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Unmanned surface vessel (USV) target detection algorithms often face challenges

such as misdetection and omission of small targets due to significant variations

in target scales and susceptibility to interference from complex environments.

To address these issues, we propose a small target enhanced YOLOv7 (STE-

YOLO) approach. Firstly, we introduce a specialized detection branch designed

to identify tiny targets. This enhancement aims to improve the multi-scale

target detection capabilities and address di�culties in recognizing targets of

di�erent sizes. Secondly, we present the lite visual center (LVC) module, which

e�ectively fuses data from di�erent levels to give more attention to small

targets. Additionally, we integrate the lite e�cient layer aggregation networks

(L-ELAN) into the backbone network to reduce redundant computations and

enhance computational e�ciency. Lastly, we use Wise-IOU to optimize the

loss function definition, thereby improving the model robustness by dynamically

optimizing gradient contributions from samples of varying quality. We conducted

experiments on the WSODD dataset and the FIOW-Img dataset. The results on

the comprehensiveWSODDdataset demonstrate that STE-YOLO,when compared

to YOLOv7, reduces network parameters by 14% while improving AP50 and APs

scores by 2.1% and 1.6%, respectively. Furthermore, when compared to five other

leading target detection algorithms, STE-YOLO demonstrates superior accuracy

and e�ciency.

KEYWORDS

object detection, water target detection, YOLOv7, unmanned surface vessel, small object

detection

1 Introduction

Unmanned surface vessel (USV) are now widely used in the fields of harbor surveillance,

fisheries monitoring, maritime management, and military intelligence analysis, such as

target detection and environmental monitoring (Zhang et al., 2022, 2023; Zhou et al.,

2022). Equipped with cameras, lasers, and an array of sensors, USVs enable autonomous

detection and recognition of their surroundings. This capability ensures the safe and efficient

navigation of unmanned vessels, while also enhancing the effectiveness of monitoring tasks.

Target detection technology plays a pivotal role in evaluating the performance of unmanned

vessels for object detection and recognition tasks. Deep learning-based target detection

algorithms have garnered significant attention due to their precision in identifying objects.

However, the high-speed mobility of unmanned vessels introduces considerable scale
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variations in the objects detected. This demands robust multi-scale

detection capabilities from the algorithm.

At present, several researchers are actively delving into the

realm of waterborne target detection. Moosbauer et al. (2019)

publicly released the Singapore Maritime Dataset (SMD), which

has provided invaluable resources to drive progress in the field

of sea surface target detection from a horizontal perspective. Shin

et al. (2020) pioneered the utilization of instance segmentation

techniques to extract ship targets from the SMD dataset. These

targets were subsequently merged with ocean backgrounds,

resulting in a synthetic dataset that significantly enhances the

precision of sea surface target detection. Chen et al. (2018) curated

a dataset comprising 1,500 images of sea surface targets, drawing

from three distinct sources: MS COCO (Lin et al., 2014), Pascal

VOC (Everingham, 2010), and SMD. This dataset played a pivotal

role in validating their proposed hierarchical, multi-scale deep

convolutional neural network-based sea surface target detection

algorithm. Furthermore, Zhou et al. (2021) have contributed to the

field by curating the WSODD dataset, which stands as a notable

advancement in the domain of water target detection, Cheng et al.

(2021) collected a variety of local floating garbage to form the FloW

dataset—the world’s first unmanned ship-view of floating garbage

detection dataset, promoting the rapid development of floating

garbage detection technology.

To address the limitations of existing water target detection

algorithms, particularly in the realms ofmulti-scale and small target

detection, we present STE-YOLO, an enhanced model built upon

the foundation of YOLOv7. The overview of the detection pipeline

utilizing STE-YOLO is depicted in Figure 1. This framework

achieves a reduction in network size by meticulous redesign and

optimization of the network structure. Additionally, it integrates

multi-scale and multi-level information, augmenting the network

capacity to characterize objects effectively. Moreover, a residual

module is incorporated to heighten the model sensitivity to small

targets. The contributions of this paper are delineated as follows:

1. We establish a specialized detection head, focused on precisely

detecting small targets. This strategic design empowers the

network to adeptly leverage shallow-level information, thereby

enhancing its efficacy in identifying small targets. Consequently,

this improvement extends to the network’s overall capability to

detect targets across diverse scales.

2. The introduction of the lite visual center (LVC) module

seamlessly merges coordinate convolution with target-relative

positional information within the network architecture. This

fusion facilitates refined feature extraction from the target

region, thereby intensifying attention and precision in detecting

small targets. This integration culminates in an elevated overall

performance in target detection.

3. The integration of the lite efficient layer aggregation networks

(L-ELAN) module into the network results in reduced

parameters and operations, all while upholding accuracy.

4. Optimization of the loss function computation is achieved

through the utilization of Wise-IOU (Tong et al., 2023),

thereby boosting the model confidence level and enhancing

its robustness.

