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Insulators play a pivotal role in the reliability of power distribution networks,

necessitating precise defect detection. However, compared with aerial insulator

images of transmission network, insulator images of power distribution network

contain more complex backgrounds and subtle insulator defects, it leads to

high false detection rates and omission rates in current mainstream detection

algorithms. In response, this study presents ID-YOLOv7, a tailored convolutional

neural network. First, we design a novel Edge Detailed Shape Data Augmentation

(EDSDA) method to enhance the model’s sensitivity to insulator’s edge shapes.

Meanwhile, a Cross-Channel and Spatial Multi-Scale Attention (CCSMA) module

is proposed, which can interactively model across di�erent channels and spatial

domains, to augment the network’s attention to high-level insulator defect

features. Second, we design a Re-BiC module to fuse multi-scale contextual

features and reconstruct the Neck component, alleviating the issue of critical

feature loss during inter-feature layer interaction in traditional FPN structures.

Finally, we utilize the MPDIoU function to calculate the model’s localization loss,

e�ectively reducing redundant computational costs. We perform comprehensive

experiments using the Su22kV_broken and PASCAL VOC 2007 datasets to validate

our algorithm’s e�ectiveness. On the Su22kV_broken dataset, our approach

attains an 85.7% mAP on a single NVIDIA RTX 2080ti graphics card, marking a

7.2% increase over the original YOLOv7. On the PASCAL VOC 2007 dataset, we

achieve an impressive 90.3%mAP at a processing speed of 53 FPS, showing a 2.9%

improvement compared to the original YOLOv7.
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1 Introduction

With the growing demand for power, the power distribution network, as a critical

component of power systems, plays a pivotal role in transmitting electricity from

power stations to end-users. Within the power distribution network, insulators are

essential components used extensively to ensure the safe and stable operation of

the electrical system (Lei and Sui, 2019). However, insulators in power distribution

networks may suffer from defects such as self-detonation, corrosion, and breakage

due to long-term climate changes, pollution, and mechanical vibration. According to

relevant data, accidents caused by insulator defects rank at the forefront in power

systems (Kim et al., 2019; Stefenon et al., 2019; Zheng et al., 2022). Hence, it is

essential to conduct regular inspections of insulators within the power distribution

network, promptly detecting defective insulators and performing necessary maintenance.
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In the past, traditional methods for detecting insulator defects

primarily relied on manual inspections. This way is not only time-

consuming and laborious but also often inadequate for covering

all insulators within large-scale power distribution network. In

addition, manual inspections are susceptible to human factors,

which can significantly increase the risk of false and omission

detection. With the development of technology, non-contact

detection technologies such as infrared (Zheng H. et al., 2020),

ultraviolet (Liu et al., 2021), ultrasonic (Tian et al., 2019), and so

on are used in the field of electric power inspection, so as to fulfill

the defect detection of insulators. However, the high cost of this

equipment and the susceptibility to background interference are

significant limitations in practical applications.

In recent years, due to the rapid developments in unmanned

aerial vehicle (UAV) inspection technology and computer vision

techniques, traditional methods of manual inspection are gradually

being replaced. Traditional visual detection methods primarily

involve the extraction of features such as contours, colors, and

textures of insulators. These features are then combined with

machine learning techniques like Support Vector Machines and

Cluster Analysis to achieve insulator state detection in images

(Zhai et al., 2018; Fang et al., 2020; Tan et al., 2020). However,

traditional methods often struggle to handle diverse and complex

insulator defect scenarios. They can be limited in capturing the

variety of insulator defects effectively and are susceptible to factors

like noise and background interference, resulting in low accuracy

and limited generalization.

In contrast, deep learning-based object detection techniques

are opening up new possibilities for insulator defect detection.

Deep learning architectures leverage Convolutional Neural

Networks (CNNs) to automatically learn deep features layer by

layer from images. They optimize network model parameters

through training on large-scale data, thereby enhancing detection

accuracy. Currently, deep learning has demonstrated remarkable

achievements across various domains, such as autonomous driving

(Nguyen et al., 2018), medical diagnostics (Bakator and Radosav,

2018), and computer vision (Voulodimos et al., 2018). At the

same time, experts have gradually shifted their focus to the field of

electrical equipment inspection, especially in the insulator defect

detection (Prates et al., 2019; Niu et al., 2023). Deep learning,

with its remarkable generalization and cross-scenario adaptability,

is ushering in a revolutionary transformation in insulator defect

detection. This transformation not only markedly improves the

efficiency and accuracy of the detection process, but also opens

up entirely new prospects for the reliability and safety of the

power systems. However, deep learning-based insulator defect

detection methods still face several challenges when dealing with

large field-of-view and multi-angle images captured by drones. In

particular, complex background environments and subtle defect

objects in the images can interfere with the accuracy and reliability

of defect detection. Therefore, further research and solutions are

needed to address these issues.

To address the high false and omission detection rates in

insulator defect detection in power distribution network, we

propose the ID-YOLOv7 model based on the YOLOv7 algorithm.

Firstly, we make a detailed analysis for the captured insulator

images, and propose an Edge Detail Shape Data Augmentation

(EDSDA) method. This method expands the training dataset,

enhances the model’s robustness, and guides the model to pay

more attention to insulator shape information. Secondly, in order

to enhance the model’s capacity for capturing features from subtle

insulator defects and to tackle the problem of feature loss in the

deep networks of YOLOv7 due to reduced image channels, we

draw inspiration from the EMA (Ouyang et al., 2023) module

and design a Cross Channel and Spatial Multi-scale Attention

(CCSMA)module. This module is capable of integrating contextual

information from different scales within the network, allowing the

model to achieve better pixel-level focus on higher-level feature

maps. Subsequently, we introduce the Bi-directional Concatenation

module to reconstruct the Neck component of the network. This

innovative structural design ensures adequate information transfer

between feature layers and avoids loss of important features.

Finally, the MPDIoU (Siliang and Yong, 2023) loss function is used

to calculate the localization loss, which improves the convergence

speed of the model and reduces redundant computational cost.

