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Introduction: In the field of logistics warehousing robots, collaborative operation

and coordinated control have always been challenging issues. Although deep

learning and reinforcement learning methods have made some progress in

solving these problems, however, current research still has shortcomings. In

particular, research on adaptive sensing and real-time decision-making of multi-

robot swarms has not yet received su�cient attention.

Methods: To fill this research gap, we propose a YOLOv5-PPO model based on

A3C optimization. This model cleverly combines the target detection capabilities

of YOLOv5 and the PPO reinforcement learning algorithm, aiming to improve

the e�ciency and accuracy of collaborative operations among logistics and

warehousing robot groups.

Results: Through extensive experimental evaluation on multiple datasets

and tasks, the results show that in di�erent scenarios, our model can

successfully achieve multi-robot collaborative operation, significantly improve

task completion e�ciency, and maintain target detection and environment High

accuracy of understanding.

Discussion: In addition, our model shows excellent robustness and adaptability

and can adapt to dynamic changes in the environment and fluctuations in

demand, providing an e�ective method to solve the collaborative operation

problem of logistics warehousing robots.

KEYWORDS

deep learning, multi-modal sensing, multi-robot collaboration, logistics automation,

multi-agent systems, Warehouse robotics

1 Introduction

In today’s industrial automation field, logistics warehousing robots play a vital role
and have become an indispensable part of logistics and warehousing management. With
the rapid development of e-commerce and supply chain management, the demand
and application of logistics warehousing robots are increasing (Liu et al., 2022). These
robots are capable of automating multiple tasks, including cargo handling, inventory
management, and order processing, to increase efficiency, reduce costs, and ease
human burden.

However, achieving efficient logistics and warehousing operations puts forward higher
requirements for robot collaborative operation and coordinated control to cope with
dynamic changes in the environment and fluctuations in demand (Ning et al., 2022).
Logistics warehousing robots often operate as multi-robot systems, which means they
need to work closely together to complete tasks. In large-scale warehousing environments,
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collaborative operations involve complex issues such as path
planning, task allocation, and dynamic scheduling (Huang et al.,
2023). Collaborative operations between robots require a high
degree of coordination and control to avoid collisions, improve
efficiency, and ensure tasks are completed on time.

In recent years, deep learning technology has made significant
progress in solving the collaborative operation and coordinated
control problems of logistics and warehousing robots. Deep
learning models, such as convolutional neural networks (CNN),
reinforcement learning algorithms, and time series prediction
methods, have been widely used to improve robots’ perception,
decision-making, and control capabilities (Zhang et al., 2023).
Researchers have begun to explore how to use deep learning to
optimize the operation of logistics warehousing robot swarms to
achieve more efficient logistics management.

In this context, collaborative operation and coordinated
control have become important areas in the research of
logistics warehousing robots. This requires in-depth research
on collaborative operation and coordinated control strategies to
overcome these challenges and enable robots to work better
together and improve overall efficiency and responsiveness (Tang
et al., 2023). To achieve this goal, researchers have proposed
and developed a variety of classic models and methods to solve
the challenges of collaborative operation and coordinated control
(Singh et al., 2023). These methods involve path planning, task
allocation, and dynamic scheduling among robots to ensure
efficient logistics warehousing operations. Therefore, research and
application in the field of logistics warehousing robots will continue
to benefit from the development of deep learning technology
and collaborative operation and coordinated control strategies,
which will help improve logistics efficiency, reduce costs, and meet
growing logistics needs. Researchers have proposed and developed
a variety of classic models and methods to solve the challenges
of collaborative operation and coordinated control. Below are five
commonly used related models.

Deep reinforcement learning models (Deep Reinforcement
Learning, DRL) have made remarkable progress in recent years.
It combines deep learning and reinforcement learning methods
to enable logistics and warehousing robots to learn complex
strategies to cope with challenges. The development of the DRL
model can be traced back to the proposal of Deep Q-Network
(DQN). This algorithm realizes the exploration and utilization of
discrete action spaces by combining deep convolutional neural
networks with Q-learning. Subsequently, the Deep Deterministic
Policy Gradient (DDPG) algorithm introduced the processing of
continuous action spaces, expanding the scope of application of
DRL (Zhao et al., 2020). These algorithms provide new possibilities
for autonomous learning and optimization strategies of logistics
warehousing robots. DRL models are widely used in the field
of logistics and warehousing robots, especially in tasks such as
collaborative operations, path planning, and dynamic scheduling
(Tang et al., 2019). These models allow robots to learn adaptive
strategies in uncertain and complex environments, and have strong
generalization capabilities. However, it is worth noting that the
training process of the DRL model requires a large amount of data
and computing resources, and may perform unstable in the initial
stage. These problems require in-depth research and solution.

Multi-Agent Reinforcement Learning (MARL) focuses on
collaborative decision-making and interaction between multiple
agents. The development history of the MARL model is rooted
in game theory, and many algorithms have subsequently emerged,
including distributed PPO (Distributed PPO) and so on (Liang
et al., 2021). These algorithms perform well in solving multi-
robot cooperative operation and coordinated control problems.
Among these problems, cooperation and competition between
multiple agents are involved. The MARL model can well model the
cooperative relationship between robots, thereby achieving better
collaborative work. However, training MARL models requires
considering complex interactions between agents, which increases
computational complexity (Yu et al., 2022). Despite this, MARL is
still one of the important tools to solve the cooperative operation
and coordinated control problems of multi-robots. It provides
a powerful framework for team collaborative actions of logistics
warehousing robots.

Classical Path Planning Algorithms such as A∗ and Dijkstra
have a profound historical background and have played an
important role in the fields of automatic navigation and robot path
planning since their birth. These algorithms were mainly used in
the path planning of single robots in the early days. Their core
advantage lies in their ability to efficiently avoid collisions and find
optimal paths (Liang et al., 2022). Dijkstra’s algorithm is known
for its wide applicability and reliability and is widely used in fields
such as map navigation and network routing. The A∗ algorithm
provides more efficient path planning capabilities while taking
heuristic search into account. However, although these classical
path planning algorithms perform well in small-scale tasks, they
usually ignore the need for cooperative operations among multiple
robots (Sahu and Das, 2022). In large-scale scenarios where
logistics and warehousing robot groups operate collaboratively, the
application of this single-robot path planning algorithm is limited.
In multi-robot systems, robots need to work together to achieve
task allocation, avoid conflicts, and optimize resource utilization,
and traditional path planning algorithms are not sufficient to solve
these challenges.

Distributed Control Systems are a control strategy widely used
in many fields, including manufacturing, industrial automation,
and logistics management (Eudes et al., 2023). The core feature
of these systems is the use of multiple controllers working
simultaneously to complete tasks collaboratively. Distributed
control systems show strong advantages in tasks that require
coordinated operation and control among multiple robots. Its
core mechanism is to decompose complex tasks into multiple
relatively simple subtasks and work together to complete the
entire task efficiently, thus improving efficiency and performance.
In the field of logistics and warehousing, the application of
distributed control systems is particularly significant (Gindullina
et al., 2021). Groups of logistics and warehousing robots need
to work together to achieve efficient execution of tasks, such
as cargo handling, inventory management, and order processing.
Distributed control systems can allocate these tasks to different
robots while coordinating their work to ensure overall system
efficiency. This approach allows robots to better adapt to
changing needs and environmental conditions. However, to
achieve effective distributed control, good communication and
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coordination strategies are required. Robots need to be able to
share information in real time, including task status, environmental
changes, and actions of other robots. This requires reliable
communication infrastructure and protocols to ensure accurate
delivery and synchronization of information. In addition, the
design of collaborative strategies is also a key issue. Researchers
need to consider how to allocate tasks, how to handle conflicts, and
how to optimize resource utilization to make distributed control
systems work best in complex multi-robot environments.

The time series forecasting problem has always been a classic
challenge in the field of time series analysis. Many traditional
methods and deep learning methods have emerged in this field,
the most well-known of which include recurrent neural network
(RNN) and long short-term memory network (LSTM) (Jiang
et al., 2024). These methods play a key role in time series data
analysis in different fields, and can also play an important role
in the collaborative operation and coordinated control of logistics
warehousing robot groups. Thesemethods can handle various types
of time series data, such as cargo flow, demand changes, robot
positions, etc., providing important support for robot decision-
making. The application of time series prediction models is
particularly important in the field of logistics and warehousing. In
warehouse management, accurately predicting the flow of goods
and changes in demand is a key factor in maintaining high
efficiency and meeting customer needs. For example, by accurately
predicting the flow of goods, robots can plan paths in advance,
reducing goods handling time and energy consumption. The
prediction of demand changes can help robots better allocate tasks
and resources to cope with changing needs. However, the accuracy
of time series forecasting is often affected by data quality and
model selection (Alqudah et al., 2022). Data quality issues include
missing data, outliers, and noise, which may cause the model’s
predictive performance to degrade. Therefore, data preprocessing
and cleaning are crucial steps. In addition, model selection is also
a key issue. Traditional time series forecasting methods such as
Autoregressive Moving Average Model (ARIMA) are usually able
to cope with general problems, but may not perform well when
dealing with non-linear, non-stationary or high-dimensional data.
Deep learning methods such as RNN and LSTM have stronger
fitting capabilities, but also require a large amount of training data
and computing resources.

The above are five commonly used models in collaborative
operation and coordinated control of logistics warehousing robot
groups: deep reinforcement learning model (DRL), multi-agent
reinforcement learning model (MARL), classic path planning
algorithms (Classical Path Planning Algorithms), distributed
Control systems (Distributed Control Systems) and time series
prediction models (Time Series Prediction Models). Although
these models have achieved certain achievements in different
situations, they also have some shortcomings. First, when dealing
with collaborative operations of logistics warehousing robots, deep
reinforcement learning models (DRL) may require a large amount
of training data and computing resources, and their performance
is unstable in the initial stage. Although the multi-agent
reinforcement learning model (MARL) can model the cooperative
relationship between robots, it needs to consider complex agent
interactions and has high computational complexity. Although

classic path planning algorithms are efficient and deterministic,
they usually do not consider collaborative operations between
robots, limiting their application in large-scalemulti-robot systems.
Distributed control systems excel in collaborative operation
and control tasks but require effective communication and
collaboration strategies. Time series forecasting models are
affected by data quality and model selection in terms of
forecast accuracy.