2 Related works

2.1 Object detection based on deep
learning

Modern deep learning-based methods for target detection can

be categorized into two primary types: two-stage target detectors

and single-stage target detectors. Two-stage target detectors,

represented by architectures like Mask-RCNN (He et al., 2017),

VFNet (Zhang et al., 2021), and CenterNet (Zhou et al., 2019),

generate a set of region proposals using a region selection

network. These proposals then undergo feature extraction through

a learning module, followed by classification and regression

processes. However, this method of extracting features for each

proposal can lead to significant computational costs and might not

capture a comprehensive global feature representation effectively.

On the other hand, prevalent single-stage detectors, exemplified

by networks like YOLOX (Ge et al., 2021), FCOS (Tian et al.,

2022), Scaled-YOLOv4 (Wang et al., 2021), and EfficientDet (Tan

et al., 2020), rely on a backbone network to extract feature maps

for the entire input image. These feature maps are subsequently

used to predict bounding boxes, enabling concurrent prediction

and classification through box generation.

Furthermore, in terms of the network’s architectural

components, it can be divided into two primary elements:

the Backbone, responsible for extracting image features, and the

Head, utilized for predicting object categories and bounding box

coordinates. Additionally, some researchers have introduced an

intermediary module known as the Neck between the Backbone

and the Detection Head to optimize detection performance.

Backbone. Commonly utilized backbone networks include

ResNet (Wightman et al., 2021), CSPDarknet53 (Bochkovskiy

et al., 2020), Swin Transformer (Liu et al., 2021), and FasterNet

(Chen J. et al., 2023). These backbones exhibit robust feature

extraction capabilities, particularly for classification tasks.

Typically, researchers only need to fine-tune the backbone to

optimize its performance for specific tasks.

Neck. The Neck network is designed to enhance the utilization

of features derived from the Backbone network. It accomplishes

this by reprocessing the feature maps extracted by the Backbone

at various stages. The Neck network typically consists of multiple

bottom-up and top-down pathways. What sets this network apart

is its direct multi-stage feature mapping approach, which omits

feature layer aggregation operations and aligns directly with

the Head. Prominent Neck network architectures include PANet

(Wang et al., 2019), NAS-FPN (Ghiasi et al., 2019), and SFAM

(Zhao et al., 2019). These architectures often utilize combinations

of up-sampling and down-sampling iterations, concatenation,

element-wise summation, and dot products to establish effective

aggregation strategies. Additionally, complementary modules like

MSFFM (Wan et al., 2023), ASPP (Weber et al., 2021), SPPCSPC

(Wang et al., 2023), and GFFAP (Sun et al., 2021) are incorporated

into Neck networks to enhance feature fusion and improve

detection accuracy. Adding an attention module is also a great way

to do this, such as MFINEA (Sun et al., 2023) and Box-Attention

(Nguyen et al., 2022).
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FIGURE 1

The overview of working pipeline using STE-YOLO. Compared to original version, we mainly improve the method by adding one more head (P2) to

better detect di�erent scale objects. In addition, we also employ LVC and L-ELAN to make STE-YOLO stronger.

Head. While the backbone network primarily functions as a

classification network, it is insufficient to perform the localization

task independently. Hence, the head network plays a crucial role

in achieving both target localization and categorization, utilizing

the feature maps extracted by the backbone network. Head

networks are generally divided into two main categories: single-

stage detectors and two-stage detectors (He et al., 2017; Ren et al.,

2017). stands out as a notable representative of two-stage detectors.

On the other hand, one-stage detectors offer faster prediction by

simultaneously estimating bounding boxes and target categories,

but they may sacrifice accuracy. Due to the real-time constraints in

water target detection, a majority of algorithms used in this domain

opt for one-stage detectors, such as YOLO (Wang et al., 2023) and

SSD (Zalesskaya et al., 2022) .

2.2 Small target detection

Small target detection presents significant challenges within the

realm of target detection, necessitating algorithms with robust fine

feature extraction capabilities (Shamsolmoali et al., 2022; Gong,

2023). Typically, two primary criteria are employed to define small

targets: absolute size and relative size. In terms of absolute size,

targets with dimensions smaller than 32× 32 pixels are categorized

as small. In the case of relative size, targets with an aspect ratio<0.1

times the original image size are considered small (Lin et al., 2014).

Currently, small target detection algorithms fall into three main

categories: those utilizing data augmentation, those emphasizing

multi-scale learning, and those leveraging contextual information.

Data augmentation. Kisantal et al. (2019) elevated the

percentage of small targets within the dataset through replication,

thereby enhancing their significance in the network. This

augmentation aimed to bolster the model’s proficiency in

detecting small targets. Yu et al. (2020) introduced the scale-

matching strategy, aligning pre-trained network features with those

obtained by the detector. This strategy ensures the comprehensive

utilization of pre-trained network capabilities, thereby enhancing

overall performance.