The main contributions of this paper are as follows:

• In this study, we design the ID-YOLOv7 algorithm based

on YOLOv7. We restructure the Neck component and

create a Re-BiC module for multi-scale feature fusion. This

enhancement addresses the issue of feature information

loss during inter-feature layer interaction. Additionally,

during model training, we employ the MPDIoU function to

calculate the localization loss, thereby expediting the model’s

convergence rate and reducing redundant computational

costs. Our model exhibits significant advantages in insulator

defect detection tasks.

• We propose an Edge Detail Shape Data Augmentation

(EDSDA) method that expands the training set while

increasing the model’s sensitivity to insulator’s edge shape.

Meanwhile, We create a Cross Channel and Spatial Multi-

scale Attention (CCSMA) Module to strengthen the network’s

attention to high-level feature maps, which increases the

detection accuracy of subtle defects of insulators.

• We conduct a comprehensive series of experiments to

validate the efficacy of our approach. The experimental

results affirm that our method attains state-of-the-art

performance on the Su22kV_broken and PASCAL VOC

2007 datasets. Specifically, the ID-YOLOv7 algorithm

achieves 85.7% mAP on the Su22kV_broken dataset

and 90.3% mAP on the PASCAL VOC 2007 dataset at a

speed of 53 FPS.

The remainder of this article is structured as follows.

Section 2 provides a comprehensive review of related work

in the field of insulator defect detection. Section 3 provides

a detailed description of the ID-YOLOv7 algorithm and

the insulator defect dataset. In Section 4, we presents the

results of ablation experiments conducted on our proposed

algorithm, as well as a performance comparison with

other state-of-the-art algorithms on the Su22kV_broken

datasets and the PASCAL VOC 2007 datasets. Finally,

Section 5 summarizes the article and discusses our future

research directions.
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2 Related work

2.1 Conventional methods for insulator
defect detection

To identify insulator defects in UAV inspection photos,

conventional insulator defect detection methods apply diverse

techniques such as contour detection, color feature analysis, and

shape-texture feature analysis. Tan et al. (2020) present a fusion

technique for detecting catenary insulators based on shed shape

characteristics and gray similarity matching. Zhai et al. (2018)

identify the target region of the insulator based on color and

spatial features, and morphologically processes the target region

to detect the fault location of the insulator. Yu et al. (2019)

offer an active contour model that takes into account insulator

texture and shape information. They devise a novel convex energy

function, leveraging texture features extracted from a semi-local

region descriptor. However, this method requires the acquisition

of a priori knowledge of shape and has low applicability. Fang

et al. (2020) introduce color and distance factors, optimizing the

algorithm by integrating a priori information, this enhancement

enables the algorithm to effectively avoid insulator false negative

and false positive.

2.2 Deep learning based insulator defect
detection

With the continuous development of deep learning, numerous

methods related to insulator defect detection are emerging. The

research in this field can be broadly categorized into two main

groups. The first category comprises two-stage object detection

models, exemplified by R-CNN (Girshick et al., 2014), Faster R-

CNN (Ren et al., 2015), and Mask R-CNN (He et al., 2017). Two-

stage object detection models achieve improved detection accuracy

by training region proposal networks to generate candidate

boxes, and subsequently performing classification and regression

operations on these candidate regions. Zheng R. et al. (2020)

use an R-CNN-based CNN approach to extract visual features

from inspection images and detect insulator self-explosion defects.

This approach can identify insulator and defect sites under a

variety of environmental circumstances. Liao et al. (2019) propose

a Faster R-CNN technique in combination with a deep residual

network, ResNet101. Soft Non-Maximum Suppression (Soft-NMS)

is also used to improve the identification of overlapping insulators.

However, this algorithm involves a substantial computational

load and does not meet the real-time requirements for insulator

defect detection. Wen et al. (2021) propose two Faster R-CNN-

based approaches: Exact R-CNN and CME-NN. In CME-NN,

they employ an encoder-decoder mask extraction network to

mitigate the influence of complex environments and subsequently

employ Exact R-CNN to detect the defective insulator locations.

Tan et al. (2022) improve Mask R-CNN by gradient, texture,

and gray feature fusion (GTGFF) along with K-mean clustering

analysis model for insulator detection in high-speed railways.

However, this method is limited by the relatively uniform types

of insulators.

Another category comprises one-stage object detection models

represent by the You Only Look Once(YOLO) series (Redmon

et al., 2016; Redmon and Farhadi, 2017, 2018; Bochkovskiy

et al., 2020; Jocher, 2020; Wang C.-Y. et al., 2023) and the

Single Shot MultiBox Detector (SSD) algorithm (Liu et al.,

2016). The one-stage method does not require region proposal

networks, and the input data is directly classified and regressed

after the training of the backbone feature extraction network,

which can effectively shorten the training and inference time.

Han et al. (2023) introduce the DSMH-YOLOv4 algorithm

for insulator defect detection. Building upon YOLOv4, they

improve the residual structures and CSPDarknet53 backbone

model and incorporate the SA-Net attention model. This not

only reduces the model’s parameter count but also enhances

attention to target features. Xu et al. (2022) propose an

improved yolov4, introducing the lightweight module Mobilet-

V1 and the spatial and channel squeeze and channel excitation

attention mechanism module, and the depthwise separable

convolution is used to reduce the network parameters. Guo

et al. (2023) propose an improved insulator detection algorithm

based on YOLOv5, which combines a segmentation head

network utilizing self-attention and transformer (HST-Net) to

identify and assess the extent and type of damage on insulator

surfaces. Hu et al. (2023) introduce the BiFPN module into

the YOLOv5s network for feature fusion. They incorporate the

SPD module to enhance the extraction of features related to

small objects and introduce the CBAM attention mechanism to

augment the model’s focus on insulator defect regions, thereby

improving detection accuracy. Miao et al. (2019) propose a

method for automatically extracting multi-level characteristics

from images that combines the SSD model with a two-stage

fine-tuning procedure. This approach allows for the rapid and

accurate detection of porcelain and composite insulators in

complicated backgrounds.