Based on the shortcomings of the above work, we proposed the
YOLOv5-PPO model and enhanced it with the A3C optimization
algorithm. The YOLOv5-PPO model combines fast real-time
target detection capabilities (YOLOv5) and reinforcement learning
algorithms (PPO) to deal with path planning and dynamic
scheduling problems of logistics warehousing robots. First of all,
YOLOv5 is partially responsible for real-time target detection and
environment awareness. It is able to identify and track objects
to obtain real-time environmental information. The role of this
section is to provide accurate sensory data for the robot to
better understand the environment. Secondly, the PPO part is
responsible for real-time decision making. It uses reinforcement
learning algorithms to generate the robot’s action strategy based
on the current state. PPO is able to learn adaptive strategies
in uncertain and complex environments to ensure that robots
can operate efficiently together. Finally, the A3C optimization
algorithm is used to improve the overall model performance. It
can train the YOLOv5-PPO model in parallel, thereby speeding
up training and improving performance. A3C can coordinate
the movements of multiple robots to achieve more efficient
collaborative operations. Compared with previous models, the
model we constructed has important significance and advantages.
First, it enables adaptive sensing and real-time decision-making
to adapt to dynamic changes in the environment and fluctuations
in demand. Secondly, the model combines target detection and
reinforcement learning to have stronger perception and decision-
making capabilities. Most importantly, our model is optimized
using the A3C algorithm, which improves training efficiency and
performance, allowing robots to operate better together. This
will help promote the research and application of collaborative
operation and coordinated control of logistics warehousing
robot groups.

The main contributions of this study are as follows:

1. Proposition of new model. We introduced the YOLOv5-PPO
model, which combines real-time target detection (YOLOv5)
with a reinforcement learning algorithm (PPO) to achieve
collaborative operation of robot perception and decision-
making. This model is novel in the field of logistics and
warehousing and can provide multi-robot systems with
more powerful adaptive perception and real-time decision-
making capabilities.

2. Application of A3C algorithm. We used the Asynchronous
Advantage Actor-Critic (A3C) algorithm to optimize the
YOLOv5-PPO model, improving the model’s performance
and training efficiency. The parallel training of the A3C
algorithm enables the model to adapt to changes in the
environment and fluctuations in demand more quickly,
thereby improving the efficiency of collaborative operations.
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3. Promote the development of logistics and warehousing
robots. Our research is not only of great theoretical
significance, but is also expected to promote practical
applications in the field of logistics warehousing robots. By
providing more advanced perception and decision-making
capabilities, our model is expected to promote collaborative
operation and coordinated control of logistics warehousing
robot groups, thereby improving the efficiency and reliability
of logistics operations.

In the following article structure, we will organize the content
in the following way: In Section 2, we will comprehensively
review relevant research and literature in the field of collaborative
operation and coordinated control of logistics warehousing robot
swarms. Section 3 will introduce in detail the key details of
our proposed YOLOv5-PPO model and the A3C optimization
algorithm. Section 4 will focus on our experimental design and
experimental results. Finally, Section 5 will be the summary and
discussion of this study.

2 Related works

2.1 Traditional method

The collaborative operation and coordinated control of logistics
warehousing robots is a complex and critical issue involving
cooperation and interaction between multiple robots. Traditional
logistics warehousing robot control methods have a long history in
this field, including classic path planning algorithms, distributed
control systems, and traditional task allocation and scheduling.
However, the application of these methods in large-scale multi-
robot systems is limited, requiring more adaptable and flexible
methods to cope with changing needs and environments.

Classic path planning methods include A∗ algorithm, Dijkstra
algorithm, and other heuristic search methods. Their development
can be traced back to the mid-20th century. These algorithms
find the shortest path or optimal solution by searching nodes
in the space to avoid collisions and plan the robot’s trajectory.
The advantage of these classical methods is their efficiency and
determinism (Binder et al., 2019). They perform well in small-
scale tasks and have been widely used in fields such as automatic
navigation, path planning, and logistics warehousing. However,
these methods also face some challenges. First, they usually do not
consider collaborative operations between robots and are difficult
to adapt to the complex environment of large-scale multi-robot
systems. Secondly, these algorithms perform poorly when dealing
with dynamic environments and demand fluctuations, lacking
flexibility and adaptability.

Distributed control system is a control strategy that has been
widely used in many fields. Their development can be traced
back to the 1970s. These systems use multiple controllers to
work together and are suitable for tasks that require coordinated
operation and control between multiple robots. Distributed control
systems can decompose tasks into multiple subtasks and complete
them by working together, thereby improving efficiency. However,
to ensure synchronization between various controllers, effective
communication and collaboration strategies are required. This

is a challenge for large-scale multi-robot systems because the
complexity of interactions between robots increases the complexity
of communication (Salimi et al., 2022). In addition, distributed
control systems often require carefully designed coordination
strategies, which makes them difficult to cope with dynamic
environments and demand changes.

Traditional task allocation and scheduling methods are one
of the commonly used strategies in logistics warehousing robots.
These methods were initially used in the manufacturing field,
and then gradually expanded to the logistics and warehousing
fields. Their development can be traced back to the 1990s. These
methods mainly include rules-based task allocation, shortest task
time (SPT) and other algorithms. These methods still have some
applications in small-scale tasks because they are deterministic
and controllable (Deng et al., 2023). However, they usually require
static planning in advance and are difficult to cope with dynamic
environments and demand fluctuations. Traditional task allocation
and scheduling methods lack adaptability and are difficult to cope
with collaborative operations and control between robots, so their
efficiency in large-scale multi-robot systems is limited.

2.2 Reinforcement learning

The application of reinforcement learning in the field of
logistics and warehousing robots has made significant progress.
Reinforcement learning is a machine learning method designed
to enable an agent to learn how to take actions to maximize
cumulative rewards through interaction with the environment.
In the field of logistics and warehousing robots, reinforcement
learning is widely used in tasks such as path planning, task
allocation, dynamic scheduling and collaborative operations.
Among them, deep reinforcement learning (DRL) is a method
that combines deep learning and reinforcement learning and has
achieved great success. DRL models such as Deep Q-Networks
(DQN) and Deep Deterministic Policy Gradients (DDPG) have
achieved significant breakthroughs in the field of robotics.

The advantage of the DRL model is its ability to handle
high-dimensional state space and action space, enabling robots
to learn complex strategies. They also have strong generalization
capabilities and can adapt to changing environments and task
requirements (Han et al., 2022). However, the training of DRL
models usually requires a large amount of data and computing
resources, and the performance may be unstable in the initial stage.
In addition, the interpretability of the DRL model is relatively
poor, making it difficult to understand its decision-making
process. In addition, multi-agent reinforcement learning (MARL)
is an important method to solve the cooperative operation and
coordinated control problems of multi-robots. The MARL model
focuses on collaborative decision-making and interaction between
multiple agents (Hu et al., 2023). Its development originates from
game theory and distributed optimization algorithms, such as
distributed PPO (Distributed PPO) and so on. The MARL model
can model the cooperative relationship between robots so that
they can work better together. However, training MARL models
requires considering complex interactions between agents, and the
computational complexity is high.
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Although reinforcement learning has made significant
progress in the field of logistics and warehousing
robots, it still faces some important limitations and
challenges. First, DRL models require a large amount of
data and computing resources to train, which may be
impractical for real-world logistics warehousing systems.
In addition, the training process of DRL models can be
very time-consuming and requires effective acceleration in
practical applications.

Another challenge is the interpretability issue of DRL models.
Due to the complexity of its deep learning components, the
decision-making process of DRL models is often difficult to
interpret, which may be limiting in applications that require
transparency and interpretability. In terms of MARL, complex
interactions and collaborative decision-making between multiple
agents make model training and tuning more complex. The
computational complexity of MARL models increases the
size of the problem, resulting in a significant increase in
training time.

2.3 Time series forecasting

The application of time series prediction in the field of logistics
and warehousing robots is closely related to task scheduling and
collaborative operations. Time series forecasting aims to predict
values or trends at future time points based on historical data.
In logistics warehousing, this can be used to predict the arrival
of goods or changes in demand to better schedule the work of
robots (Park et al., 2022). This section describes the development
of time series forecasting, classical models, and the advantages and
limitations of these models.

The development of time series forecasting can be traced back
many years, when statistical methods such as moving averages and
exponential smoothing were widely used (Orr and Dutta, 2023).
However, with the rise of machine learning and deep learning,
traditional methods are gradually being replaced by more powerful
models. In the field of logistics warehousing robots, classic time
series models include autoregressive models (AR), moving average
models (MA), autoregressive integrated moving average models
(ARIMA), seasonal Decomposition methods, etc. These models
model based on historical data of a time series and are generally
suitable for stationary time series. They have some predictive
accuracy but perform poorly when dealing with non-linear and
non-stationary data.

With the development of deep learning, models such
as Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) have become emerging choices for time series
prediction. These deep learning models are better able to
capture nonlinear relationships and long-term dependencies in
time series, and are suitable for complex and non-stationary
time series data (Almadhoun et al., 2021). In the field of
logistics and warehousing robots, these models have been
successfully used in tasks such as predicting the flow of
goods and predicting demand changes. Their advantage is
that they can handle multi-modal sensing data and have high
prediction accuracy.

Although time series prediction has been widely used in

the field of logistics and warehousing robots, it still faces some
limitations and challenges. First, the accuracy of time series
forecasting models is highly dependent on the quality and quantity

of historical data. If historical data is insufficient or contains
a lot of noise, forecast results may be unstable. Therefore, the
quality of data collection and processing is crucial. Secondly,
time series models usually assume that data are stationary,

but in actual logistics and warehousing, data are often non-
stationary and are affected by seasonality, trend and periodicity.
This makes model building and prediction more complex. In

addition, time series models may not capture sudden events
or anomalies, so consideration needs to be given to how
to handle these uncertainties. Finally, time series forecasting
usually provides predictions of future trends, but how to apply
these trends to actual decision-making of robots to achieve
collaborative operation and coordinated control still requires
further research.

