rate for path planning tasks, whether the

scenario I of a single UAV (95%) or the scenario II of multiple UAVs

(90%). It is evident that compared to the DDPG algorithm, TD3 has

a better convergence effect and a faster convergence speed.

Therefore, in this paper, the TD3 algorithm is used as the

basic algorithm for path planning, which can provide accurate

assignment labels for the training of the target assignment network.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1302898
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kong et al. 10.3389/fnbot.2023.1302898

FIGURE 9

Convergence curves. (A) The average arrival rate of DDPG and TD3 in scenario I. (B) The average arrival rate of DDPG and TD3 in scenario II. (C) The

average target completion rate of TANet-DDPG and TANet-TD3 in dynamic environment. (D) The average reward of TANet-DDPG and TANet-TD3 in

dynamic environment. (E) The average target completion rate of TANet-DDPG and TANet-TD3 in mixed environment. (F) The average reward of

TANet-DDPG and TANet-TD3 in mixed environment. The solid line denotes the statistical means and the 95% confidence interval of the means is

shown shaded.

5.2.2 Training experiments for simultaneous
target assignment and path planning tasks

Next, the proposed algorithm TANet-TD3 is trained in the

dynamic environment (five UAVs, five targets, and 20 moving

obstacles) and the mixed environment (five UAVs, five targets, 10

static obstacles, and 10 moving obstacles). Each experiment has

10,000 episodes, and 50 episodes of verification are conducted

after every 10 episodes of training. To verify the feasibility of

the assignment network of TANet-TD3, DDPG with the target

assignment network (TANet-DDPG) is introduced for comparison.

In addition, the scheme of target assignment based on the

distance between the target and UAV is introduced to the DDPG

(DDPG(distance)) and TD3 (TD3(distance)) respectively to verify

the advantages of TANet-TD3. Four algorithms are trained with

the same hyperparameters in Table 1, and the target completion

rate and the average reward are used as indicators to evaluate the

performance of algorithms.

As shown in Figures 9C, E, in the initial stage, all algorithms

generated training samples by the interaction process between

UAVs and the environment, and the training started when the

number of samples reached the capacity of batch size. The reward

is very low and UAVs do not know what the goal is before the

first 3,000 episodes. With the gradual rise of the samples in the

reply buffer, each UAV gradually began to learn more intelligent

strategies and finally reached the convergence result. The training

results are listed in Table 2.

Figures 9C, D present that TANet-TD3 has the fastest

convergence rate in the dynamic environment, reaching
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TABLE 2 The training results of TANet-DDPG and TANet-TD3.

Environment Algorithm In episode 5,000 Last 1,000 episodes

Average target
completion rate

Average reward Mean average target
completion rate

Mean average reward

Dynamic TANet-DDPG 71.20% −303.5 80.70% −271.5

TANet-TD3 81.54% −241.4 83.77% −253.0

DDPG(distance) 51.07% −301.0 73.06% −290.4

TD3(distance) 55.27% −296.5 75.10% −275.0

Mixed TANet-DDPG 63.20% −305.9 80.38% −281.1

TANet-TD3 78.21% −220.5 84.27% −255.2

DDPG(distance) 52.38% −300.3 73.78% −299.2

TD3(distance) 48.00% −295.9 76.28% −289.2

The bold values represents the training result of our algorithm, and it is optimal among the four algorithms.

TABLE 3 The test statical results of TANet-DDPG and TANet-TD3.

Environments Algorithms The number of targets reached by UAVs Rewards

Dynamic TANet-DDPG 4 −256.87

TANet-TD3 5 −141.97

Mixed TANet-DDPG 2 −452.70

TANet-TD3 5 −335.05

FIGURE 10

The test scenarios. (A) The 3D scenario of dynamic environment. (B) The dynamic environment from X-Y view. (C) The dynamic environment from

Y-Z view. (D) The dynamic environment from X-Z view. (E) The 3D scenario of mixed environment. (F) The mixed environment from X-Y view. (G) The

mixed environment from Y-Z view. (H) The mixed environment from X-Z view.

convergence about the 5,000th episode; followed by TANet-

DDPG, while the TD3(distance) and DDPG(distance) algorithms

reach convergence at about the 7,000th episode. Similarly,

Figures 9E, F depict that TANet-TD3 has about 500 accelerated
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convergence compared to TANet-DDPG and about 2,000

accelerated convergence compared to TD3 and DDPG.

Additionally, the relevant statistics in Table 2 illustrate that

TANet-TD3 has the highest average target completion rate and

average reward in both the dynamic and mixed environments.

Compared to TANet-DDPG, TANet-TD3 leads an increase

of (3.07%, 18.5) in a dynamic environment and (3.89%, 25.9)

in a mixed environment. It has the largest average target

completion rate difference of 10.71% (dynamic environment)

and 10.49% (mixed environment) among TANet-TD3 and

DDPG (distance).

