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Deep learning has significantly advanced text-to-speech (TTS) systems. These

neural network-based systems have enhanced speech synthesis quality and are

increasingly vital in applications like human-computer interaction. However,

conventional TTS models still face challenges, as the synthesized speeches

often lack naturalness and expressiveness. Additionally, the slow inference

speed, reflecting low e�ciency, contributes to the reduced voice quality. This

paper introduces SynthRhythm-TTS (SR-TTS), an optimized Transformer-based

structure designed to enhance synthesized speech. SR-TTS not only improves

phonological quality and naturalness but also accelerates the speech generation

process, thereby increasing inference e�ciency. SR-TTS contains an encoder,

a rhythm coordinator, and a decoder. In particular, a pre-duration predictor

within the cadence coordinator and a self-attention-based feature predictor

work together to enhance the naturalness and articulatory accuracy of speech.

In addition, the introduction of causal convolution enhances the consistency of

the time series. The cross-linguistic capability of SR-TTS is validated by training

it on both English and Chinese corpora. Human evaluation shows that SR-TTS

outperforms existing techniques in terms of speech quality and naturalness of

expression. This technology is particularly suitable for applications that require

high-quality natural speech, such as intelligent assistants, speech synthesized

podcasts, and human-computer interaction.

KEYWORDS

text-to-speech synthesis, multilingual modeling, prosody predictor, pre-duration

predictor, self-attention structure, causal convolutions

1 Introduction

Text-to-speech synthesis (TTS) is referred as the process of automatically generating

speech waveform based on text using computer technology (Rabiner and Schafer,

2007). Essentially, it completes the unequal-length sequence mapping based on text and

transfer to corresponding speech (Donahue et al., 2006). It acts like a bridge during

human-computer interaction, enabling machines to communicate like real humans with

understandable languages (Bharadiya, 2023). TTS technology has gone through a long

history, which evolved from a rule-based synthesis (Oliviera et al., 1992) to a concatenative

generation model (Lee and Cox, 2002), and then upgraded to a statistical parametric

structure (Zen, 2015).
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In recent years, with the rapid development of deep learning

and artificial intelligence technologies, speech synthesis models

based on these have achieved remarkable progress (Kumar et al.,

2023). However, building high-quality TTS systems comes across

many technical challenges, such as accurately capturing prosodic

patterns (Teixeira, 2004), precisely controlling speech duration and

pitch, as well as effectively generating different speaking tones

and styles. A powerful TTS system also needs to support multiple

languages, speaking styles, and accents. Current speech synthesis

(Tan et al., 2021) still faces problems like poor speech quality

and slow inference speed (Trang and Nguyen, 2022). Therefore,

researchers put efforts into the following models to address the

problems. In 2018, Wang et al. proposed the first end-to-end

TTS model named Tacotron (Wang et al., 2017; Elias et al.,

2021) that no longer relied on statistical parametric synthesis

and improved the speech quality to some extent. However, its

complex model structure resulted in a slow inference speed,

which limited the feasibility in some real-time tasks. To address

the low-efficiency issues from Tacotron, Ren et al. (2006, 2019)

introduced the FastSpeech. Based on the Transformer structure,

it allows parallel computation with a faster inference speed.

Compared to Tacotron, FastSpeech also greatly improved speech

quality. However, it still had poor fine-grained control over speech

details. The problem that the synthesized speech lacked prosodic

rhythm remained unsolved. Recently, the denoising diffusion

probabilistic models (Ho et al., 2020) (DDPM) proposed by

Tieleman and Hinton have shown outstanding performance in

generative tasks and have been applied to speech synthesis tasks

(Jeong et al., 2021). With the help of DDPM, decent improvements

in speech quality can be achieved. However, its complicated

computation and high time-costs block the large-scale deployment

and practical applications.

To address the key issues in current speech synthesis models,

particularly in terms of inference speed and the naturalness

(Liu et al., 2021) of synthesized speech, this paper introduces

an improved high-quality speech synthesis system based on the

Transformer architecture, named SynthRhythm-TTS (SR-TTS).

These issues not only affect the usability of TTS technology in

dynamic human-computer interaction and real-time applications

but also limit its effectiveness in multilingual and multi-style

speech synthesis.

SR-TTS is an end-to-end structure designed to enhance the

naturalness and efficiency of speech synthesis. It includes an

encoder, a rhythmic harmonizer, and a decoder, which can precisely

control the prosody, pitch, and duration of the synthesized speech,

and strengthen the relationship between the input text and the

corresponding audio. The integration of a duration predictor and

a feature predictor further enhances the temporal consistency

and rhythmic sense of the speech synthesis, while the self-

attention mechanism helps the model more effectively capture the

correlation between acoustic features and input text, improving the

quality and naturalness of the speech.

In terms of experimental results, SR-TTS demonstrated its

superiority across multiple evaluation metrics. Compared to

existing TTS systems like Tacotron2 and FastSpeech2, SR-TTS

showed significant improvements in speech quality, naturalness,

and inference speed.