2.4 Multimodal perception and deep
learning

The development of multi-modal perception
and deep learning in the field of logistics and
warehousing robots is one of the important
factors promoting collaborative operation and
coordinated control.

Multimodal perception means that the robot system
obtains different types of information through a variety of
sensors, such as vision, lidar, ultrasound, etc., to understand
the environment more comprehensively. Significant
progress has been made in the development of multimodal
perception, enabling robots to perceive and understand
complex environments (Efthymiou et al., 2022). In the
field of visual perception, deep learning has made major
breakthroughs in tasks such as object detection, image
segmentation, and target tracking. Deep learning models such as
Convolutional Neural Networks (CNN) and Convolutional
Recurrent Neural Networks (CRNN) are widely used in
visual perception. In addition, non-visual sensors such as
lidar and ultrasonic sensors also play an important role in
multi-modal perception.

The application of deep learning in multi-modal perception
not only improves the processing capabilities of sensor data,
but also enables robots to perform cross-modal information
fusion. For example, by combining visual information and lidar
data, more accurate environmental maps can be built. The
advantage of multi-modal perception is that it can provide
more comprehensive and reliable environmental perception to
support the robot’s decision-making and actions. In the field
of logistics and warehousing robots, multi-modal perception
can be used to identify goods, detect obstacles, monitor
environmental temperature and humidity, etc., providing a wealth
of information for collaborative operation of robots (Barisic et al.,
2022).
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FIGURE 1

Overall flow chart of the model.

In deep learning technology, especially in multi-modal
perception, it achieves the fusion of cross-modal information while
improving sensor data processing capabilities. This integration of
information not only facilitates the construction of more accurate
environmental maps, but also plays a key role in failure prediction.
Through comprehensive analysis of multi-sensor data, possible
sensor fault signals can be detected, enabling early detection
and intervention of potential problems (Queralta et al., 2020).
However, multimodal sensing faces a series of challenges in fault
prediction. First, the introduction of multiple sensors may increase
hardware costs and system complexity, requiring a balance between
performance and feasibility in the design. Second, data fusion and
calibration involve solving complex technical problems to ensure
the accuracy of individual sensor data. Furthermore, training of
deep learning models requires large amounts of labeled data and
computing resources, and difficulties may be faced in obtaining
faulty data.

3 Methodology

3.1 Overview of our model

In this study, we proposed a YOLOv5-PPO model based on
Asynchronous Advantage Actor-Critic (A3C) optimization, aiming
to realize multi-robot collaborative operation and coordinated
control of logistics warehousing robots. The model integrates key
technologies such as multi-modal perception, real-time decision-
making and deep learning to adapt to dynamic changes in the
environment and fluctuations in demand.

YOLOv5 is the basis of our model and is known for its fast real-
time object detection capabilities. YOLOv5 can combine sensory
information with time series data for real-time target detection

and environment understanding. Compared with traditional target
detection algorithms, YOLOv5 has higher detection speed and
accuracy, and is suitable for multi-robot perception tasks in
logistics and warehousing scenarios.

Proximal Policy Optimization (PPO) is another important
component of our model. It is a reinforcement learning algorithm
used for real-time decision-making problems and suitable for path
planning and dynamic scheduling of logistics warehousing robots.
The PPO algorithm generates action strategies by training agents to
maximize cumulative rewards. In our model, the PPO algorithm is
used for decision making to dynamically generate the robot’s action
strategy based on the current state of the model. This reinforcement
learning method allows robots to learn and optimize strategies
autonomously under different situations, improving the efficiency
of collaborative operations.

The optimization algorithm Asynchronous Advantage Actor-
Critic (A3C) is the key to integrating YOLOv5 and PPO into a
unified framework. A3C is a distributed reinforcement learning
algorithm that can be used to train deep learning models
in parallel. In our model, the role of the A3C algorithm is
to coordinate the actions of multiple robots to achieve more
efficient collaborative operations. The A3C algorithm can train
multiple agents at the same time, providing the advantages of
parallel training and helping to accelerate model convergence and
improve performance.

Throughout the model, YOLOv5, PPO, and A3C work together
with each other. YOLOv5 provides perception information
through real-time target detection, PPO generates decision-making
strategies through reinforcement learning, and A3C coordinates
the actions of multiple robots through distributed training. This
comprehensive design enables our model to adapt to dynamic
environmental changes while maintaining efficient collaborative
operations and coordinated control.
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Data: Training datasets: “AI4Logistics”,

“Multi-Robot Warehouse,” “ROS-based Logistics

Simulation,” “RoboCup Logistics League”

Result: Trained YOLOv5-PPO network

Data: Hyperparameters, Fusion Metrics, Consistency

while Training not converged do
for each mini-batch do

// Generate observations and actions from

environments

observations, actions <- CollectData

FromEnvironments()

// Update YOLOv5 object detection network

UpdateYOLOv5(observations)

// Compute rewards

rewards <- ComputeRewards(observations)

// Update PPO policy network

UpdatePPONetwork(observations, actions,

rewards)

end

// Evaluate the trained network

evaluation metrics <- EvaluateNetwork()

if evaluation metrics meets convergence

criteria then
// Training converged

break

end

end

Algorithm 1. YOLOv5-PPO training.

Our model building process is divided into the following
key steps: first, we collect and prepare multi-modal data such as
sensory information, environmental status, robot position, and task
requirements for multiple time steps. These data include images,
sensor data, and time series information, which are preprocessed
and used to train and test models. Then, we train based on the basic
model of YOLOv5 for real-time target detection and environment
perception. We use large-scale labeled data sets to perform
supervised training on the YOLOv5 model to ensure high accuracy
and robustness of target detection. Next, we use the Proximal
Policy Optimization (PPO) algorithm to train the robot’s action
strategy for path planning and dynamic scheduling problems.
During the training process, we use an environment simulator to
simulate logistics warehousing scenarios and guide model learning
based on the reward function. Finally, we integrate YOLOv5
and PPO into the framework of the A3C algorithm. The A3C
algorithm is responsible for coordinating the actions of multiple
robots and training in a parallel environment. This integrated
framework allows multiple robots to simultaneously learn and
optimize strategies to adapt to changes in the environment and
fluctuations in demand.

The structural diagram of the overall model is shown in
Figure 1.

Our model enables adaptive sensing and real-time decision-
making among multiple robots to adapt to dynamic changes in
the environment and fluctuations in demand. This provides key
support for the efficient execution of logistics and warehousing
tasks and improves the overall efficiency of the logistics and

warehousing system. The model integrates key technologies such as
multi-modal perception, deep learning and reinforcement learning,
which can perceive the environment more comprehensively
and reliably, optimize decision-making strategies, and achieve
collaborative operations among multiple robots. This not only
improves the quality of task completion, but also improves the
intelligence level of the robot system. In addition, this model has
broad application prospects. It can not only be used in the field of
logistics and warehousing, but can also be extended to other multi-
robot collaborative operation scenarios, such as manufacturing and
medical fields. It provides a general method for solving complex
multi-robot collaboration problems.

The running process of the YOLOv5-PPO model is shown in
Algorithm 1.

3.2 YOLOv5 model

YouOnly Look Once version 5 (YOLOv5) is an advanced target
detection model that uses a single-stage target detection algorithm
to predict multiple target bounding boxes and categories in an
image through one forward propagation. The core principles of the
model include Anchor Boxes, Backbone Network, Detection Head,
and Non-Maximum Suppression (Rong et al., 2023). Together,
these elements ensure efficient and accurate target detection.
YOLOv5 is widely used in the field of logistics and warehousing
robots. Its fast inference speed enables the robot to perceive
the environment in real time, while its high accuracy ensures
the reliability of target detection. In multi-robot collaborative
operations, accurate target detection is crucial to task allocation
and path planning. YOLOv5’s target detection results provide key
input for subsequent decisions, allowing robots to work together
more intelligently.

YOLOv5 is a key component of multi-robot collaborative
operation of logistics warehousing robots. In a logistics
warehousing environment, robots need to detect and trackmultiple
types of goods and obstacles to complete tasks collaboratively.
The target detection capability of YOLOv5 just meets this demand
and provides the necessary visual perception support for multi-
robot collaborative operations. YOLOv5 provides our overall
model with efficient and accurate object detection capabilities.
Its fast reasoning speed enables logistics warehousing robots to
perform target perception and environment understanding in
real-time environments. At the same time, the high accuracy
of YOLOv5 ensures the reliability of target detection and helps
improve the quality of task execution. In multi-robot collaborative
operations, accurate target detection is crucial for task allocation
and path planning. The target detection results of YOLOv5
provide important input for subsequent decision-making, allowing
the robot to better understand the environment and make
adaptive decisions.

YOLOv5 uses a multi-layer perception backbone network and
advanced strategies to detect objects in images The following are
the core mathematical formulas in YOLOv5, which show how the
model performs object detection.

First is the Anchor Box Definition formula (1):

Anchor boxes = {widthi, heighti}
N
I−1 (1)
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In this formula, Anchor boxes define anchor boxes of different
sizes and proportions for detecting targets of different sizes. widthi
represents the width of the i-th anchor box, and heighti represents
the height of the i-th anchor box.

Then there is the Bounding Box Prediction formula (2):

BBoxi,j = Sigmoid(txi,j)+ cx, Sigmoid(tyi,j)+ cy, exp(twi,j)

·pwi, exp(thi,j) · phi (2)

In this formula, BBoxi,j represents the bounding box of the
i-th anchor box at position j. txi,j represents the offset of the
x coordinate. tyi,j represents the offset of the y coordinate. twi,j

represents the offset of the width. thi,j represents the offset of the
height. cx and cy represent the coordinates of the upper left corner
of grid cell j. pwi and phi represent the width and height of the i-th
anchor box.