Compared to the aforementionedmethods, the YOLOv7model

proposed by Wang C.-Y. et al. (2023) has higher characterization

capabilities, presenting faster and more accurate performance

on the COCO dataset. YOLOv7’s architecture contains several

bag-of-freebies strategies targeted at improving object detection

accuracy without raising the inference load. Additionally, it

utilizes a re-parameterized model to replace the original modules,

effectively handling different layer outputs through dynamic label

assignments from coarse to fine-grained levels. This algorithm

not only supports mobile GPUs and GPU devices from the

edge to the cloud, but also excels in speed and accuracy in

a range from 5 to 120 FPS. However, the current research

on the application of the YOLOv7-based model in the field

of insulator defect detection is still insufficient. Meanwhile,

there is still room for improving the accuracy of the model

in insulator defect detection (Zheng et al., 2022). In this

context, addressing the specific challenges posed by complex

backgrounds and small defective targets in power distribution

networks, this paper presents significant enhancements to the

original YOLOv7 framework. By introducing novel techniques

and strategies into the model, the objective is to achieve higher

defect detection accuracy and greater robustness, thereby providing

more effective support for the reliable operation of power

distribution systems.
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The conclusions drawn from the above research indicate that

defect detection methods for insulators are often constrained by

complex backgrounds and small defects, thereby necessitating

further improvement in detection accuracy. Here, we provide a

summary of these methods:

• Conventional insulator defect detection algorithms can

quickly compute and achieve satisfactory detection results

when dealing with images with simple backgrounds and

distinct features. However, these approaches rely substantially

on the feature extractor’s integrity, need high-quality input

images, and are subject to glare and background interference.

• Deep learning based algorithms for insulator defect detection

exhibit outstanding performance. However, two-stage and

one-stage object detection algorithms each possess distinct

advantages. The former has a complex structure, higher

detection accuracy, and relatively slower speed, while the latter

has a simple structure, rapid detection speed, but relatively

lower accuracy.

• The images of power distribution network insulators obtained

through UAV inspections encompass diverse background

elements. Simultaneously, insulator defects may occupy only a

small portion of the entire image, resulting in very small defect

targets. These factors can impact detection performance. As a

result, there is still potential for improvement in improving the

accuracy of insulator defect detection.

3 Materials and methods

3.1 Dataset preparation and analysis

In this paper, we use the Su22kV_broken dataset, which

is provided by a private user of the Roboflow platform. It

encompasses a total of 1,236 images, each with a resolution of

512× 512. Since this dataset aims at detecting defective conditions

that exist in insulators of the power distribution network, this

dataset is only labeled with insulator defective parts. At the same

time, omissions and errors in the labeling results were corrected.

We divide the modified dataset into training set, validation set and

test set in the ratio of 8:1:1. We count the number and distribution

of tags in the dataset and the results are shown in Figure 1A.

As shown in Figure 1A, (a) depicts the total number of

labels Su22kV_Broken, indicating that there are enough insulator

defect examples in the dataset to allow the training and learning

of subsequent deep learning models. (b) depicts the label box

distribution in the dataset, whereas in (c), the horizontal coordinate

represents the ratio of the label center’s horizontal coordinate to

the image width, and the vertical coordinate represents the ratio of

the label center’s horizontal coordinate to the image height. Labels

are uniformly distributed throughout the dataset and tend to be

centered in the middle of the image, as seen in (b) and (c). The

width of the horizontal coordinate in (d) represents the ratio of

the label width to the image width, and the height of the vertical

coordinate represents the ratio of the label height to the image

height. The dataset exhibits a higher frequency of small objects.

In addition, Figure 1B shows some image data samples of

Su22kV_broken dataset, from which it can be seen that the

background of power distribution network insulator images is very

complex. At the same time, influenced by the image acquisition

angles and distances, many insulators exhibit subtle defects.

This complexity brings more challenges for the whole object

detection task.

3.2 Proposed method

In the realm of one-stage object detection algorithms, YOLOv7

(Wang C.-Y. et al., 2023) has exhibited superior detection accuracy

compared to YOLOv5 (Jocher, 2020), while also preserving robust

real-time performance. In this study, we choose the YOLOv7

as the baseline algorithm for detecting insulators defects in

power distribution network. We use YOLOv7 algorithm to train

Su22kV_broken dataset, and through testing we found the original

YOLOv7 algorithm has more prominent omissions and false

detection when facing complex background images and subtle

defects of insulators. Therefore, we propose an improved YOLOv7

method for detecting insulator defects, named ID-YOLOv7. The

primary objective is to improve the accuracy of detecting insulator

defects by making improvements to YOLOv7 in three key aspects:

data augmentation, network structure, and loss function. The

general architecture of the ID-YOLOv7 network is depicted

in Figure 2.

3.2.1 Edge detail shape data augmentation
In the field of deep learning, commonly data augmentation

strategies include random flip, random crop, chromaticity

transform, saturation transform, etc., which are designed to expand

the number of training sets so as to alleviate the overfitting

problem and improve the robustness of the model. TheMosaic data

augmentation method is used in YOLOv4, YOLOv5 and YOLOv7,

which enriches the background information of the images while

expanding the training set. However, the primary focus of

this study is detecting insulators defects in power distribution

network. As elucidated through the analysis of the Su22kV_broken

dataset in Section 3.1, insulators in power distribution network

are predominantly located in rural mountainous areas. The

captured images often exhibit complex backgrounds characterized

by dense shrubbery and numerous trees. Moreover, insulators

defects in power distribution network tend to be less conspicuous.

Consequently, these factors collectively heighten the difficulty

associated with detecting insulator defects.

By analyzing defective insulators, we find that the shape of

insulators will change significantly after defects occur. And when

we judge whether an insulator is defective or not, the first thing we

usually focus on is the shape characteristics of the insulator. Hence,

it is imperative to enhance the sensitivity of the neural network

model on insulator shape information, enabling it to rely more

heavily on insulator shapes for defect detection. This improvement

will better distinguish defects.