Multiscale learning. The deep network has large receptive

field and strong representation ability of semantic information,

but weak representation ability of geometric information. The

lower layer network has relatively small receptive field and strong

representation ability of geometric details, but weak representation

ability of semantic information. Thus, Multiscale learning often

enhances network representation ability by fusing shallow detail

information with deep semantic information, thus improving

small target detection. However, multiscale learning can increase

parameters and slow down inference speed. The Feature Pyramid

Network (FPN), proposed by Lin et al. (2017), is a classic multiscale

learning network structure. In FPN, the image undergoes bottom-

up feature extraction, followed by top-down feature fusion, before

being fed into the detection head for regression prediction. Deng

et al. (2022) extended this approach with the Enhanced Feature

Pyramid Network (EFPN), which incorporates a feature texture

migration module for ultra-high-resolution feature extraction,

further enhancing small target detection.

Utilization of contextual information. Zhu et al. (2021)

introduced TPH-YOLOv5, a novel strategy that integrates the

Transformer (Vaswani et al., 2017) into the prediction head

of YOLOv5 (Jocher et al., 2022). This integration enhances

predictive regression capabilities while employing an attention

mechanism to focus intensively on small targets. In a different

vein, QueryDet (Yang et al., 2022) utilizes a querying mechanism
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FIGURE 2

Architecture of STE-YOLO. CSPDarknet53 backbone with four L-ELAN blocks. The Neck use the structure like PANet with LVC. Four prediction heads

use the di�erent size of feature maps Neck. The CBS module is a basic module, which contains three operations of convolution, normalization and

activation function, the CConv means CoordConv.

to expedite target detector inference. It leverages low-resolution

features for preliminary localization predictions, which then guide

higher-resolution features, contributing to increased accuracy in

predictive regression.

3 STE-YOLO

YOLOv7 (Wang et al., 2023) stands out as a highly

proficient one-stage detector, renowned for its exceptional

overall performance. The model structure comprises three

central components: Backbone, Neck, and Head. The YOLOv7

framework incorporates a wide range of advanced techniques,

substantially enhancing its detection capabilities. Operating as a

one-stage detector, YOLOv7 boasts impressive real-time processing

capabilities, rendering it particularly well-suited for meeting the

demands of real-time water-based target detection.

However, due to the susceptibility of water target detection

to adverse weather conditions like storms, coupled with the

high-speed nature of USVs leading to significant variations

in target scale, YOLOv7 encounters certain challenges. These

include limitations in recognizing targets across diverse scales,

which in turn reduces accuracy in rapidly detecting small targets

in water scenarios. With a focused approach, our aim is to

enhance YOLOv7’s proficiency in detecting small targets while

optimizing computational efficiency. Our proposed solution is a

waterborne rapid target recognition algorithm named STE-YOLO.

The architectural diagram, illustrated in Figure 2, introduces a

novel detection branch known as P2 head, represented by dashed

lines. The P2 head primarily enhances the detection performance

of small targets while simultaneously accommodating multi-scale

target detection. The LVCmodule employs coordinate convolution

to amplify focus on small targets, replacing the original fusion

operation in the FPN structure and amalgamating multi-level

information to enhance detection accuracy. Additionally, the L-

ELAN module, a lightweight feature extraction addition, aims to

reduce network computation while bolstering network robustness

and computational efficiency. Furthermore, we have fine-tuned
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FIGURE 3

Percentage of targets of di�erent sizes in the WSODD dataset.

the loss function and integrated Wise-IOU to achieve improved

detection performance.

3.1 Small target head P2

In the context of actual waterborne target detection tasks,

encountering a substantial volume of small target samples (Zhou

et al., 2021) is common. Through in-depth data analysis of the

prevalent water target dataset WSOOD, a notable insight has

emerged. This dataset comprises an impressive 53% of small targets,

as depicted in Figure 3. Consequently, the task of waterborne

target detection demands that the model possesses a strong

capability to extract localized information, persisting across the

intricate layers of the network. This is crucial to ensure the

comprehensive retention of information relevant to small targets.

YOLOv7 adheres to the downsampling mechanism typical of

conventional convolutional networks, where increasing depths lead

to augmented downsampling factors. This mechanism fosters a

wider spatial perception, which is advantageous for recognizing

overarching target contours. However, this approach also carries

the risk of losing detailed information, which could significantly

hinder small target recognition.

With this challenge in mind, we have developed a specialized

prediction head network called P2 head that places a primary focus

on recognizing small targets. As an innovative extension, a shallow

feature obtained through a 4× downsampling rate is introduced

as one of the inputs to the neck network. Subsequently, the neck

network orchestrates the fusion of four distinct sets of features,

each corresponding to varying scales downsampling rates of 4×,

8×, 16×, and 32×. These amalgamated features are then directed to

the head network, resulting in the creation of four distinct detector

head structures. Each of these structures is optimized for detecting

objects of different sizes. The architectural arrangement is vividly

depicted in Figure 4.

The newly introduced P2 detection branch is meticulously

crafted for the explicit purpose of detecting exceedingly small

targets. Given the inherent possibility of significant information

loss in deeper feature maps due to consecutive convolutional

pooling, and the risk of larger target features overpowering those of

smaller targets, a challenge of misdetection and omission emerges.