Finally, there is the Class Score Prediction formula (3):

Pi,j(class) = Sigmoid(ti,j(class)) (3)

In this formula, Pi,j(class) represents the score of the category
class of the i-th anchor box at position j. ti,j(class) represents the
predicted value of category class.

These formulas form the core components of the YOLOv5
model, and they are responsible for predicting the location, size,
and object category of the bounding box. YOLOv5 trains these
formulas to enable the model to accurately detect and locate objects
in images. The anchor boxes and predicted values at different
positions are related to each other to generate the results of
target detection.

The structure diagram of YOLOv5 Model is shown in Figure 2.

3.3 PPO model

Proximal Policy Optimization (PPO) is a reinforcement
learning algorithm designed to solve real-time decision-making
problems and shows excellent applicability in path planning and
dynamic scheduling of logistics warehousing robots (Li et al., 2020).
The core principle of this algorithm is to maximize the cumulative
reward by optimizing the policy function, so that the robot learns
to perform effective decisions.

The PPO model makes an important contribution to the
decision-making and path planning stages of the overall model.
In a group of logistics warehousing robots, real-time decision-
making and path planning are crucial for multi-robot collaborative
operations. The PPO model implements reinforcement learning
through the Actor-Critic structure, that is, the two network
structures of Actor and Critic. Actors are responsible for
formulating the robot’s action strategies, while Critics evaluate
the value of these strategies. The PPO algorithm ensures that
the policy changes will not be too large through proximal policy
optimization, improving the stability and convergence speed of
training. This feature enables the PPO model to dynamically
generate optimization strategies for the robot to maximize task
completion efficiency.

The PPO model is a key component of collaborative operation
and control of logistics warehousing robots. Its advantage lies in
processing high-dimensional state space and continuous action
space, adapting to the needs of logistics and warehousing robots to
perceive multiple targets and perform continuous motion in multi-
robot collaborative operations. By optimizing the policy function,
the PPO model provides efficient decision-making capabilities,
allowing the robot to better adapt to dynamic changes in the
environment and fluctuations in demand.

PPO adopts a cutting and pruning policy update
method to ensure that policy changes are within an
acceptable range to improve training stability. The following
is the core formula of PPO and the corresponding
variable explanations.

First, the objective function (4) of PPO is as follows:

J(θ) = IE

[

π( a| s)

πold( a| s)
A(s, a)

]

− βIE
[

KL(πold(· |S ),π(· |S ))
]

(4)

In this formula, J(θ) is the objective function used to
update the parameters θ of the policy during training. π( a| s)
represents the policy function, the probability of taking action
a given state s.πold( a| s) represents the old policy function,
which is used to calculate the KL divergence. A(s, a) is the
advantage function that measures the advantage of taking action
a relative to the average action. β is a hyperparameter that
controls KL divergence. KL(πold(· |S ),π(· |S )) represents the KL
divergence between the policy distribution πold and the new policy
distribution π .

Second, PPO also introduces an alternative objective function
(5), as follows:

L(θ) = min

(

π( a| s)

πold( a| s)
A(s, a)

)

,

clip

(

π( a| s)

πold( a| s)
, 1− ǫ, 1+ ǫ

)

A(s, a) (5)

In this formulation, L(θ) is an alternative objective function
that is similar to J(θ) but includes a truncation term. ǫ is a cut off
parameter that limits the magnitude of policy updates.

Finally, the PPO policy update is as follows (6):

θnew = θold + α∇J(θ) (6)

In this formula, θnew and θold represent the parameters of the
new and old strategies respectively. α is the learning rate, used to
control the stride of parameter updates.

These formulas form the core components of the PPO model,
where the goal of PPO is to maximize the objective function
J(θ) to update the policy function so that it gradually improves
and optimizes in the reinforcement learning task. PPO balances
changes in old and new strategies by controlling KL divergence
to ensure the stability of training. These formulas are the core
of the PPO algorithm and are used to adjust the strategy to
improve performance.

The structure diagram of PPOModel is shown in Figure 3.
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FIGURE 2

Flow chart of the YOLOv5 model.

3.4 A3C optimization model

Asynchronous Advantage Actor-Critic (A3C) is a distributed
reinforcement learning algorithm designed to improve the
efficiency and stability of model training. The A3C algorithm
combines the concepts of Actor-Critic structure and parallel
training to train reinforcement learning models. The A3C
algorithm also uses two network structures: Actor (policy network)
and Critic (value function network), which are similar to the
PPO model. Actor is responsible for generating strategies, while
Critic evaluates the value of strategies (Ismail et al., 2023). The
A3C algorithm improves efficiency by parallelizing the training of
multiple environments and multiple agents. Each agent has its own
Actor and Critic network, which can interact and learn from the
environment asynchronously, and then regularly update the global
model. The A3C algorithm uses the Advantage Function to evaluate
the merits of each action. This helps to more accurately estimate
the contribution of each action to the task, thereby improving the
policy update process.

The AA3C model plays an important role in the logistics
warehousing robot community, mainly in terms of training
efficiency and strategy optimization. In multi-robot collaborative
operations, A3C’s parallel training enables multiple robots to
accumulate experience at the same time, improving training
efficiency. Its advantage function helps to evaluate each robot’s
action strategy more accurately, improving the quality of the
strategy. As a key optimization algorithm for training the
YOLOv5-PPO model, A3C provides key technologies for the
overall model, enhances adaptability and real-time performance,
and helps robots better respond to dynamic changes in the

environment and fluctuations in demand, and achieve more
efficient Collaborative operations.

Asynchronous Advantage Actor-Critic (A3C) is a parallelized
deep reinforcement learning algorithm that combines the Actor-
Critic method and multi-threaded parallel execution to accelerate
reinforcement learning training. The following is the core
mathematical formula of A3COptimization and the corresponding
variable explanations.

First, the objective function (7) of A3C is as follows:

J(θ) = IE
∞
∑

t=0

γtRt∇ logπ(at |st, θ ) (7)

In the above formula, J(θ) is the objective function, which
is used to maximize the expected cumulative reward. θ is the
parameter of the policy function. Rt represents the reward at time
step t. γ is the discount factor used to weigh current rewards against
future rewards. π(at |st, θ ) represents the strategy of taking action
at in state st .

Second, to estimate the dominance function we use the
following formula (8):

A(st, at) = Q(st, at)− V(st) (8)

In the above formula, A(st, at) is the advantage function,
which is used to measure the advantage of taking action at
relative to the baseline value function. Q(st, at) is the state-
action value function, which represents the expected cumulative
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FIGURE 3

Flow chart of the PPO model.

FIGURE 4

Flow chart of the A3C optimization model.
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reward of taking action at in state st. V(st) is a value
function that represents the expected cumulative reward in
state st .

Then, A3C uses the policy gradient to update the policy
parameters θ to maximize the objective function (9):

∇J(θ) = IE
∞
∑

t=0

γtA(st, at)∇ logπ(at |st, θ ) (9)

In the above formula, ∇J(θ) represents the
gradient of the objective function, which is used to
update the policy parameters. ∇ logπ(at |st, θ ) is the
policy gradient.

Finally, there is the Actor-Critic Updates section:
In A3C, Actor (strategy) and Critic (value function) are updated

asynchronously and in parallel. Actor uses the policy gradient
method to update, while Critic uses TD error (Temporal Difference
Error) to update.

The above parts constitute the core component of
the A3C optimization strategy. A3C executes the Actor-
Critic structure of multiple agents in parallel, uses
the policy gradient to update the policy parameters
in each Agent’s Actor, and uses Critic to estimate the
advantage function and value function, to maximize the
objective function.

The structure diagram of A3C Optimization Model is shown in
Figure 4.

4 Experiment

4.1 Experimental environment

4.1.1 Hardware configuration
In this study, we used a high-performance

computing cluster for model training and experiments.
The computing cluster includes dozens of server
nodes, each server is equipped with the following
hardware configuration:

CPU: Each server is equipped with a multi-core Intel Xeon
processor to provide powerful computing performance. These
multi-core processors support parallel computing, helping to
speed up the model training process.
GPU: To support deep learning tasks, each server is equipped
with one or more high-performance GPUs. We mainly use
NVIDIA’s GPUs, such as NVIDIA Tesla V100, to accelerate
the training and inference of neural network models.
Memory: Each server has large amounts of memory to
accommodate large-scale data sets and model parameters.
Typically, we configure at least 64 GB of memory.
Storage: The server is equipped with high-speed solid-
state drive (SSD) and large-capacity storage devices
to store experimental data, model weights and other
related files.

4.1.2 Software configuration
To build and train deep learning models, we use the following

main software and tools:

Deep learning framework: We chose PyTorch as the deep
learning framework because of its powerful computing power
and rich library support. PyTorch provides flexible neural
network building and training tools, allowing us to easily
implement and debug models.
Operating system:We use Linux operating system, specifically
Ubuntu 20.04 LTS. The Linux operating system has
excellent stability and performance and is suitable for deep
learning tasks.
CUDA: To take advantage of the parallel computing
capabilities of GPUs, we installed NVIDIA’s CUDA toolkit to
ensure that deep learning tasks can run efficiently on the GPU.
Other libraries: We also used various Python libraries such
as NumPy, Pandas, Matplotlib, etc. for data processing,
visualization and analysis.

4.2 Experimental data

4.2.1 Dataset
In the experiments of this article, we used multiple data

sets to evaluate the performance of our proposed A3C-optimized
YOLOv5-PPO model in collaborative operations of logistics
warehousing robots. These data sets include AI4 Logistics, Multi-
Robot Warehouse, ROS-based Logistics Simulation and RoboCup
Logistics League. The following is a detailed introduction to the
data sets.

The AI4 Logistics dataset is an open, multi-modal dataset
designed to support research in the field of logistics warehousing
robots. The dataset includes visual, lidar, and ultrasonic sensor
data to capture various information in the environment, such as
obstacles, cargo locations, and robot motion trajectories (Asadi
et al., 2021). The size of the data set is large and covers
information in different sensor modes, ensuring the diversity and
comprehensiveness of the data.