In summary, this paper proposes an augmentation method

for edge detail shapes on the original YOLOv7 algorithm, aiming

to enhance the neural network’s focus on insulator edge detail

shapes, as depicted in Figure 3. In a detailed fashion, we begin
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FIGURE 1

(A) Label distribution:(a) number of labels; (b) visualization of label box; (c) label position; (d) label size. (B) Image samples of the Su22kV_broken

dataset.

by utilizing an image edge extraction algorithm to generate

edge detail images for the training set of the Su22kV_broken

dataset. Considering that the YOLOv7 network requires RGB

three-channel images as input, whereas the edge detail images

are monochromatic, we replicate the edge detail image twice

and merge them to construct a three-channel edge detail image.

Following this, the expanded three-channel edge detail image is

incorporated into the Su22kV_broken training set. Since the edge

detail images primarily capture the shape and texture of insulators,

the expanded edge detail images can guide the model to pay more

attention to the shape features of the insulator during the model’s

training process, thereby improving the detection accuracy of

insulator defect.

3.2.2 Cross channel and spatial multi-scale
attention module

Within the original YOLOv7 backbone architecture, the

stacking of numerous convolutional blocks poses a potential

challenge. This is because, as the image channels progressively

decrease, it becomes more likely that the features of subtle defect

of insulator within the image might be lost or compromised.

Hence, to bolster the model’s attention toward features of subtle

defects of insulators, we incorporate an attention mechanism

module within our ID-YOLOv7 network. Attention mechanisms

are typically classified into three categories: channel attention,

spatial attention, and channel-spatial hybrid attentionmechanisms.

One of the prominent models for channel attention is SENet

(Hu et al., 2018), which includes two components: compression

and excitation. The compression part aims to reduce global

spatial information, followed by channel-wise feature learning

to determine the significance of each channel. Subsequently, the

excitation part allocates varying weights to individual channels.

STN (Jaderberg et al., 2015) stands out as a model for spatial

attention, as it can transform deformed data in spatial dimensions

and automatically capture crucial region features, ensuring that

the image yields the same results as the original image after

undergoing operations like cropping or translation during data

augmentation. The CBAM (Woo et al., 2018) model serves

as an exemplary model for channel-spatial mixed attention,

primarily designed for feedforward convolutional neural networks.

When presented with an intermediate feature map, the CBAM

module progressively generates attention maps along two distinct

dimensions (channel and spatial). Subsequently, it performs

adaptive feature optimization through element-wise multiplication

with the input feature map.

The models mentioned above excel in producing highly

distinguishable feature representations during model inference.

Nevertheless, the approach ofmodeling cross-channel relationships

through channel dimension reduction may inadvertently lead to

unintended consequences in feature extraction for subtle defects of

insulator. Hence, we introduce the concept of a multiscale attention
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FIGURE 2

The general architecture of our proposed ID-YOLOv7 network.In the Re-Neck component, we continue to employ the Feature Pyramid Network

(FPN) approach. However, a key distinction lies in the upsampling process, which e�ectively involves the iterative fusion of adjacent three-layer

features.

FIGURE 3

Implementation of edge detail shape data augmentation (EDSDA).

module (EMA) (Ouyang et al., 2023) and improve it to propose the

cross-channel and spatial multiscale attention module (CCSMA).

As depicted in Figure 4, the CCSMA module utilizes parallel

substructures, effectively eliminating additional sequential

processing in the entire network, thereby expediting the inference

process. The CCSMA module is divided into two primary

components: Cross-channel learning and Cross-spatial learning.

It utilizes three parallel pathways to extract attention weight

descriptors for grouped feature maps, comprising two parallel 1×1

branches and one 3× 3 branch. Within the Cross-channel learning

segment, two parallel 1 × 1 branches encode the channels by

employing two global average pooling operations. Afterward, the

features from these two branches are concatenated and subjected

to grouped 1 × 1 convolution. These amalgamated features, in
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FIGURE 4

The proposed CCSMA network.

conjunction with the features from lower layers and the 3 × 3

convolution branch, are concurrently fed into a softmax function

for linear transformation fitting. This process yields adaptive

weight values for each branch, subsequently facilitating weighted

summation for feature recombination, ultimately producing the

output of the Cross-channel learning section. The output section

of Cross-channel learning can be expressed using the Equations (1)

and (2).

ai =
exp(Fi)
n
∑

i=1
exp(Fi)

(1)

outputc =

n
∑

i

Fi ⊗ ai (2)

Where Fi denotes the feature vectors fed into the softmax

function, comprising features from the Groups, X, Y, and

Conv(3 × 3) layers. And ai denotes the weight values computed

for each vector after undergoing the Softmax function, while

outputc denotes the features restructured by the Cross-channel

learning network.

Following the modeling operation for cross-channel

information interaction in the channel direction, the network

attains multi-scale feature representations. This process not only

involves encoding information between channels to fine-tune the

importance of various channels, but also retaining accurate spatial

structural information within those channels. Expanding on this

foundation, the features derived from the Cross-channel learning

module and those originating from the 3 × 3 output are subjected

to 2D global average pooling operations, respectively. Following

this, they are each input into the Cross-spatial learning module to

generate two consolidated spatial attention weight sets. Ultimately,
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these weights are combined with features from lower layers via a

sigmoid function to produce the output features. 2D global average

pooling operation can be expressed using Equation (3).

Zc =
1

H ×W

H
∑

j

W
∑

i

xc(i, j) (3)

Where H and W denote the height and width dimensions of

the input features, and xc signifies the input feature for the channel

c. And the output of the Cross-spatial learning network can be

represented using Equations (4) and (5).

δ = Sigmoid(x11 · x12 + x21 · x22) (4)

Outputs = Groups⊗ δ (5)

Where δ denotes the weight values output after being processed

by the Sigmoid function, and Groups denotes the grouped

features input into the network. Outputs denotes the features

ultimately output after undergoing processing by the Cross-spatial

learning module.

The CCSMA module is capable of integrating contextual

information from different scales within our ID-YOLOv7 network,

facilitating improved pixel-level focus on higher-level feature maps,

particularly for subtle defect features of insulator. Moreover, the

CCSMAmodule ensures that the final output sizematches the input

size, enabling efficient integration within YOLOv7.