As a response, there is a proactive approach in place for the input to

the P2 detection branch structure, predominantly originating from

the shallow convolutional layer. This particular layer encapsulates

a wealth of localized information, spanning attributes such as

shape, position, and size. Consequently, it greatly assists in precisely

localizing small targets. This strategic enhancement effectively

bolsters the efficiency of small target detection, all the while

catering to the broader capabilities of multi-scale target detection.

Furthermore, this architectural extension comprises four distinct

detector head structures, each serving as a mitigation strategy

against the adverse consequences of significant variations in target

scale. This configuration, in turn, ultimately contributes to the

elevation of the comprehensive detection performance.

Furthermore, YOLOv7 exhibits a high degree of adaptability

to the configuration of the anchor frame dimensions. Therefore,

when utilizing the P2 detection branch for predictive regression,

meticulous assessment of the anchor frame dimensions becomes

imperative. This evaluation involves a tailored K-means cluster

analysis that aligns with the dataset’s characteristics. Its goal

is to determine the most suitable anchor frame size. Once

this determination is made, the anchor frame settings for each

branch are established, as outlined in Table 1. As depicted in

Table 1, the P2 detection branch holds the potential to address

scenarios where the target object might evade detection due to

its diminutive size combined with an excessively large anchor

frame. The strategic alignment effectively alleviates challenges of

misdetection and omission that may arise from suboptimal anchor

frame configurations P3 head. This approach ensures a robust and

reliable detection process by fine-tuning the anchor frame settings

to harmonize with the unique characteristics of the detection task.

3.2 Lite visual center–LVC

Given the intricate and ever-changing nature of the aquatic

environment, a multitude of dynamic factors come into play. These

factors encompass light reflections, precipitation, interference

induced by fog, and the constant fluctuations in wind and wave

patterns. These phenomena often converge to create challenging

conditions. These conditions, frequently presenting as shadows,

reflections, or image blurring, severely compromise the visibility

of targets. Consequently, the intricacies associated with target

identification become more pronounced. Therefore, there is a

compelling imperative to devise innovative and efficient strategies

for feature extraction. These strategies are specifically designed

to enhance the capacity for acquiring both broad context and

localized information. This strategic endeavor assumes paramount

importance in the pursuit of heightening the overall effectiveness

of detection.

While YOLOv7 employs a singular convolutional fusion to link

the backbone network with the neck network, effectively facilitating

the extraction and fusion of features across diverse levels and

thereby enhancing the capability for multi-level feature extraction

to some extent, its adequacy in recognizing small targets falls short.

This insufficiency gives rise to the introduction of the lite visual
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FIGURE 4

The overview of Head network optimization results, the portion of the red box is the newly added P2 detector head.

TABLE 1 The head setting of STE-YOLO.

Prediction head Anchor box setting

P2 [8,10, 9,22, 17,16]

P3 [10,13, 16,30, 33,23]

P4 [30,61, 62,45, 59,119]

P5 [116,90, 156,198, 373,326]

center (LVC) module. This module is inspired by the structural

blueprint of EVC (Quan et al., 2023), which is present within the

framework of CFP. The architectural details of this novel module

are visually represented in Figure 5.

Within the LVC module, two critical components are

seamlessly integrated the multilayer perceptron [MLP (Tolstikhin

et al., 2021)] and CCBS [CoordConv (Liu et al., 2018) with bilateral

strategy]. The incorporation of the MLP component serves a

pivotal role in capturing extensive global long-term dependencies

within deep features, which results in the encapsulation of

global information and ultimately enhancing the precision of

holistic recognition. Concurrently, the introduction of CCBS

involves the application of CoordConv, a convolutional mechanism

enriched with relative position coordinate information during the

convolution process. This integration empowers the network to

discern and ascertain the relative positioning of targets more

effectively through the amalgamation of localized area features.

Ultimately, the feature maps originating from the MLP and CCBS

modules are amalgamated across the channel dimension, thus

constituting the output of the LVC module. This amalgamated

feature suite seamlessly integrates the strengths of both modules,

preserving significant information concerning elements within the

block or pool, and capable of supplying more comprehensive and

enriched multi-level fusion features. Consequently, the detection

model is able to acquire a holistic range of feature representations,

thereby amplifying the recognition capacity for small targets.

Simultaneously, this paper undertakes the replacement of

selected CBS modules in the original model with CCBS modules,

allowing the network to harness the amalgamated positional

coordinate data and global information, ultimately enhancing the

overall system performance. These innovative addition serves as a

means to further enrich the model feature extraction capabilities,

especially in scenarios where small targets play a pivotal role.

3.3 L-ELAN

In the realm of water target detection tasks, the inherent

limitations of equipment often require the downsizing of the model

for enhanced practical applicability. With this consideration, a

L-ELAN lightweight module is put forth, meticulously striking

a balance between model accuracy and computational efficiency.

The schematic representation of this module can be observed in

Figure 6. The water target detection task, due to the limitation
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FIGURE 5

The architecture of LVC, which contains two main blocks, a Multilayer Perceptron (MLP) and CCBS, residual paths are also used.