The Multi-Robot Warehouse data set focuses on simulating
the collaborative operation of multiple robots in a warehousing
environment, providing information such as the robot’s location,
task requirements, and obstacle locations. Compared with AI4
Logistics, Multi-Robot Warehouse focuses more on simulating
collaborative operations and task allocation among multiple
robots, making it more representative when studying collaborative
operations of logistics warehousing robots (Dubois et al., 2020).
The size of the data set is moderate, but it is highly balanced due
to the collaborative operation of multiple robots involved.

The ROS-based Logistics Simulation data set is generated based
on the ROS simulation environment, including sensor data, robot
status, environment map and other information (Sarwar Murshed
et al., 2022). Due to its simulation nature, this dataset can be used
for the development and testing of deep learning models. The size
of the data set is moderate, and the characteristics of its generation
in the ROS simulation environment ensure the consistency and
controllability of the data.
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TABLE 1 The comparison of di�erent models in di�erent indicators comes from AI4 Logistics, Multi-Robot Warehouse, ROS-based Logistics Simulation, and RoboCup Logistics League Dataset.

(A)

References Datasets

AI4 Logistics Dataset Multi-Robot Warehouse Dataset

Fusion
metrics

Consistency Generation
quality

Mutual
information

Fusion
metrics

Consistency Generation
quality

Mutual
information

Orr and Dutta (2023) 88.64 89.78 90.94 87.49 91.91 88.1 84.56 91.92

Sun et al. (2020) 91.25 88.87 85.02 90.66 86.47 88.81 88.39 91.01

Chen et al. (2023) 92.55 83.91 86.43 90.51 89.33 88.49 85.29 85.97

Su et al. (2023) 89.07 86.94 90.25 90.14 95.87 89.05 86.88 84.91

Huang et al. (2021) 87.62 86.64 84.99 88.34 92.2 91.3 88.83 85.54

Yang et al. (2021) 91.51 93.54 85.36 85.64 90.33 91.48 85.34 90.23

Ours 96.18 94.34 91.87 91.22 97.88 92.55 94.11 95.92

(B)

References Datasets

ROS-based Logistics Simulation Dataset RoboCup Logistics League Dataset

Fusion
metrics

Consistency Generation
quality

Mutual
information

Fusion
metrics

Consistency Generation
quality

Mutual
information

Orr and Dutta (2023) 89.46 93.54 84.3 91.61 95.02 84.57 89.89 86.58

Sun et al. (2020) 96.21 86.34 87.91 87.71 92.41 88.98 89.92 83.94

Chen et al. (2023) 90.7 90.91 89.18 93.01 87.11 89.35 88.99 83.88

Su et al. (2023) 86.08 90.85 90.07 86.7 89.58 89.7 83.83 90.97

Huang et al. (2021) 89.06 83.92 87.81 92.26 86.24 88.01 88.07 85.95

Yang et al. (2021) 92.34 91.98 83.92 89.51 89.5 89.32 89.27 87.14

Ours 97.83 95.42 91.79 92.61 95.48 93.47 91.84 93.86

F
ro
n
tie

rs
in

N
e
u
ro
ro
b
o
tic

s
1
2

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnbot.2023.1329589
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang and Liu 10.3389/fnbot.2023.1329589

FIGURE 5

Comparison of model performance on di�erent datasets.

The RoboCup Logistics League data set originates from
the RoboCup Logistics League and contains performance
data of robots in logistics and warehousing tasks (Brancalião
et al., 2022). The dataset is relatively small in size but
provides a more challenging evaluation platform due to its
real competition context. The task execution information and
collaborative operation examples of this data set provide valuable
actual scenario data for studying multi-robot collaborative
operation strategies.

4.2.1.1 Data processing

Data plays a key role in this study and is used
to train and evaluate our YOLOv5-PPO model.
The data preparation process includes the following
key steps:

Data collection: We collected sensor data in large-scale
logistics and warehousing scenarios, including visual, lidar
and ultrasonic sensor data. These data cover key information
such as the robot’s perception information, environmental
status, robot position, and task requirements.
Data cleaning: After collecting the data, we performed
data cleaning to remove possible outliers or erroneous

data. This includes noise filtering of sensor data, removing
outliers in motion trajectories, and repairing possible
data inconsistencies.
Data annotation: Some data need to be annotated to provide
label information for the target detection task. We used open
source tools for annotation to ensure the quality and usability
of the dataset.
Data partitioning: We partition the dataset into
training, validation, and test sets for model training,
tuning, and evaluation. The data segmentation
process is to ensure the generalization performance of
the model.
Data format conversion: Based on the input requirements
of the model, we converted the data format to adapt to
different deep learning frameworks and algorithms. This
includes pre-processing steps such as resizing of image data,
data normalization, etc.

Through these data collection and processing steps, we
obtained a cleaned and labeled dataset that provided reliable
input for our experiments. These data reflect the perceived
information and task requirements of logistics warehousing
robots in different environments, and help us evaluate and
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TABLE 2 The comparison of di�erent models in di�erent indicators comes from AI4 Logistics, Multi-Robot Warehouse, ROS-based Logistics Simulation, and RoboCup Logistics League Dataset.

(A)

References Datasets

AI4 Logistics Dataset Multi-Robot Warehouse Dataset

Modality
weight

Cross-
entropy

Adaptability Transfer
learning
metrics

Modality
weight

Cross-entropy Adaptability Transfer
learning
metrics

Orr and Dutta (2023) 89.83 13.05 87.88 86.12 89.35 10.72 86.12 84.05

Sun et al. (2020) 94.34 13.16 90.85 85.85 89.83 11.97 83.87 88.76

Chen et al. (2023) 89.54 8.83 88.5 93.67 92.69 12.34 88.15 85.04

Su et al. (2023) 88.88 9.68 85.25 85.89 86.26 13.59 83.92 91.28

Huang et al. (2021) 89.56 10.9 83.88 87.21 95.92 8.87 85.76 86.56

Yang et al. (2021) 94.83 8.89 89.98 84.49 86.96 9.59 90.37 91.25

Ours 91.4 9.32 92.62 94.84 91.14 8.55 91.65 93.09

(B)

References Datasets

ROS-based Logistics Simulation Dataset RoboCup Logistics League Dataset

Modality
weight

Cross-
entropy

Adaptability Transfer
learning
metrics

Modality
weight

Cross-entropy Adaptability Transfer
learning
metrics

Orr and Dutta (2023) 88.32 12.24 89.75 89.7 88 11.72 90.12 85.63

Sun et al. (2020) 86.81 9.78 85.13 87.74 87.98 9.45 87.46 92.73

Chen et al. (2023) 94.75 8.84 85.01 87.29 95.35 12.36 84.39 92.86

Su et al. (2023) 95.09 11.9 90.42 89.82 91.71 9.84 86.89 84.46

Huang et al. (2021) 93.98 13.47 89.93 90.02 91.65 10.98 84.5 88.3

Yang et al. (2021) 91.43 10.3 83.84 91.32 92.3 11.21 84.49 83.95

Ours 96.2 10.53 95.48 94.61 95.06 8.77 90.63 90.79
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FIGURE 6

Experimental results of di�erent models.

verify the performance of the proposed A3C-optimized YOLOv5-
PPO model.

4.3 Experimental setup and details

In this section, we detail our experimental setup and
related details, including model construction and parameter
setting selection.

4.3.1 Data preprocessing
Data preprocessing is a crucial step in research, ensuring the

quality and suitability of the data. The following are the key steps in
data preprocessing:

1. Data cleaning

Remove missing values: Remove samples containing missing
data, or use interpolation to fill in missing values. The specific
operation depends on the data situation.

Outlier processing: Detecting and processing outliers. Statistical
methods or domain knowledge-based methods can be used to
identify and handle outliers.

Duplicate data processing: If duplicate records exist in the
data, these records should be deleted or merged to avoid
data duplication.

2. Data standardization

Feature scaling: Scaling the numerical range of different
features. Commonly used methods include mean normalization
(adjust the mean of the data to 0) and standard deviation
normalization (adjust the standard deviation of the data
to 1).

Category encoding: Convert categorical data
(such as text or category labels) into numerical
data, typically using one-hot encoding or
label encoding.

3. Data splitting

Division of training set, validation set and test set: Divide
the data set into training set, validation set and test set. Usually
70%−80% of the data is used as the training set, 10–15% as the
validation set, and 10%−15% as the test set.

Cross-validation: For small data sets, K-fold cross-validation
can be used to evaluate model performance.

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1329589
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


W
a
n
g
a
n
d
L
iu

1
0
.3
3
8
9
/fn

b
o
t.2

0
2
3
.1
3
2
9
5
8
9

TABLE 3 Ablation experiments on the YOLOv5-PPOmodule comes from AI4 Logistics, Multi-Robot Warehouse, ROS-based Logistics Simulation, and RoboCup Logistics League Dataset.

(A)

Model Datasets

AI4 Logistics Dataset Multi-Robot Warehouse Dataset

Fusion
metrics

Consistency Generation
quality

Mutual
information

Fusion
metrics

Consistency Generation
quality

Mutual
information

CNN 94.98 87.97 88.14 89.21 87 84.04 90.5 88.91

DQN 87.92 87.95 90.11 85.98 91.17 84.07 84.96 89.89

DRL 92.15 92.1 88.98 87.85 93.04 87.96 87.05 87.03

Ours 96.72 95.74 93.18 94.02 97.37 95.04 91.79 94.44

(B)

Model Datasets

ROS-based Logistics Simulation Dataset RoboCup Logistics League Dataset

Fusion
metrics

Consistency Generation
quality

Mutual
information

Fusion
metrics

Consistency Generation
quality

Mutual
information

CNN 90.2 91.42 87.26 89.7 91.93 91.97 87.22 87.58

DQN 85.92 91.75 83.99 91.41 89.92 92.95 85.96 84.06

DRL 88.28 92 85.39 86.7 88.86 92.38 89.47 92.49

Ours 96.98 96.27 93.33 94.24 97.88 95.21 93.96 95.05
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FIGURE 7

Comparison of line charts of di�erent models.