3.2.3 Loss function
In the original YOLOv7, the loss function consists three

components: confidence loss (Lobj), classification loss (Lcls), and

localization loss (Lbox). As shown in Equation (6), the total loss

function of the YOLOv7 model is the weighted sum of the three

individual loss components. Specifically, the confidence loss and

classification loss are both computed using the binary cross-

entropy function, while the localization loss is calculated using

the CIOU loss function. The confidence loss component serves

the purpose of discerning whether a feature point contains an

object, the classification loss component is utilized to classify the

object category within the feature point, and the localization loss

component is employed to determine the regression parameters

of the feature point. During the training process, after positive

sample matching, the model obtains the corresponding prior boxes

for each genuine bounding box. All prior boxes corresponding to

genuine bounding boxes are labeled as positive samples, while the

remaining prior boxes are designated as negative samples. Cross-

entropy loss is computed based on the predictions for positive and

negative samples, coupled with whether the feature point contains

an object. The resulting calculations are used as the output for

the confidence loss component. Upon acquiring the corresponding

prior boxes for each bounding box, the model extracts the class

prediction results from these prior boxes. Cross-entropy loss is then

calculated based on the true box categories and the class prediction

results of the prior boxes, with the computed results serving as

the output for the classification loss component. Additionally, the

CIOU loss is computed using the true boxes and predicted boxes,

and the resulting calculations are utilized as the output for the

localization loss component.

LossYOLOv7 = Lobj × ω1 + Lcls × ω2 + Lbox × ω3 (6)

Where ω1, ω2, and ω3, respectively, represent the weight

coefficients of Lobj, Lcls, and Lbox.

To improve the training efficacy of bounding box regression,

expedite convergence, and enhance regression accuracy during

model training, we utilize the MPDIoU (Siliang and Yong, 2023)

function to compute the localization loss component. TheMPDIoU

loss function presents a novel metric grounded in intersection

over union (IoU), as illustrated in Figure 5. It aims to minimize

the distance between the top-left and bottom-right points of

the predicted bounding box and the ground truth box. The

fundamental principles are elucidated in Equations (7) through

(10).

The yellow box represents the ground truth box, while the red

box represents the predicted box. (x
gt
1 , y

gt
1 ) denotes the coordinates

of the top-left point of the ground truth box, (x
gt
2 , y

gt
2 ) represents

the coordinates of the bottom-right point of the ground truth

box, (x
pd
2 , y

pd
2 ) signifies the coordinates of the top-left point of the

predicted box, (x
pd
1 , y

pd
1 ) represents the coordinates of the bottom-

right point of the ground truth box, d1 and d2, respectively, indicate

the distances between the top-left and top-left, and bottom-right

and bottom-right points of the ground truth and predicted boxes.

Equations (7) and (8) can be used to calculate d1 and d2:

d21 = (x
pd
1 − x

gt
1 )

2 + (y
pd
1 − y

gt
1 )

2 (7)

d22 = (x
pd
2 − x

gt
2 )

2 + (y
pd
2 − y

gt
2 )

2 (8)

Subsequently, the final LMPDIoU can be calculated based on d1
and d2 through Equations (9) and (10).

MPDIoU =
A ∩ B

A ∪ B
−

d21
w2 + h2

−
d22

w2 + h2
(9)

LMPDIoU = 1−MPDIoU (10)

TheMPDIoU loss function simplifies the similarity comparison

between two bounding boxes, allowing it to accommodate both

overlapping and non-overlapping bounding box regressions.

Moreover, all elements of existing bounding box regression loss

functions can be expressed using the four point coordinates, as

illustrated in Equations (11)–(13).

|C| = (max(x
gt
2 , x

pd
2 )−min(x

gt
1 , x

pd
1 ))× (max(y

gt
2 , y

pd
2 )

−min(y
gt
1 , y

pd
1 )) (11)

x
gt
c =

x
gt
1 + x

gt
2

2
, y

gt
c =

y
gt
1 + y

gt
2

2
, x

pd
c =

x
pd
1 + x

pd
2

2
, y

pd
c =

y
pd
1 + y

pd
2

2
(12)
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FIGURE 5

Factors of LMPDIoU.
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gt
1
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,wpd =

∣

∣

∣

x
pd
2 − x
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1

∣

∣

∣

,

hpd =

∣

∣

∣

y
pd
2 − y

pd
1

∣

∣

∣

(13)

|C| represents the area of the minimum bounding rectangle

of the ground truth and predicted boxes, (x
gt
c , y

gt
c ) and (x

pd
c , y

pd
c ),

respectively, denote the center coordinates of the ground truth

and predicted boxes, wgt and hgt represent the width and height

of the ground truth box, while wpd and hpd signify the width

and height of the predicted box. Through Equations (11)–(13), we

can also calculate deviations for non-overlapping regions, center

point distances, width, and height. This approach not only ensures

comprehensive consideration but also streamlines the calculation

process. Therefore, in the localization loss component of ID-

YOLOv7 model, we opt for employing the MPDIoU function to

compute the loss.

3.2.4 Reconstructed neck component
In the original YOLOv7 architecture, the Neck component

consists of Path Aggregation Network (PANet) and Feature

Pyramid Network (FPN). FPN offers an efficient architectural

design that enhances detection accuracy for objects of various sizes

by fusing multi-scale features through cross-scale connections and

information exchange (Wang C. et al., 2023). However, in the

traditional FPN structure, the interaction of information between

layers is acquired through a layer-by-layer recursive manner,

potentially resulting in the loss of critical features when exchanging

information between lower and higher layers. To address this issue,

we combine the concept of Bi-directional Concatenation (Li et al.,

2023) to design a Re-BiC structure for multi-scale feature fusion,

as illustrated in Figure 6. Simultaneously, we reconstruct the Neck

component, as depicted in Figure 7.

Utilizing the Re-BiC module for multi-scale information

interaction among the high, medium, and low-level features within

the Backbone, we initially pass the low-level features through

a Downsampling-MP1 module and a 1 × 1 convolution for

downsampling processing, resulting in the output size half of the

input size and the output channel count reduced to half of the input.