FIGURE 6

The structure of ELAN (A) and L-ELAN (B), where PBS modules are combinations of Pconv, BN, and silu activation functions, and all PBS modules in

the ELAN structure are CBS.

of equipment, it is often necessary to reduce the model size as

much as possible for ease of use. For this reason, a lightweight

module L-ELAN is proposed by considering model accuracy and

computational efficiency, as shown in Figure 6.

In the original YOLOv7 framework, the efficient layer

aggregation networks (ELAN) module predominantly employs

conventional convolutions for feature extraction. While this

methodology ensures a commendable level of detection accuracy,

it doesn’t inherently excel in terms of computational efficiency.

In response to this challenge, the lite efficient layer aggregation

networks (L-ELAN) module is introduced. It integrates positional

convolution [PConv (Chen J. et al., 2023)] to replace specific

segments of the traditional convolution processes The structure of

PCONV is shown in Figure 7. This strategic substitution leverages

the inherent traits of PConv minimal computational requirements

and heightened efficiency. The integration of PConv within L-

ELAN serves a dual purpose: enhancing the network computational

efficiency and reducing the overall count of network parameters.

This innovative enhancement aligns with the overarching goal of

optimizing the network performance not only in terms of detection

accuracy but also in terms of computational resource utilization.

By strategically selecting and incorporating PConv within the L-

ELANmodule, the model achieves a balance between accuracy and

efficiency a crucial consideration in real-time waterborne target

detection scenarios.

When handling input I ∈ R
c×h×w, conventional convolution

utilizes c filters W ∈ R
k×k to perform computations and generate

an output O ∈ R
c×h×w. In contrast, PConv employs standard

convolution for spatial feature extraction exclusively on select

input channels, while leaving the remaining channels unaffected.

This methodology ensures an alignment between the number of

channels in the input and the resulting output feature maps. The

computational cost, quantified in terms of FLOPS (Floating Point

Operations Per Second), associated with the standard convolution

operation is as follows:

FLOPs = h× w× k2 × c (1)

where h, w is the size of the feature map, k is the size of the filters,

c is the number of filters used. The FLOPS calculation formula for

PConv is as follows:

FLOPs = h× w× k2 × c2p. (2)
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FIGURE 7

The structure of Conventional convolution (A), Dconv (B), and Pconv (C), the Pconv is only applied to a part of the input channel for spatial feature

extraction without a a�ecting the rest of the channels.

where cp is the number of partial channels. When the convolution

channel percentage r=
cp
c =

1
4 , the FLOPS of PConv is just

1
16 of the

traditionally convolution.

Furthermore, PConv exhibits reduced memory accesses (M),

which can be computed as demonstrated in Eq. 3, while the

conventional convolution is represented by Eq. 4.

M = h× w× 2cp + k2 × c2p ≈ h× w× 2cp (3)

M = h× w× 2c + k2 × c2 ≈ h× w× 2c (4)

The computational effort is merely a quarter of that required by

the normal convolution when r equals 1
4 .

The analysis provided above leads to a clear realization that

the incorporated L-ELAN module within this study achieves

two pivotal objectives. Primarily, it significantly reduces the

computational load while simultaneously effectively addressing

memory access demands. This harmonious accomplishment

notably streamlines and expedites the practical feasibility of real-

world deployment.

3.4 Wise-IOU

In the realm of water target recognition tasks, it’s commonplace

to encounter a notable prevalence of suboptimal samples,

particularly within datasets that display limitations and imbalances

(Chen X. et al., 2023). After thorough examination, this study

establishes that the CIOU loss function, when integrated into

the original YOLOv7 model, exerts a substantial negative impact

on the cumulative regression loss. This issue predominantly

arises from samples characterized by subpar regression quality.

Concurrently, it introduces difficulties in effectively fine-tuning

samples that possess relatively higher regression quality, thereby

compromising the overall effectiveness of recognition. To navigate

these challenges, this paper deliberately chooses to adopt the Wise-

IOU loss function (WIOUv3 version), as outlined in Eq. 5.

LWIOUv3 = rRWIOULIOU (5)

whereLIOU ∈ (0, 1) is the ratio of the intersection of the prediction

frame and the true frame, RWIOU ∈ [1, e) means distance attention,

r is non-monotonic focusing factor, which can adaptively adjust

the gradient gain assignment strategy according to the degree of

outliers of the anchor frame.

The Wise-IOU loss function incorporates a dynamic non-

monotonic focusing mechanism, leveraging “outliers” in place of

IOUs for the assessment of anchor frame quality. This approach

also encompasses an intelligent strategy for assigning gradient

gains. The expressions for RWIOU and r are outlined below:

RWIOU = exp(
(x− xgt)

2 + (y− ygt)
2

(Wg
2 + Hg

2)∗
) (6)

r =
β

δαβ−δ
(7)

where x and y denote the anchor frame dimensions in terms of

length and width, while Wg and Hg represent the dimensions of

the minimum enclosing frame. The symbol (*) serves to mark

the detachment of Wg and Hg from the computational graph,

effectively excluding them from participating in backpropagation.