Overall, the improvement of TANet-TD3 and TANet-DDPG

is remarkable compared to DDPG(distance) and TD3(distance),

this demonstrated that it is effective for the assignment method

proposed in the paper, which can achieve simultaneous target

assignment and path planning. Moreover, the training results also

illustrated that TANet-TD3 outperforms TANet-DDPG in terms

of convergence effect and convergence speed, which is mainly

due to the superiority of TD3 in completing path planning tasks,

which provides better Q-value labels for the optimization of target

assignment network.

5.3 Testing experiments and results

In order to evaluate the application efficiency of the algorithm

after convergence and further verify the advantages of the TANet-

TD3 algorithm in the simultaneous target assignment and path

planning of multiple UAVs, a series of test experiments are

conducted, in which the network parameters after convergence

of TANet-TD3 and TANet-DDPG are used to control UAVs

move in two environments. One is a dynamic environment,

where all obstacles are mobile; the other environment is a mixed

environment, where obstacles are static or mobile. As shown in

Figure 10, UAVs, targets, and obstacles are randomly deployed

in task areas, Figure 10A presents the 3D scenario of a dynamic

environment with five UAVs, five targets, and 20 mobile obstacles,

Figure 10B depicts the 3D scenario of the mixed environment with

five UAVs, five targets, 10 static obstacles, and 10 mobile obstacles.

Note that the colored spherical shades around UAVs represent the

detection range of UAVs.

Figures 11, 12 present the 3D trajectories and corresponding

2D three views of five UAVs derived by TANet-DDPG and TANet-

TD3 respectively in the dynamic scenario of Figure 10A. As can be

FIGURE 11

The 3D trajectories and corresponding 2D three views of UAVs driven by TANet-DDPG at di�erent times in a dynamic environment. (A) The 3D

trajectories at t = 4s. (B–D) The corresponding 2D three views of (A). (E) The 3D trajectories at t = 8s. (F–H) The corresponding 2D three views of (E).

(I) The 3D trajectories at t = 12s. (J–L) The corresponding 2D three views of (I).
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FIGURE 12

The 3D trajectories and corresponding 2D three views of UAVs driven by TANet-TD3 at di�erent times in dynamic environment. (A) The 3D

trajectories at t = 4s. (B–D) The corresponding 2D three views of (A). (E) The 3D trajectories at t = 8s. (F–H) The corresponding 2D three views of (E).

(I) The 3D trajectories at t = 12s. (J–L) The corresponding 2D three views of (I).

seen in Figure 11, all five UAVs driven by TANet-DDPG reached

targets, but UAV 1 and UAV 4 reached the same target resulting in

one of five targets not having a UAV arriving for the next mission.

Unlike TANet-DDPG, UAVs driven by TANet-TD3 achieve a full

assignment of targets, that is a one-to-one correspondence between

targets and UAVs. Meanwhile, it is evident that multiple UAVs

execute simultaneous target assignment and path planning under

TANet-TD3 and have a superior performance in the capability

of obstacle avoidance. The trajectories of UAV 2 and UAV 5 in

Figure 12 avoided the obstacle intentionally choosing a safer path

as they approached the obstacle.

The test results of the two algorithms in themixed environment

of Figure 10B are depicted in Figures 13, 14, respectively. First,

UAV 2 and UAV 3 driven by TANet-DDPG failed to reach their

assigned target due to hitting moving obstacles during flight, but

they adapted well to the uncertain environment driven by TANet-

TD3, and both succeeded in reaching their respective targets. Then,

UAV 1 flew to the target reached by UAV 5 under the TANet-

DDPG planning. In contrast, the test result derived by TANet-TD3

provides a complete assignment and a path without collision.

As a result, TANet-TD3 presents a better adaptability to

dynamic environments compared to TANet-DDPG. Besides, the

test statical results shown in Table 3 illustrate that TANet-TD3

exceeds TANet-DDPG in both the number of targets reached by

UAVs and the reward value. According to the design of the reward

function in Section 3.3, the value of reward also reflects the length

of the flight path of UAVs, which also indicates that the path derived

by TANet-TD3 is shorter than that derived by TANet-DDPG.

5.4 Statistical experiments

In this section, the statistical experiments about different

numbers of UAVs and different numbers of obstacles are presented

to further verify the advantage of TANet-TD3.

5.4.1 Adaptability to di�erent numbers of UAVs
In this experiment, the average target completion rate

of the TANet-DDPG and TANet-TD3 are sequentially
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FIGURE 13

The 3D trajectories and corresponding 2D three views of UAVs driven by TANet-DDPG at di�erent times in mixed environments. (A) The 3D

trajectories at t = 4s. (B–D) The corresponding 2D three views of (A). (E) The 3D trajectories at t = 8s. (F–H) The corresponding 2D three views of (E).