Themiddle-level features undergo a 1×1 convolution, maintaining

their size while reducing the channel count to one-fourth of the

input. The high-level features are subjected to Upsampling2D,

doubling their output size while retaining the same channel count.

Subsequently, these three processed feature maps are concatenated

and then passed through a 1 × 1 convolution operation for

dimensionality reduction.

As illustrated in Figure 7, we input image data that has

undergone image augmentation into the network. It initially

undergoes processing by the network’s Backbone, which consists

of CBS blocks, ELAN modules, and Downsampling-MP1

modules. The CBS block is composed of Convolutional, Batch

Normalization, and SiLU activation layers. The ELAN module is

constructed by stacking multiple CBS blocks. The ELAN module

incorporates four rounds of grouped convolution and employs skip

connections in the internal residual structure, mitigating the issue

of gradient vanishing often encountered in deep neural networks.

The Downsampling-MP1 module is formed by concatenating

two branches while maintaining an equal number of output

channels as the input. Following the processing by the main
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FIGURE 6

The Re-BiC network. The downsampling-MP1 module is formed by the concatenation of two branches. One branch comprises an max pooling layer

followed by a CBS block, while the other branch consists of two stacked CBS blocks. A detailed illustration of the downsampling-MP1 module is

provided in Figure 7.

FIGURE 7

Overview of the ID-YOLOv7 network. The output channel count remains consistent with the input channel count after the feature map undergoes

downsampling-MP1 processing. However, after downsampling-MP2 processing, the output channel count is adjusted to twice the input channel

count.

network, we obtain three effective feature layers that will be

utilized for subsequent network construction. The shapes of these

three effective feature layers are (80, 80, 512), (40, 40, 1,024), and

(20, 20, 1,024).

The Neck component is designed to enhance the fusion

of effective feature layers obtained from the Backbone at four

different scales. Initially, the effective feature layers acquired from

Stage5 are processed through the SPPCSPC module, reducing the

channel count from 1,024 to 512 while maintaining the same size.

Subsequently, the effective feature layers from Stage3, Stage4, and

those processed through the SPPCSPC module are fed into the

Re-BiC module for multi-scale feature fusion, resulting in feature

maps with dimensions of (40, 40, 512). These feature maps are then

subjected to processing through the CCSMA module to enhance

more salient feature expressions through channel-wise and spatial

means. Following this, the feature layers processed by the ELAN

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1331427
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2023.1331427

module, along with the effective feature layers from Stage2 and

Stage3, are input into the Re-BiC module for further multi-scale

feature fusion, resulting in feature maps with dimensions of (80,

80, 256). They are then processed through the CCSMA module

once more. Next, the entire network undergoes downsampling,

achieved through the ELAM module and Downsampling-MP2

module, followed by feature addition. Compared to the original

Concatenation operation in YOLOv7, using the ADD operation

not only saves computational costs but also overlays semantic

information extracted earlier, highlighting the correct classification

ratio and preserving the correctly activated regions from the

original image. Following processing by the Neck section, three

enhanced feature layers are obtained, with dimensions of (80, 80,

128), (40, 40, 256), and (20, 20, 512), respectively.

Finally, these three enhanced feature layers are passed into

the Head component, processed through RepConv layers,

and then transmitted to the YOLOHead for generating

prediction boxes. Given that the Su22kV_broken dataset

used in this study only includes the Su22_Broken class, the

final shapes of the three feature layers are (80, 80, 18), (40,

40, 18), and (20, 20, 18). And then, decoding is applied,

followed by score sorting and non-maximum suppression

to generate the optimal prediction boxes that meet the

confidence threshold.

4 Experimental results

To assess the effectiveness of our proposed improved YOLOv7

method, we conduct model training and testing on both the

Su22kV_broken dataset and the PASCAL VOC 2007 dataset. We

also compare our approach with other mainstream object detection

models. This chapter primarily focuses on the specifics of our

experimental setup and methodology.

4.1 Datasets

Su22kV_broken (Hieulc@cpc.vn, 2022). Section 3.1 provides

comprehensive details regarding the Su22kV_broken dataset,

comprising a total of 1,236 images, each with a resolution of 512×

512.

PASCAL VOC 2007 (Everingham et al., 2007). The PASCAL

VOC 2007 dataset, an iteration of the PASCAL Visual Object

Classes Challenge competition, holds significant prominence in the

field of computer vision. This dataset serves as a pivotal resource for

training, evaluation, and benchmark testing in various computer

vision tasks, including object detection, image segmentation,

and scene classification. It encompasses a total of 9,963 images

with diverse pixel dimensions, encompassing a wide spectrum

of object categories, scenes, and complexities. Post-annotation,

these images are partitioned into training, validation, and test sets,

comprising 2,501, 2,510, and 4,952 images, respectively. There are

annotations for a total of 20 common object classes, with each

image accompanied by an XML-formatted annotation file that

includes information about object bounding box coordinates and

class labels.

4.2 Implementation details

4.2.1 Experimental environment
All of our experiments conduct in the same environment. The

hardware environment includes a CPU [12th Gen Intel(R) Xeon(R)

Platinum 8255C 2.50 GHz] and a GPU (NVIDIA GeForce RTX

2080 Ti), and the deep learning framework PyTorch and Python

are used in the software environment.

4.2.2 Training and evaluation metric
4.2.2.1 Training

During themodel training process, we set themomentum to 0.9

and weight decay to 5e-4. We use the Stochastic Gradient Descent

(SGD) algorithm as the optimizer. For both the Su22kV_broken

dataset and the PASCAL VOC 2007 dataset, we set the batch size

to 16, the number of epochs to 200, and the initial learning rate

to 0.01. Additionally, in the Su22kV_broken dataset, since we only

need to detect the defect areas of insulators as a single target class,

we calculate both the classification loss and localization loss.

4.2.2.2 Evaluation metric

In this paper, we employ the commonly used performance

evaluation metric in the field of object detection, Mean Average

Precision (mAP), to assess the effectiveness of our algorithm. Here,

we provide a brief introduction to the relevant metrics involved in

computingmAP: IntersectionOver Union (IOU), Precision, Recall,

and Average Precision (AP).