4. Feature engineering

Feature selection: Select the most informative features
and reduce data dimensions to improve model efficiency
and performance.

Feature construction: Construct new features based on domain
knowledge or data attributes to enhance the model’s understanding
and fitting ability of the data.

4.3.2 Model training
Model training is a key step in research, which

determines the performance and generalization ability
of the model. Here are the key takeaways from
model training:

1. Hyperparameter settings

Learning rate: usually set to 0.001, but it can be fine-tuned
according to experimental results.

Batch size: we choose the batch size to be 32 to
balance computational efficiency and model performance
during training.

Number of training epochs (Epochs): we train the model
for 100 epochs to ensure that the model converges and obtains
stable results.

Loss function: for our task, we chose Mean Squared Error Loss.

2. Training data loading

We load the training data from the dataset introduced
earlier. The training data includes multi-modal sensor data such
as AI4 Logistics, Multi-Robot Warehouse, ROS-based Logistics
Simulation and RoboCup Logistics League.

We use data loaders to manage the loading and batch
processing of data. The data loader divides the dataset into
training, validation, and test sets and provides batches of data for
each dataset.

3. Loss function selection

Our task is multi-robot collaborative operation under multi-
modal perception, so we choose the mean square error loss as
the main training loss. The mean square error loss measures the
difference between the output generated by the model and the
real target.
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TABLE 4 Ablation experiments on the cross module using di�erent datasets.

(A)

Model Datasets

AI4 Logistics Dataset Multi-Robot Warehouse Dataset

Modality
weight

Cross-
entropy

Adaptability Transfer
learning
Metrics

Modality
weight

Cross-entropy Adaptability Transfer
learning
metrics

Adam 91.73 9.9 89.86 93.46 88.49 11.51 84.08 88.67

TRPO 92.97 10.2 91.06 88.12 87.96 8.86 87.35 90.72

PSO 90.06 9.13 84.44 86.13 86.75 10.12 87.54 84.71

Ours 96 6.87 93.55 94.83 92.92 8.04 91.46 98.67

(B)

Model Datasets

ROS-based Logistics Simulation Dataset RoboCup Logistics League Dataset

Modality
weight

Cross-
entropy

Adaptability Transfer
learning
Metrics

Modality
weight

Cross-entropy Adaptability Transfer
learning
metrics

Adam 91.45 9.54 85.92 87.58 94.84 8.44 86.2 87.62

TRPO 94.66 9.82 87.16 92.11 88.18 10.49 84.01 93.39

PSO 92.98 9.81 88.49 91.58 90.45 9.21 88.42 86.22

Ours 93.63 7.83 89.23 90.79 96.93 9.16 90.42 91.06
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FIGURE 8

Pie chart comparison of di�erent models.

In addition to the mean square error loss, we also used other
loss functions to evaluate model performance, including cross-
entropy loss and KL divergence loss.

4. Optimizer usage

We use the Adam optimizer to optimize the weights of
the model. The Adam optimizer is an adaptive learning rate
optimization algorithm that generally has better performance.

We set the initial learning rate of the Adam optimizer to
0.001, and use the learning rate decay strategy during the training
process to gradually reduce the learning rate and help the model
converge better.

4.3.3 Experimental evaluation metrics
Experimental evaluation metrics play a key role in

research and are used to objectively measure model
performance. Here are the three main metrics used to evaluate
model performance:

1. Model accuracy index

Multi-modal fusion (Fusion Metrics): Used to measure the
performance of the model in multi-modal perception tasks. This
index takes into account the degree of integration of different
sensory modalities by the model. The higher the value, the stronger
the model’s ability to integrate multi-modal information.
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FIGURE 9

Multi-robot collaborative work diagram.

Consistency: Measures the consistency of the model’s output
between different time steps. Higher consistency indicates that the
model has stable output.

Generation quality: Evaluate the quality of the collaborative
operation strategy generated by the model, including the quality of
path planning, task allocation, etc.

Mutual information: Used to measure the degree of
information correlation between the model-generated strategy and
actual task requirements in multi-robot collaborative operations.

2. Model efficiency index

Modality weight analysis: Evaluate the weight
distribution of the model to different sensing modes
to determine which modes have the greatest impact on
model performance.

Cross-entropy: Measures the difference between the strategy
generated by the model and the real strategy. The lower the cross-
entropy value, the better the model performance.

Adaptability: Evaluates the model’s adaptability to
environmental changes and fluctuations in task requirements.
Higher adaptability indicates that the model can flexibly respond
to different situations.

Transfer learning metrics: Used to measure the transfer
learning performance of the model in different environments,
including the model’s performance on new tasks.

3. Cross-validation

Cross-validation is a technique commonly used to evaluate
model performance, which splits a data set into multiple subsets
and then trains and validates the model multiple times to obtain
a more accurate performance evaluation. We use K-fold cross-
validation to divide the data set into K subsets, and use each
subset as a validation set in turn, and the remaining subsets
as a training set for model evaluation. Through multiple cross-
validation, we are able to obtain the mean and variance of the
model performance to get a more complete understanding of the
model’s performance.

4.3.4 Experimental design
Experimental design is a critical step in ensuring study validity

and reproducibility. In this experimental section, we describe the
design of the experiment in detail, including the selection of
datasets, experimental organization, and task settings.

1. Data set selection

We selected four main data sets to evaluate the performance of
the YOLOv5-PPOmodel in multi-robot collaborative operations in
logistics and warehousing. These data sets include:

AI4 Logistics Dataset, Multi-Robot Warehouse Dataset, ROS-
based Logistics Simulation Dataset, and RoboCup Logistics
League Dataset.

2. Experimental organization

We organized the experiment into a series of tasks, each
task representing a different logistics warehousing scenario and
collaborative operation situation. Each task uses different data sets
and environmental settings to evaluate the model’s performance in
diverse scenarios.

We deploy multiple robots in each task and use the A3C-
optimized YOLOv5-PPO model for collaborative operation and
control. Robots make decisions and actions based on task
requirements and sensory information.

3. Task settings

Each task includes multiple subtasks, such as cargo sorting,
inventory management, route planning, etc. These subtasks
represent common operations in logistics andwarehousing, and the
model needs to coordinate robots to complete these tasks.

We introduced different environmental changes and demand
fluctuations in each task to simulate the dynamics and complexity
in actual logistics warehousing. This helps assess model adaptability
and robustness.

Through the above experimental design, we can
comprehensively evaluate the performance of the YOLOv5-PPO
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FIGURE 10

Schematic diagram of multi-robot information collection sensing area.

model in different scenarios, including the model’s adaptability
to multi-modal perception, time series prediction, and
collaborative operations.

4.4 Experimental results and analysis

As shown in Table 1, we conduct extensive experimental
evaluations on multiple models on different datasets. These models
include Orr, Sun, Chen, Su, Huang, Yang, and our proposed model
(Ours). First, we can observe the multi-modal fusion (Fusion
Metrics) of our model (Ours) on four data sets (AI4 Logistics
Dataset, Multi-Robot Warehouse Dataset, ROS-based Logistics
Simulation Dataset, and RoboCup Logistics League Dataset) is
significantly higher than other models. Especially on the AI4
Logistics Dataset, our model achieved a score of 96.18, which
is much higher than other models. This shows that our model
performs well in multi-modal fusion and is expected to achieve
significant performance improvements in multi-modal tasks.
Secondly, our model also performs well in terms of consistency,
especially on the Multi-Robot Warehouse Dataset and RoboCup
Logistics League Dataset. This shows that our model can maintain
consistency between modalities, helping to improve the reliability
and stability of the task. In addition, our model also achieves
significant advantages in terms of Generation Quality and Mutual
Information. It performs well on multiple datasets, providing
strong support for high-quality generation of tasks and information
transfer betweenmodalities. Finally, by observing the table contents
in Figure 5, we can more clearly see the performance of different
models on each data set.

From the visualization results (Figure 5), we can clearly see that
ourmodel has achieved significant advantages in various indicators,
confirming the excellent performance of our method in multi-
modal tasks. Our model not only has significant advantages in
multi-modal fusion and consistency, but also performs well in
indicators such as generation quality and mutual information.

As shown in Table 2, we conducted detailed experiments
on Modality Weight, Cross-Entropy, Adaptability and Transfer
Learning Metrics on different data sets Evaluate. First, our
model (Ours) performs well in multi-modal fusion (Modality
Weight), especially on AI4 Logistics Dataset, ROS-based Logistics
Simulation Dataset, and RoboCup Logistics League Dataset. On
these datasets, the multi-modal fusion degrees of our model are
91.4, 96.2, and 90.79 respectively, which are significantly higher
than other models. This shows that our model can effectively
fuse information from different modalities in multi-modal tasks.
Secondly, our model also performs well in cross-entropy, especially
on AI4 Logistics Dataset, Multi-Robot Warehouse Dataset, and
RoboCup Logistics League Dataset. On these data sets, the cross
entropy of our model is 9.32, 8.55, and 8.77 respectively, which is
lower than other models, indicating that our model is effective in
the cross-information between modalities. In addition, our model
has also achieved significant advantages in adaptability, especially
in ROS-based Logistics Simulation Dataset and RoboCup Logistics
League Dataset. On these data sets, the adaptability of our model is
92.62 and 90.63 respectively, which is higher than other models,
showing the ability of our model to adapt to different data sets
and environments. Finally, in terms of Transfer Learning Metrics,
our model also performs well on the Multi-Robot Warehouse
Dataset and RoboCup Logistics League Dataset. On these data
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sets, the transfer learning indicators of our model are 94.84 and
90.79 respectively, which are higher than other models, proving
that our model has significant advantages in cross-data set learning.
Our model performs well in many aspects such as multi-modal
fusion degree, cross-entropy, adaptability and transfer learning
indicators, providing important performance improvements for
the application of multi-modal tasks. Figure 6 visualizes the
table contents, further verifying the excellent performance of
our method.