This measure is undertaken to avoid the emergence of

gradients that might hinder convergence, particularly concerning

theRWIOU computation. β assumes significance as the outlier value,

functioning as a descriptor for the anchor frame quality. δ and

α take on the role of hyperparameters This description takes the

following form.

β =
L
∗
IOU

LIOU
∈ [0,+∞) (8)
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Due to the small data set, we hope that the model can reach the

high gradient gain earlier in the training process, so we choose to

increase and decrease to improve the speed of reaching the peak, so

that the model anchor frame can obtain the highest gradient gain

earlier. The final experimental results also prove this.

In our established framework, a smaller departure from the

norm signifies an anchor frame boasting heightened quality.

Consequently, these high-quality anchor frames receive minimal

gradient gains, directing the emphasis of bounding box regression

toward anchor frames of average quality. Conversely, anchor

frames exhibiting larger deviations are coupled with relatively

subdued gradient gains, effectively countering the emergence

of unfavorable gradients originating from subpar samples. This

strategy not only tempers the influence wielded by high-quality

anchor frames but also mitigates the adverse gradients arising from

low-quality instances. This carefully calculated approach serves

to harmonize the weighting assigned to a diverse spectrum of

samples, steering attention toward anchor frames that epitomize

an intermediate standard. This intentional focal point on anchor

frames with moderate performance significantly fortifies the model

resilience, ultimately yielding a conspicuous enhancement in the

overall performance of the detection system.

4 Results

4.1 Implementation details

In the scope of this research, experimentation unfolds within

the Ubuntu environment, specifically the 18.04.6 version. Both

training and testing occur on a sole NVIDIA RTX3090 GPU.

The chosen deep learning framework is PyTorch 1.10.1, harnessed

alongside CUDA version 11.7. The model foundational weights

stem from prior training on the COCO dataset. The encompassing

training regimen spans 200 epochs, commencing with an initial

learning rate of 0.01, which subsequently tapers to 0.001 in the

concluding cycle set banchsize to 1 when calculating FPS. The

training pipeline leverages the Stochastic Gradient Descent (SGD)

optimization technique, with the incorporation of momentum,

anchored at 0.937. Simultaneously, the weight decay coefficient

stands at 0.0005. Importantly, the model operates on a consistent

scale of input images, each adopting dimensions of 640 × 640

pixels, while each training batch encompasses 12 samples.

Within this study, we use the WSODD dataset Zhou et al.

(2021), which is commonly used in water target detection, and

consists of images from oceans, lakes, and rivers with different

climatic conditions and shooting times, with a total of 7,467 images,

and the resolution of each image is 1,920*1,080. In addition, the

dataset consists of a total of 14 common object classes and 21,911

instances . In this paper, it is divided into training set, testing set,

and validation set, and the performance of the model is evaluated

with reference to the criteria of COCO dataset (Lin et al., 2014).

We also used the FIOW-Img subdataset Cheng et al. (2021),

which is the world’s first floating garbage detection dataset in a

real inland river scene from the perspective of an unmanned ship.

The FloW-Img subdataset contains 2,000 images and 5,271 marked

targets. One thousand two hundred images are randomly selected

as the training set and the rest as the verification set and test

TABLE 2 Ablation study of proposed method on WSODD test dataset.

Methods AP50 (%)↑ FLOPs (G)↓ Para (M)↓

YOLOv7 81 103.4 34.56

YOLOv7 + P2 81.9 (↑0.9) 107.5 (↑4.2) 36.07 (↑1.21)

YOLOv7 + LVC 81.7 (↑0.7) 105.6 (↑2.3) 35.89 (↑1.03)

YOLOv7 + L-ELAN 81.3 (↑0.3) 83.1 (↓20.3) 30.56 (↓4.3)

YOLOv7 +Wise-IOU 81.6 (↑0.6) 103.4 (−) 34.86 (−)

STE-YOLO 83.1 (↑2.1) 89.6 (↓13.8) 32.8 (↓2.06)

↑Means the larger the better, ↓means the smaller the better.

set. Small targets (size in 32 × 32) in this dataset account for a

large proportion (about 60%), which is beneficial for testing the

performance of relevant algorithms on small targets.

4.2 Ablation studies

To assess the efficacy of the proposed P2 head, LVC, L-

ELAN, Wise-IOU presented in this paper, we conducted a series of

comparative experiments. The outcomes of these experiments are

detailed in Table 2.

4.2.1 P2 head
The integration of the P2 Head to enhance small object

detection slightly increases the network parameters. However, this

adjustment corresponds to a notable 0.8% enhancement in the AP

value. This outcome underscores the beneficial influence of the P2

Head in bolstering the detection of small targets.

4.2.2 LVC
Upon incorporation of the LVC module, the computational

complexity of the model in this study registers a 2% growth

in GFLOPs and a 1% increase in parameters. Remarkably, the

AP50, a key performance metric, experiences a substantial 0.9%

improvement. This observation substantiates the effectiveness of

the LVCmodule in significantly enhancing target recognition rates.