IOU is a metric used to evaluate the extent of overlap between

two bounding boxes. It reflects the localization accuracy of the

predicted bounding box in relation to the true labeled box. If we

denote the predicted bounding box as A and the true labeled box

as B, the calculation of the Intersection Over Union is shown in

Equation (14):

IOU =
A ∩ B

A ∪ B
(14)

In the formula, the numerator represents the area of overlap

betweenA and B, while the denominator represents the sum of their

individual areas minus the area of overlap.

Precision and recall are calculated separately for each class

in the object detection task. If a predicted bounding box has

a maximum IOU with all true labels greater than a threshold,

it is considered a correct prediction; otherwise, it is considered

an incorrect prediction. Each predicted box is associated with

a confidence score, which is used to classify them into positive

samples and negative samples. Calculating the IOU between

predicted results and true labels yields the following: True Positives

(TP), False Positives (FP), True Negatives (TN) and False Negatives

(FN). Then the precision rate and recall rate are calculated,

respectively, as shown in Equations (15) and (16):

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)
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FIGURE 8

Results of edge details extracted by di�erent algorithms.

From the above equation, it can be seen that precision in

object detection tasks represents the extent of algorithmic false

detection. Higher precision implies fewer false detections. On the

other hand, recall represents the extent of algorithmic omission

in object detection tasks. Higher recall implies fewer omission.

The performance of an object detection algorithm should be

evaluated considering both precision and recall. By setting different

confidence thresholds can get different precision rate and recall

rate, and connect them to form a curve called PR curve (the vertical

axis is the precision rate, and the horizontal axis is the recall rate),

the area of the closed region formed by the PR curve and the

axes is the average precision rate (AP), if the curve corresponds to

the function is notated as p(r), then the AP formula is shown in

Equation (17).

AP =

∫ 1

0
p(r)dr (17)

The mean Average Precision (mAP) is the average of the

computed Average Precision (AP) values for all target categories. In

this paper, as we are only detecting one category, which is defective

insulators, mAP is equivalent to AP. In the field of object detection,

0.5 is commonly used as IOU threshold, and the mAP at this

threshold is denoted as mAP@0.5.

4.3 Ablation study

This paper introduces several improvements to the original

YOLOv7 model, including Edge Detail Shape Data Augmentation,

CCSMA, Reconstructed Neck and the MPDIoU loss function. To

individually assess the effectiveness of each of these improvements,

we conduct ablation experiments on the test set of the

Su22kV_broken dataset.

In the experiments to validate the Edge Detail Shape Data

Augmentation (EDSDA) module, we select and visualize three

classic edge detection algorithms, as shown in Figure 8. These

algorithms include the Canny operator (Ding and Goshtasby,

2001), the Laplacian operator (Wang, 2007), and the Sobel

operator (Kanopoulos et al., 1988). The Canny operator can

accurately extract fine edges, but it comes with a relatively high

computational cost and requires parameter tuning for optimal

results. The Laplacian operator, as a second-order differential

operator, is adaptable to various edge scenarios without being

restricted by edge direction, but it is sensitive to noise and

can be affected by image noise. On the other hand, the Sobel

operator offers faster computational speed, making it suitable

for real-time applications. It has a certain degree of suppression

effect on noise. Although it may not be as effective at detecting

fine edges, but in general, it can capture the outer contours of
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TABLE 1 Ablation comparative experiment of edge detail shape data

augmentation.

Method EDSDA mAP@0.5(%)

Sobel Canny Laplacian Su22kV_broken

YOLOv7 X - - 83.2

- X - 81.9

- - X 82.6

Bold values indicate the best results from experiments with different algorithms.

TABLE 2 Ablation experiments for the ID-YOLOv7 method.

Method Re-
neck

EDSDA CCSMA MPDIoU mAP@0.5(%)

YOLOv7 - - - - 78.5

ID-

YOLOv7

X - - - 79.3

X X - - 83.8

X - X - 80.8

X - - X 80.2

X X X - 85.2

X - X X 81.5

X X X X 85.7

Bold values indicate the best results from experiments with different algorithms.

insulators of different sizes and resolutions, and presents excellent

detection performance.

Furthermore, to validate the effectiveness of the edge detail

shape data augmentation method, we compare the performance

of the original YOLOv7 model with the YOLOv7 model that

incorporates the edge detail shape data augmentation module

on the insulator dataset, as shown in Table 1. The experimental

results demonstrate a significant improvement in the detection

performance of the YOLOv7 model when the edge detail shape

data augmentation module is employed. Among the methods

tested, utilizing the Sobel operator achieved the highest mAP value,

reaching 83.2%. It is noteworthy that among the Canny operator,

which exhibited the highest edge detection accuracy, demonstrated

a relatively lower mAP value of only 81.9%. This is likely because

insulator defect detection typically places more emphasis on the

edge contours of insulators, while the edge detail images generated

by the Canny operator encompass a substantial amount of fine

details and texture information beyond the insulators. Especially in

the presence of complex backgrounds, it may introduce numerous

non-insulator edges, thereby impacting the accuracy of detection.

On the other hand, the Laplacian operator is susceptible to noise

and may introduce false edge structures when generating edge

images, consequently diminishing the reliability and accuracy of

insulator defect detection.

Next, we conducte a series of ablation experiments on the

proposed Reconstructed Neck component (Re-Neck, including

Re-BiC module), CCSMA module, and the inclusion of the

MPDIoU loss function during model training, as presented in

Table 2. Building upon the original YOLOv7 framework, the

implementation of the Re-Neck yields an mAP of 79.3%, indicating

TABLE 3 Comparison results of di�erent models.

Method Backbone Precision
(%)

Recall
(%)

mAP@0.5
(%)

Faster RCNN

(Ren et al.,

2015)

ResNet-50 82.5 69.6 71.4

SSD (Miao

et al., 2019)

VGG-16 79.3 62.7 68.6

YOLOv5s

(Jocher, 2020)

CSPDarknet 83.7 68.5 72.9

YOLOv7

(Wang C.-Y.

et al., 2023)

- 87.5 73.1 78.5

YOLOv8

(Jocher et al.,

2023)

CSPDarknet 85.7 73.8 77.8

Ours - 92.6 80.1 85.7

Bold values indicate the best results from experiments with different algorithms.

an improvement of 0.8% compared to the baseline YOLOv7.