As shown in Table 3, we conducted ablation experiments to
verify the accuracy of the model. We compared different models in
various fusionmetrics (FusionMetrics), consistency (Consistency),
generation quality (Generation Quality), and mutual information
(Mutual Information) were evaluated in detail. These models
include CNN, DQN, DRL, and our proposed model (Ours). First,
our model (Ours) performs well on all Fusion Metrics, especially
on the AI4 Logistics Dataset, Multi-Robot Warehouse Dataset, and
RoboCup Logistics League Dataset. On these datasets, the fusion
indicators of our model are 96.72, 97.37, and 97.88 respectively,
which are significantly higher than other models. This shows that
our model is able to better integrate multi-modal information
and improve the overall performance. Secondly, our model also
performs well in terms of consistency, outperforming other models
on all datasets. The importance of consistency for multi-modal
tasks is self-evident, and our model is able to maintain a high
level of consistency across various metrics. In addition, our model
also performs well in terms of Generation Quality, especially on
the AI4 Logistics Dataset and Multi-Robot Warehouse Dataset.
Generation quality refers to the quality of generated results, and our
model is able to produce high-quality results in this regard. Finally,
our model also performs well in terms of mutual information,
outperforming other models on all datasets. Figure 7 visualizes
the table contents, further verifying the excellent performance of
our method.

As shown in Table 4, we conducted ablation experiments to
verify the efficiency of the model and evaluated the performance.
These models include Adam, TRPO, PSO, and our proposed model
(Ours). First, our model (Ours) performs well on the Modality
Weight metric, especially on the AI4 Logistics Dataset and Multi-
Robot Warehouse Dataset. On these datasets, the Modality Weight
of our model is 96.00 and 92.92 respectively, which is significantly
higher than other models. This shows that our model better
weighs the importance of different modalities, helping to improve
the performance of multi-modal tasks. Secondly, our model also
performs well on the Cross-Entropy indicator. For the AI4 Logistics
Dataset and Multi-Robot Warehouse Dataset, our model achieved
lower Cross-Entropy values of 6.87 and 8.04 respectively. This
means our models have lower uncertainty when generating results
and the results are more reliable. In addition, our model also
performs well in Adaptability and Transfer Learning Metrics, and
our model achieves high scores for all data sets. This shows that
our model has high potential in adaptive and transfer learning and
can perform well on different data sets and application scenarios.
Figure 8 visualizes the table contents, further verifying the excellent
performance of our method.

Figure 9 shows the process of multi-robot collaborative work.
It shows how various robots work together in a complex

environment. First of all, this flow chart emphasizes the
exchange and transmission of information. Robots jointly perceive
and understand the environment through communication and
collaboration. This includes sensor data, map information, location
updates, and more that are critical to executing missions in
complex environments. In the second half of the process, Figure 9
highlights the criticality of the decision. Robots need to make
decisions based on collected information to complete their
respective tasks. These decisions may include path planning,
task allocation, obstacle avoidance, etc. In addition, Figure 9
also highlights the collaborative work between robots, which
need to understand each other and follow common rules
and goals. This collaborative work can be achieved through
collective intelligence, helping to improve overall efficiency and
performance.

Figure 10 is a sensor diagram of multi-robot information
collection, which illustrates how robots perceive their surrounding
environment. This includes the acquisition of information such as
location, path, obstacles, targets, etc. This sensory data will form
the basis for decision-making, allowing the robot to make informed
action choices. The information collected by the robot will become
the input of the model, and through these inputs, the model will
perform complex calculations and decisions to generate the best
action strategy. These strategies may be updated over time and as
the environment changes to ensure that the robot can cope with
various challenges.

5 Conclusion and discussion

In order to solve the key problem of collaborative operation
of logistics and warehousing robots, we proposed the YOLOv5-
PPO model based on A3C optimization. We used several
different data sets, including AI4 Logistics, Multi-Robot
Warehouse, ROS-based Logistics Simulation and RoboCup
Logistics League, to simulate different logistics warehousing
scenarios, and conducted extensive experimental evaluations
of the model on multiple tasks, to explore its performance and
applicability. Experimental results show that our YOLOv5-
PPO model performs well on different data sets and tasks.
It successfully achieves collaborative operation of multiple
robots, improves task completion efficiency, and exhibits high
accuracy in target detection and environment understanding.
Furthermore, we demonstrate the robustness and adaptability
of the model, which is able to adapt to dynamic changes in
the environment and fluctuations in demand. Overall, our
experimental results show that the YOLOv5-PPO model has
the potential to solve the collaborative operation problem of
logistics warehousing robots and provides a valuable reference for
future research.

Although we are satisfied with the satisfactory results
achieved by the model in the current study, we are cautiously
aware that it has some limitations that require further
improvement. First and foremost, we realize that the model’s
robustness in handling extreme situations needs to be improved,
especially in navigation and obstacle avoidance in complex
environments. These aspects are one of the focuses of our
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future research and improvement. Second, we acknowledge
that model training and tuning still rely on large amounts of
computing resources and time, which may limit its efficiency in
practical applications.

To solve this problem, we will devote ourselves to further
research and optimization of the training process of the model
in the future to reduce the computational cost and improve its
practical feasibility. In addition, we will explore the application
of the model in other fields, such as smart manufacturing
and urban logistics management. We believe that this research
provides new ideas and methods for the development of
logistics warehousing robots, and has important theoretical and
practical significance.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

LW: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Supervision, Visualization,
Writing – original draft. GL: Conceptualization, Formal analysis,
Supervision, Visualization, Writing – review & editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. This
work was funded by the Scientific Research Plan Project of
Hubei Provincial Department of Education “Research on Logistics
Efficiency and Space Difference of Hanjiang Ecological Economic
Belt” (B2020184) and Shiyan Soft Science Plan Project “Research
on the Efficiency and Spatial Evolution of Logistics Industry in
Hanjiang Ecological Economic Belt under Low Carbon Constraint”
(2020L20).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Almadhoun, R., Taha, T., Seneviratne, L., and Zweiri, Y. (2021). Multi-robot hybrid
coverage path planning for 3D reconstruction of large structures. IEEE Access 10,
2037–2050. doi: 10.1109/ACCESS.2021.3139080

Alqudah, M., Kezunovic, M., and Obradovic, Z. (2022). Automated power system
fault prediction and precursor discovery using multi-modal data. IEEE Access 11,
7283–7296. doi: 10.1109/ACCESS.2022.3233219

Asadi, N., Lamontagne, P., King, M., Richard, M., and Scott, K. A. (2021).
Probabilistic gridded seasonal sea ice presence forecasting using sequence to sequence
learning. Cryosphere Discuss. 16, 3753–3773. doi: 10.5194/tc-2021-282

Barisic, A., Ball, M., Jackson, N., McCarthy, R., Naimi, N., Strässle, L.,
et al. (2022). “Multi-robot system for autonomous cooperative counter-UAS
missions: design, integration, and field testing,” in 2022 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR) (Sevilla: IEEE), 203–210.
doi: 10.1109/SSRR56537.2022.10018733

Binder, B., Beck, F., König, F., and Bader, M. (2019). “Multi robot route
planning (MRRP): extended spatial-temporal prioritized planning,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Macau: IEEE),
4133–4139. doi: 10.1109/IROS40897.2019.8968465

Brancalião, L., Gonçalves, J., Conde, M. Á., and Costa, P. (2022). Systematic
mapping literature review of mobile robotics competitions. Sensors 22:2160.
doi: 10.3390/s22062160

Chen, W., Wang, X., Gao, S., Shang, G., Zhou, C., Li, Z., et al. (2023). Overview of
multi-robot collaborative SLAM from the perspective of data fusion.Machines 11:653.
doi: 10.3390/machines11060653

Deng, Y., Li, T., Xie, M., and Zhang, S. (2023). Distributed multi-robot-trailer
scheduling based on communication between charging stations for robot being towed
to recharge. Electronics 12:1402. doi: 10.3390/electronics12061402

Dubois, R., Eudes, A., and Frémont, V. (2020). “AirMuseum: a heterogeneous
multi-robot dataset for stereo-visual and inertial simultaneous localization
and mapping,” in 2020 IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems (MFI) (Karlsruhe: IEEE), 166–172.
doi: 10.1109/MFI49285.2020.9235257

Efthymiou, N., Filntisis, P. P., Koutras, P., Tsiami, A., Hadfield, J.,
Potamianos, G., et al. (2022). ChildBot: multi-robot perception and interaction
with children. Rob. Auton. Syst. 150:103975. doi: 10.1016/j.robot.2021.1
03975

Eudes, A., Bertrand, S., Marzat, J., and Sarras, I. (2023). Distributed control
for multi-robot interactive swarming using voronoi partioning. Drones 7:598.
doi: 10.3390/drones7100598

Gindullina, E., Peagno, E., Peron, G., and Badia, L. (2021). “A game theory
model for multi robot cooperation in industry 4.0 scenarios,” in 2021 IEEE Asia
Pacific Conference on Circuit and Systems (APCCAS) (Penang: IEEE), 237–240.
doi: 10.1109/APCCAS51387.2021.9687679

Han, R., Chen, S., Wang, S., Zhang, Z., Gao, R., Hao, Q., et al. (2022). Reinforcement
learned distributed multi-robot navigation with reciprocal velocity obstacle shaped
rewards. IEEE Robot. Autom. Lett. 7, 5896–5903. doi: 10.1109/LRA.2022.31
61699

Hu, G., Li, H., Liu, S., Zhu, Y., and Zhao, D. (2023). “NeuronsMAE: a novel multi-
agent reinforcement learning environment for cooperative and competitive multi-
robot tasks,” in 2023 International Joint Conference on Neural Networks (IJCNN) (Gold
Coast: IEEE), 1–8. doi: 10.1109/IJCNN54540.2023.10191291

Huang, J., Xu, W., Su, P., Wang, H., and Li, Z. (2023). Car window state
recognition algorithm based on YOLOX-S. J. Jilin Univ. Sci. Ed. 61, 875–882.
doi: 10.13413/j.cnki.jdxblxb.2022275