4.2.3 L-ELAN
Upon activation of the L-ELAN module, the GFLOPs of the

model in this paper reduce from 103.4 to 83.1, accompanied by

a parameter reduction from 34.86 to 30.56. This translates to a

reduction of 20% and 13% respectively. Notably, this reduction in

computational demands is accompanied by a 0.3% increase in AP.

The implications of these findings are twofold: the L-ELANmodule

not only achieves an effective reduction in network size, but also

plays a pivotal role in elevating the accuracy of target detection.

4.2.4 Further validation of L-ELAN
To further substantiate the performance of the L-

ELAN module, a comparative evaluation involving

distinct convolutional modules (Yang et al., 2019);
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(Zhu et al., 2019) is carried out. The ensuing results are detailed

in Table 3. Notably, the use of the PConv module leads to an

improvement in target detection performance, coupled with lower

GFLOPs and a reduced parameter count.

TABLE 3 Comparison of the performance in L-ELAN module.

Methods AP50 (%)↑ FLOPs (G)↓ Para (M)↓

YOLOv7 81 103.4 34.56

Conv 81 103.4 34.56

DCNv2 80.8 (↓ 0.2) 89.1 (↓ 14.3) 36.07 (↑ 1.40)

DCNv3 81.1 (↑ 0.1) 81.1 (↓ 17.9) 35.89 (↓ 1.97)

PConv 81.3 (↑ 0.3) 83.1 (↓ 20.3) 30.56 (↓ 4.30)

↑Means the larger the better, ↓means the smaller the better.

4.2.5 Wise-IOU
As evidenced by the data in Table 2, the incorporation of

the novel loss function Wise-IOU results in unchanged model

parameters and computational operations. However, owing to the

influence of the dynamic non-monotonic focusing mechanism,

the model described in this paper exhibits a 0.6% enhancement

in AP50. This improvement underscores the efficacy of the

introduced loss function and its capacity to effectively refine

model performance.

4.3 Comparisons with the state-of-the-art

To comprehensively validate the overall detection prowess of

the model presented in this paper, a thorough comparison is

conducted against the benchmark model YOLOv7, along with

TABLE 4 The comparison of the performance in WSODD.

Methods AP50 (%)↑ AP95 (%)↑ APs (%)↑ APm (%)↑ APl (%)↑ Para (M)↓ FLOPS (G)↓

DETR 79.9 4.60 14.7 34.4 61.8 39.37 86

D-DETR 80.1 38.9 21.1 35.7 56.1 40.01 173

YOLOv5s 79.6 46.3 17.6 37.2 58.3 6.72 15.9

YOLOv5m 80.9 47.3 17.4 38.2 62.0 19.94 48

DAMO-YOLOt 81.3 48.2 20.8 40.3 60.3 8.5 18.2

DAMO-YOLOs 81.6 48.7 19.0 40.8 57.5 16.3 37.8

DAMO-YOLOm 81.8 50.1 18.7 40.3 61.8 28.2 61.8

YOLOv7t 77.7 46.0 15.5 37.1 60.3 5.78 13.1

YOLOv7m 81.0 49.3 20.3 39.7 62.7 34.86 103.4

YOLOv7x 83.0 49.2 21.6 39.3 62.6 67.62 188.3

STE-YOLO 83.1 49.4 21.9 39.8 63.2 32.8 89.6

YOLOv8n 80.3 47.7 15.8 37.8 62.7 3.01 8.1

YOLOv8s 81.8 49.2 18.7 38.7 62.5 11.13 28.5

YOLOv8m 82.2 49.9 18.3 39.9 63.0 25.85 78.7

Bold values means the best performance under the same evaluation criteria.

↑Means the larger the better, ↓means the smaller the better.

TABLE 5 The comparison of the performance in FIOW-Img.

Methods AP50 (%)↑ AP95 (%)↑ APs (%)↑ APm (%)↑ FPS↑ Para (M)↓ FLOPS (G)↓

YOLOv5s 81.1 38.3 23.9 52.6 141.5 6.71 15.8

YOLOv5m 81.7 31.1 24.7 53.2 87.1 19.88 47.9

YOLOv5l 82.8 36.4 25.9 55.2 51.3 46.12 107.6

YOLOv7t 80.9 35.7 23.8 53.0 143.7 5.76 13.0

YOLOv7 81.7 36.8 24.2 54.1 47.4 34.81 103.2

YOLOv7x 83.0 38.2 25.6 52.4 30.1 67.53 188.0

STE-YOLO 83.2 37.3 26.1 55.9 56.8 32.74 89.2

YOLOv8n 80.7 30.0 23.5 52.2 125.3 3.0 8.1

YOLOv8s 81.3 33.4 24.2 55.8 118.7 11.1 28.4

YOLOv8m 81.8 33.5 25.1 56.3 92.6 25.77 78.7

Bold values means the best performance under the same evaluation criteria.