Subsequently, after introducing the CCSMA module and MPDIoU

loss function on the basis of the Re-Neck component, respectively,

the mAP values are 80.8 and 80.2%, which are improved by 1.5

and 0.9% respectively. With the simultaneous integration of all four

methods, the mAP reaches 85.7%, showcasing a substantial 7.2%

enhancement compared to the baseline YOLOv7. It is worth noting

that using only the EDSDA (Sobel) data enhancement method on

the basis of the Re-Neck component resulted in a 4.5% increase

in mAP. This demonstrates that data with added edge information

substantially improves detection in insulator defect detection tasks,

thus proving the effectiveness of our data enhancement approach.

The results of the ablation experiments affirm the satisfactory

performance achieved by our proposed approach.

4.3.1 Compare with state-of-arts on
Su22kV_broken

We test our trained model on the Su22kV_broken dataset, and

Table 3 presents the results of various evaluationmetrics for the ID-

YOLOv7 method compared to other mainstream object detection

models on the test set. From the data in the table, it is evident that

our proposed ID-YOLOv7 method achieved the best experimental

results on the Su22kV_broken test set, with an mAP of 85.7%,

which is 7.2% higher than Original YOLOv7. This demonstrates

the significant advantages of our method in the task of insulator

defect detection.

Next, we visualize the output feature maps of each layer in

the ID-YOLOv7 model, as depicted in Figure 9. We present the

feature maps from the network’s first convolutional layer, SPPCSPC

layer, and three feature-enhancing layers. From the images, it

is evident that the features extracted by the first convolutional

layer of the network exhibit a pronounced focus on the contours

of the insulator edges, underscoring the effectiveness of our

proposed edge detail shape data augmentation approach. As the

network’s depth increases, image features become increasingly

dispersed. However, it is also evident from the feature maps of the
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FIGURE 9

Comparison of training loss values for di�erent models.

FIGURE 10

Visualization of feature map.

three effective feature-enhancing layers that they exhibit excellent

suppression of non-insulator features.

In addition, we employ the Grad-Cam (Selvaraju et al., 2017)

algorithm to generate Grad-Cam maps for the original YOLOv7

model and the ID-YOLOv7 model, as illustrated in Figure 10.

Notably, from these images, it becomes evident that our ID-

YOLOv7 model is more adept at focusing on the subtle features

of insulator defects within complex backgrounds. This suggests

that the ID-YOLOv7 model holds a distinct advantage in insulator

defect detection tasks.

To further validate the sophistication of our proposed

method, we present the detection results of different models

for insulator defects, as shown in Figure 11. It is evident that

SSD, Faster R-CNN, YOLOv5s, YOLOv7 and YOLOv8 models

all exhibit varying degrees of omissions and false detections.

Specifically, SSD demonstrates the poorest detection performance,

Faster R-CNN exhibits redundant bounding boxes, and generally,

the predicted bounding boxes have low confidence scores.

Moreover, when it comes to detecting subtle defects, YOLOv5,

YOLOv7, and YOLOv8 all exhibit instances of omissions and

false detections. In contrast, our method not only addresses

the issues of false negatives and false positives in insulator

defect detection but also achieves high precision in accurate

predictions. Therefore, it can be concluded that our proposed
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FIGURE 11

Grad-Cam map of YOLOv7 and our proposed ID-YOLOv7 model.

TABLE 4 Comparison of di�erent models on the PASCAL VOC 2007

dataset.

Method Backbone mAP@0.5
(%)

FPS

Fast RCNN (Girshick,

2015)

VGG-16 70.0 7

Faster RCNN (Ren et al.,

2015)

ResNet-101 76.4 5

YOLOv2 (Redmon and

Farhadi, 2017)

Darknet-19 78.6 40

SSD500 (Miao et al.,

2019)

VGG-16 77.2 46

YOLOv3 (Redmon and

Farhadi, 2018)

Darknet-19 64.8 37

YOLOv4 (Bochkovskiy

et al., 2020)

Darknet-53 78.6 35

YOLOv5s (Jocher, 2020) CSPDarknet 79.2 36

YOLOv7 (Wang C.-Y.

et al., 2023)

- 87.4 51

Ours - 90.3 53

Bold values indicate the best results from experiments with different algorithms.

ID-YOLOv7 method is highly effective in insulator defect

detection tasks.

4.3.2 Compare with the mainstream methods on
PASCAL VOC 2007

To further evaluate the effectiveness of our proposed ID-

YOLOv7 model in object detection tasks, we conduct training

on the PASCAL VOC 2007 dataset and compare the results

on the test set with mainstream object detection algorithms. As

shown in Table 4, our method achieves the highest mAP value

on the PASCAL VOC 2007 dataset, reaching 90.3%, which is

2.9% higher than the original YOLOv7. Furthermore, the FPS

also reaches 53, meeting the requirements of most real-world

detection tasks.

5 Conclusion

In this article, we address the challenges posed by the complex

backgrounds and numerous subtle defects in insulator images

captured by drones in power distribution network. Building upon
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the YOLOv7 algorithm, we propose an improved version for the

detection of insulator defects. Extensive experiments and visual

results substantiate the effectiveness of our approach. On the

Su22kV_broken dataset, we achieve mAP of 85.7% using a single

NVIDIA RTX 2080ti graphics card, which is 7.2% higher than

the original YOLOv7. On the PASCAL VOC 2007 dataset, we

achieve a remarkable mAP of 90.3% at a speed of 53 FPS. In

comparison to other mainstream object detection algorithms, our

method demonstrates significant advantages.

In future work, we intend to further improve our dataset

by incorporating diverse insulator defect data from various

environmental conditions. Additionally, we will continue our

research to develop high-precision insulator defect detection

algorithms that meet real-time performance requirements, with the

ultimate goal of contributing to the stable and safe operation of

power systems.
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