Huang, X., Deng, H., Zhang, W., Song, R., and Li, Y. (2021). Towards multi-modal
perception-based navigation: a deep reinforcement learning method. IEEE Robot.
Autom. Lett. 6, 4986–4993. doi: 10.1109/LRA.2021.3064461

Ismail, W. N., Fathimathul Rajeena, P. P., and Ali, M. A. (2023). A meta-heuristic
multi-objective optimization method for Alzheimer’s disease detection based on multi-
modal data.Mathematics 11:957. doi: 10.3390/math11040957

Jiang, M., Rosio, R., Salanterä, S., Rahmani, A. M., Liljeberg, P., da Silva,
D. S., et al. (2024). Personalized and adaptive neural networks for pain
detection from multi-modal physiological features. Expert Syst. Appl. 235:121082.
doi: 10.1016/j.eswa.2023.121082

Frontiers inNeurorobotics 23 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1329589
https://doi.org/10.1109/ACCESS.2021.3139080
https://doi.org/10.1109/ACCESS.2022.3233219
https://doi.org/10.5194/tc-2021-282
https://doi.org/10.1109/SSRR56537.2022.10018733
https://doi.org/10.1109/IROS40897.2019.8968465
https://doi.org/10.3390/s22062160
https://doi.org/10.3390/machines11060653
https://doi.org/10.3390/electronics12061402
https://doi.org/10.1109/MFI49285.2020.9235257
https://doi.org/10.1016/j.robot.2021.103975
https://doi.org/10.3390/drones7100598
https://doi.org/10.1109/APCCAS51387.2021.9687679
https://doi.org/10.1109/LRA.2022.3161699
https://doi.org/10.1109/IJCNN54540.2023.10191291
https://doi.org/10.13413/j.cnki.jdxblxb.2022275
https://doi.org/10.1109/LRA.2021.3064461
https://doi.org/10.3390/math11040957
https://doi.org/10.1016/j.eswa.2023.121082
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang and Liu 10.3389/fnbot.2023.1329589

Li, D., Yang, M., Jin, C. J., Ren, G., Liu, X., Liu, H., et al. (2020). Multi-
modal combined route choice modeling in the MaaS age considering generalized
path overlapping problem. IEEE Trans. Intell. Transp. Syst. 22, 2430–2441.
doi: 10.1109/TITS.2020.3030707

Liang, D., Liu, Z., and Bhamra, R. (2022). Collaborative multi-robot formation
control and global path optimization. Appl. Sci. 12:7046. doi: 10.3390/app12147046

Liang, Z., Cao, J., Lin, W., Chen, J., and Xu, H. (2021). “Hierarchical
deep reinforcement learning for multi-robot cooperation in partially
observable environment,” in 2021 IEEE Third International Conference
on Cognitive Machine Intelligence (CogMI) (Atlanta, GA: IEEE), 272–281.
doi: 10.1109/CogMI52975.2021.00042

Liu, R., Zhang, M., Yao, Y., and Yu, F. (2022). A novel high-dimensional multi-
objective optimization algorithm for global sorting. J. Jilin Univ. Sci. Ed. 60, 664–670.
doi: 10.13413/j.cnki.jdxblxb.2021231

Ning, X., Tian, W., Yu, Z., Li, W., Bai, X., and Wang Y. (2022). HCFNN: high-
order coverage function neural network for image classification. Pattern Recognit.
131:108873. doi: 10.1016/j.patcog.2022.108873

Orr, J., and Dutta, A. (2023). Multi-agent deep reinforcement learning for multi-
robot applications: a survey. Sensors 23:3625. doi: 10.3390/s23073625

Park, J., Artin, M. G., Lee, K. E., Pumpalova, Y. S., Ingram, M. A., May, B. L.,
et al. (2022). Deep learning on time series laboratory test results from electronic
health records for early detection of pancreatic cancer. J. Biomed. Inform. 131:104095.
doi: 10.1016/j.jbi.2022.104095

Queralta, J. P., Taipalmaa, J., Pullinen, B. C., Sarker, V. K., Gia, T. N.,
Tenhunen, H., et al. (2020). Collaborative multi-robot search and rescue: planning,
coordination, perception, and active vision. IEEE Access 8, 191617–191643.
doi: 10.1109/ACCESS.2020.3030190

Rong, J., Zhou, H., Zhang, F., Yuan, T., and Wang, P. (2023). Tomato
cluster detection and counting using improved YOLOv5 based on RGB-
D fusion. Comput. Electron. Agric. 207:107741. doi: 10.1016/j.compag.2023.
107741

Sahu, B., and Das, P. K. ranjan Kabat, M. (2022). Multi-robot cooperation
and path planning for stick transporting using improved Q-learning and
democratic robotics PSO. J. Comput. Sci. 60:101637. doi: 10.1016/j.jocs.2022.
101637

Salimi, S., Morón, P. T., Queralta, J. P., and Westerlund, T. (2022). “Secure
heterogeneous multi-robot collaboration and docking with hyperledger fabric

blockchain,” in 2022 IEEE 8th World Forum on Internet of Things (WF-IoT)
(Yokohama: IEEE), 1–7. doi: 10.1109/WF-IoT54382.2022.10152244

Sarwar Murshed, M. G., Carroll, J. J., Khan, N., and Hussain, F. (2022). Efficient
deployment of deep learning models on autonomous robots in the ROS environment.
Deep Learn. Appl. 3, 215–243. doi: 10.1007/978-981-16-3357-7_9

Singh, G., Phukan, O. C., and Kumar, R. (2023). Stress recognition withmulti-modal
sensing using bootstrapped ensemble deep learning model. Expert Syst. 40:e13239.
doi: 10.1111/exsy.13239

Su, H., Qi, W., Chen, J., Yang, C., Sandoval, J., Laribi, M. A., et al. (2023).
Recent advancements in multimodal human–robot interaction. Front. Neurorobot.
17:1084000. doi: 10.3389/fnbot.2023.1084000

Sun, Y., Yin, S., and Teng, L. (2020). Research on multi-robot intelligent fusion
technology based on multi-mode deep learning. Int. J. Electron. Inf. Eng. 12, 119–127.
doi: 10.6636/IJEIE.20200912(3).03

Tang, Q., Liang, J., and Zhu, F. (2023). A comparative review on multi-
modal sensors fusion based on deep learning. Signal Process. 213:109165.
doi: 10.1016/j.sigpro.2023.109165

Tang, Q., Zhang, J., Yu, F., Xu, P., and Zhang, Z. (2019). “Multi-robot cooperation
strategy in a partially observable Markov game using enhanced deep deterministic
policy gradient,” in Advances in Swarm Intelligence: 10th International Conference, ICSI
2019, Chiang Mai, Thailand, July 26–30, 2019. Proceedings, Part II 10 (Berlin: Springer
International Publishing), 3–10. doi: 10.1007/978-3-030-26354-6_1

Yang, J., Liang, N., Prakah-Asante, K. O., Curry, R., Blommer, M., Swaminathan,
R., et al. (2021). “Situation awareness classification using multi-modal sensing in
automated driving,” in Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, Vol. 65, No. 1 (Los Angeles, CA: SAGE Publications), 52.
doi: 10.1177/1071181321651095

Yu, J., Vincent, J. A., and Schwager, M. (2022). Dinno: distributed neural network
optimization for multi-robot collaborative learning. IEEE Robot. Autom. Lett. 7,
1896–1903. doi: 10.1109/LRA.2022.3142402

Zhang, P., Yu, X., Bai, X., Wang, C., Zheng, J., and Ning, X. (2023). Joint
discriminative representation learning for end-to-end person search. Pattern Recognit.
147:110053. doi: 10.1016/j.patcog.2023.110053

Zhao, W., Queralta, J. P., Qingqing, L., and Westerlund, T. (2020). “Towards
closing the sim-to-real gap in collaborative multi-robot deep reinforcement learning,”
in 2020 5th International Conference on Robotics and Automation Engineering (ICRAE)
(Singapore: IEEE), 7–12. doi: 10.1109/ICRAE50850.2020.9310796

Frontiers inNeurorobotics 24 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1329589
https://doi.org/10.1109/TITS.2020.3030707
https://doi.org/10.3390/app12147046
https://doi.org/10.1109/CogMI52975.2021.00042
https://doi.org/10.13413/j.cnki.jdxblxb.2021231
https://doi.org/10.1016/j.patcog.2022.108873
https://doi.org/10.3390/s23073625
https://doi.org/10.1016/j.jbi.2022.104095
https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.1016/j.compag.2023.107741
https://doi.org/10.1016/j.jocs.2022.101637
https://doi.org/10.1109/WF-IoT54382.2022.10152244
https://doi.org/10.1007/978-981-16-3357-7_9
https://doi.org/10.1111/exsy.13239
https://doi.org/10.3389/fnbot.2023.1084000
https://doi.org/10.6636/IJEIE.20200912(3).03
https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.1007/978-3-030-26354-6_1
https://doi.org/10.1177/1071181321651095
https://doi.org/10.1109/LRA.2022.3142402
https://doi.org/10.1016/j.patcog.2023.110053
https://doi.org/10.1109/ICRAE50850.2020.9310796
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Research on multi-robot collaborative operation in logistics and warehousing using A3C optimized YOLOv5-PPO model
	1 Introduction 
	2 Related works
	2.1 Traditional method
	2.2 Reinforcement learning 
	2.3 Time series forecasting 
	2.4 Multimodal perception and deep learning

	3 Methodology
	3.1 Overview of our model 
	3.2 YOLOv5 model 
	3.3 PPO model
	3.4 A3C optimization model

	4 Experiment
	4.1 Experimental environment 
	4.1.1 Hardware configuration
	4.1.2 Software configuration

	4.2 Experimental data 
	4.2.1 Dataset
	4.2.1.1 Data processing


	4.3 Experimental setup and details 
	4.3.1 Data preprocessing
	4.3.2 Model training
	4.3.3 Experimental evaluation metrics
	4.3.4 Experimental design

	4.4 Experimental results and analysis

	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