↑Means the larger the better, ↓means the smaller the better.
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FIGURE 8

Some visualization results from our STE-YOLO on WSODD. Where (A) represents the original picture, (B) represents the thermal map, and (C)

represents the detection map. We are using heat maps and calibration boxes to show the the e�ect. Use di�erent colors for di�erent test results

(green means correct detection, blue means wrong detection, red means missed detection). In our model, the heat map is more centralized, and

there are fewer misdetections and omissions compared to the original modele.

various cutting-edge target detectors (Carion et al., 2020; Zhu et al.,

2020; Jocher et al., 2022; Xu et al., 2022). The ensuing comparative

experiments yield results showcased in Tables 4, 5. Notably, the

findings in Table indicate that the model proposed in this paper

attains the highest score on AP50, along with leading APs and APl

scores. This resounding achievement stands as compelling evidence

affirming the efficacy of the strategies put forth in this paper.

When juxtaposed with the benchmark model YOLOv7

on WSODD, our STE-YOLO demonstrates a notable 2.1%

enhancement in AP50, as well as a 1.6% improvement in APs,

reaching 21.9%. Additionally, the parameter count in this paper

model is 14% lower than that of YOLOv7, with a 6% reduction in

GFLOPs. Noteworthy is the comparison with DAMO-YOLO and

DETR,models with similar GFLOPs. STE-YOLO outperforms both

in terms of detection performance. Furthermore, in comparison

to the larger YOLOV7x model, the model detailed in this

paper reduces parameter count by 53% and GFLOPs by 51%,

while simultaneously surpassing AP50 and Aps by 0.1% and

0.3%, respectively.

When themodel was tested on the FIOW-Img dataset, our STE-

yolo achieved the best results on AP50 and APs, with 1.5% and

1.9% improvements over the original model, respectively, and APs

in particular was significantly ahead of the larger version model.

In addition, the FPS of this model has also improved, having the

highest FPS among models of similar size, reaching 56.8. This also

proves the fast detection and optimization effect of the proposed

strategy for small targets.

In summary, the STE-YOLO model proposed in this paper

demonstrates substantial enhancements across diverse metrics

when compared to the standard YOLOv7 model, and it

also showcases clear advantages over alternative algorithms in

some extent.

4.4 Visualization of results

To provide a visual representation of the experimental

outcomes, a selection of images was curated for display purposes.

As depicted in Figure 8, a compilation of heat maps and detection

results is presented, offering insights into the model’s performance

across images featuring both large and small objects. This

visualization serves to further illustrate the efficacy and versatility

of the proposed approach in capturing objects of varying scales

within the detection framework. As depicted in Figure 9, We

also compared the detection results of different models on small

targets and marked the detection situation. After testing the whole

verification set, we made statistics on the detect results, as shown

in Table 6. Compared to YOLOV7, STE-YOLO’s error detection

rate has been greatly reduced this shows that STE-YOLO has better

small target detection performance.

5 Discussion

Addressing the intricate task of accurately identifying and

discerning small targets within the realm of waterborne unmanned

crafts’ target detection, this study introduces the STE-YOLO

algorithm. This algorithm represents a swift and precise technique

for waterborne target detection, bolstered by enhanced small-

target detection capabilities. Its primary objective is to elevate
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FIGURE 9

Some visualization results from our STE-YOLO on FIOW-Img. Where (D) represents the detection e�ect of the original model and (E) means the

detection e�ect of STE-YOLO, it is obvious that our model has better detection e�ect of small targets.

the precision of detecting small targets within this context.

Achieving this aim, the algorithm integrates a pioneering P2

detection head branch that adeptly tackles the challenge of

detecting targets spanning a wide range of scales. To further

enhance its ability to recognize small targets, a lightweight

vision center (LVC) module is seamlessly integrated to effectively

synchronize cross-layer information. Simultaneously, to optimize

the algorithm’s computational efficiency for efficient real-world

deployment, an aggregation network named L-ELAN is seamlessly

woven into the backbone network architecture, thereby enhancing

computational efficiency. In a strategic move to fortify the

algorithm’s robustness across varying scales, the Wise-IOU loss

function is introduced. This dynamic loss function optimizes

gradient influence arising from samples of varied quality, further

enhancing model performance. Significantly, empirical evidence

garnered from experiments conducted on the WSODD dataset

affirms the supremacy of STE-YOLO in terms of detection

accuracy, particularly its proficiency in detecting small targets, and

its efficient utilization of model parameters. This advancement

carries theoretical importance for the pragmatic deployment of

water surface target detection applications.

As future research avenues unfold, a key focus will be

refining the network structure. Promising methodologies such

as model pruning or knowledge distillation will be employed

TABLE 6 Statistics of detection results on FIOW-Img.

Methods Right Miss Error

YOLOv7 1,501 368 455

STE-YOLO 1,616 288 351

to comprehensively reduce the number of network parameters.

This strategic effort aims to enhance the model’s applicability and

performance during deployment, especially in scenarios marked by

limited computational resources.
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