(I) The 3D trajectories at t = 12s. (J–L) The corresponding 2D three views of (I).

compared in terms of the number of UAVs from 3 to 7.

The obstacles are set to 20 moving obstacles in a dynamic

environment, and 10 static obstacles and 10 moving obstacles

in a mixed environment. Each experiment with a specific

number of UAVs is repeated 1,000 episodes, and in each

episode, UAVs, targets, and obstacles are initialization

with random position and velocity. Figures 15A, B depict

the statistical results in dynamic environment and mixed

environment, respectively.

As the number of UAVs increases, the difficulty of the

simultaneous target assignment and path planning tasks

increases dramatically, and the average target completion

rate of TANet-DDPG and TANet-TD3 gradually decreases

in both dynamic and mixed environments. Faced with the

complex mission scenario of seven UAVs and 20 obstacles,

TANet-TD3 can maintain an average target completion

rate of more than 71% (71.54%, 71.06%). In contrast,

TANet-DDPG has dropped to just over 70% (70.35%, 70.45%)

at six UAVs and falls sharply below 65% (64.93%, 63.03%)

at the seven UAVs. In addition, as the number of UAVs

increases, the gap between TANet-DDPG and TANet-TD3

grows wider.

5.4.2 Adaptability to di�erent number of
obstacles

This experiment verifies the effect of different numbers of

obstacles on TANet-TD3 and TANet-DDPG. Specifically, the two

algorithms are compared in dynamic and mixed environments

with five UAVs and different numbers of obstacles including 10,

15, 20, 25, and 30, respectively. Each experiment is repeated

1,000 episodes, and the state of UAVs, targets, and obstacles

are randomly initialized for each episode. The comparison

results of the average target completion rate are presented

in Figures 15C, D.

As shown in Figure 15, the increase in the number of

obstacles has affected the performance of two algorithms

both in dynamic and mixed environments, but TANet-TD3

consistently outperforms TANet-DDPG in all scenarios.
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FIGURE 14

The 3D trajectories and corresponding 2D three views of UAVs driven by TANet-TD3 at di�erent times in mixed environment. (A) The 3D trajectories

at t = 4s. (B–D) The corresponding 2D three views of (A). (E) The 3D trajectories at t = 8s. (F–H) The corresponding 2D three views of (E). (I) The 3D

trajectories at t = 12s. (J–L) The corresponding 2D three views of (I).

Additionally, when the number of obstacles is 25, the average

target completion rate of TANet-DDPG is below 80% in both

dynamic (79.36%) and mixed environments (79.35%), while the

average target completion rate of TANet-TD3 remains above

81% (81.36%, 82.40%) under the complex environment with

30 obstacles.

In summary, TANet-TD3 can effectively complete

simultaneous target assignment and path planning.

Besides, it has demonstrated that TANet-TD3 has a better

adaptability to dynamic and random environments compared

with TANet-DDPG.

6 Conclusion and discussion

This paper proposes a novel DRL-based method TANet-

TD3 for multiple UAVs target assignment and path planning in

dynamic multi-obstacle environments. The problem is formulated

as a POMDP and a target assignment network is introduced to

the TD3 algorithm to complete the target assignment and path

planning simultaneously. Specifically, each UAV considers each

target as its final target to be reached in turn and executes its

action derived by TD3 for the next step. A Q-value matrix can

be obtained by reward function and the Hungarian algorithm is

used to act on the Q-value matrix to achieve an exact match

between UAVs and targets. The matching result is used as labels

to train the target assignment network, so as to obtain the optimal

allocation for targets. Then each UAV moves to its assigned

target under the planning of the TD3 algorithm. The experiment

results demonstrate that TANet-TD3 can achieve simultaneous

target assignment and path planning in dynamic multiple obstacle

environments, and the performance of TANet-TD3 outperforms

the existing methods in both convergence speed and target

completion rate.

For future research, we will further improve the proposed

method by combining it with specific applications, such as multi-

UAV target search tasks and multi-UAV target-tracking tasks.

Additionally, we will study the method of calculating the Q-value

matrix in high-dimensional scenarios to deal with complex tasks

with a large number of targets. Furthermore, we will build a
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FIGURE 15

The comparison result of the average target completion rate of TANet-DDPG and TANet-TD3. (A) The comparison result under di�erent numbers of

UAVs in a dynamic environment. (B) The comparison result under di�erent numbers of UAVs in mixed environments. (C) The comparison result under

di�erent numbers of obstacles in a dynamic environment. (D) The comparison result under di�erent numbers of obstacles in a mixed environment.

more realistic simulation environment, in which the shape and

movement of obstacles are more complex, to verify the effectiveness

of the proposed algorithm.
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