Section 2 will provide more information on the

current related works. Section 3 will give a more detailed

description of the model structure of the SR-TTS while

Section 4 will present the experimental results of the speech

evaluation and ablation studies. The last section will give

a comprehensive conclusion and future work based on

this study.

2 Related work

With the help of deep learning, research toward speech

synthesis has made remarkable progress in recent years, bringing

tremendous improvements in speech quality and naturalness

(Holmes, 2002). This section gives a brief review of some

representative works that are relevant to this paper.

Prosody is an important characteristic of speech and is

responsible for rhythm and pitch variation during speech

synthesis. Recent studies have focused on improving models’

prosody modeling capability for better acoustic quality. Wang

introduced LSTM networks (Fan et al., 2014) in Tacotron

to capture prosodic features of text, which helps to generate

more natural pitch contours. Kenter et al. (2019) proposed

a hierarchical prosody modeling approach with contextual

RNN and variational autoencoder to improve prosody

prediction accuracy.

Self-attention has been widely applied in speech synthesis

tasks (Yu et al., 2022) to capture dependencies between different

positions in sequences (Shaw et al., 2018). Vaswani et al. (2017)

first proposed the Transformer model which models long-range

dependencies using self-attention and achieved state-of-the-art

performance in machine translation and text modeling, resulting

in an enhancement in the speech quality and accuracy. Following

this paradigm, Li et al. (2019) developed the Transformer-

TTS model, which builds upon the Transformer structure to

produce high-quality speech, showing notable improvements over

recurrent models.

Though current TTS has made significant progresses, these

models still face limitations and challenges like lack of naturalness

and prosody in synthesized speech (Marge et al., 2020). To

address the above issues, this paper proposes the SR-TTS with

a series of innovations to improve speech quality, naturalness,

and controllability. In the following sections, we will elaborate

on the design and experimental results of these innovations

in detail.

3 Model

In conventional non-autoregressive speech synthesis, using

only text as input is insufficient to fully predict the variance

of speech, resulting in a lack of diversity and naturalness in

synthesized speech. These models often cross-overfitting problems,

leading to low efficiency during training. Our SR-TTS effectively

addresses the one-to-many mapping problem that occurs in the

traditional Transformer-based TTS and achieves highly natural and

efficient speech synthesis.
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3.1 SR-TTS overview

The overall architecture of the SR-TTS is shown in Figure 1. It

consists of threemainmodules, an encoder, a rhythmic harmonizer,

and a decoder. Both the encoder and decoder adopt a Transformer-

based structure that consists of three layers of multi-head attention

and causal convolution layers (Kong et al., 2009). The encoder

converts the input phoneme sequence into intermediate text

embeddings which are then sent into the rhythmic harmonizer for

further process. The rhythmic harmonizer mechanism is composed

of duration and feature predictors. The front duration predictor

helps control the length of each phoneme-based frame. Then the

hidden sequence produced by the duration predictor then goes

through the prosody, pitch, and energy predictors inside the feature

predictor where different characteristics of the frames are captured.

The weighted sums from the feature predictor result in an overall

regulation of the speech rhythm. Finally, the decoder transfers

the feature sequences into an 80-channel Mel-Spectrogram based

on the corresponding input text. To enhance causal constraints

on the time series, causal convolutions were introduced in both

the encoder and decoder, which has greatly improved the audio

generation efficiency.

3.2 Rhythmic harmonizer

The proposed module involves three parts which are listed

below as shown in Figure 2.

3.2.1 Pre-duration predictor
The front duration predictor consists of two 1D-convolution

layers and one linear layer, which enables more precise control

over the syllable durations as well as rhythmic sense during speech

synthesis. Once the hidden representations of the input text that

have been generated from the encoder are fed into the duration

predictor, textual features will be extracted frame by frame. By

predicting the time span of each phoneme, the duration predictor

can generate and output the corresponding duration labels. By

prepositioning the duration predictor at the front of the rhythmic

harmonizer, the SR-TTS is able to regulate syllable durations more

accurately, thereby refining temporal consistency and rhythmic

sense of speech synthesis.

3.2.2 Prosody predictor
Prosody is known as a combination of rhythm, pitch, and

intonation of an audio signal, reflecting special rhythmic sense,

pitch changes, and intonation patterns for individual speakers.

As a novel module in SR-TTS, the prosody predictor consists of

an LSTM net and two linear layers, which are responsible for

collecting prosodic information of the input text, such as syllable

boundaries and stress positions. After the hidden sequences are

encoded based on the input text, they are transmitted into the

LSTM net, followed by a linear layer and processed frame-by-

frame to get the textual information. The textual information that

carries content-based embeddings were outputted from the two

linear layers and then mapped for the use of syllable boundaries

and stress positions prediction. For each audio frame, the prosody

predictor will also generate a prosody label to distinguish the frame

between syllable boundaries and stress positions. Prosody predictor

enables themodel for a better capture toward the prosodic structure

based on the text, thereby improving the naturalness and fluency of

synthesized speech.

3.2.3 Pitch and energy predictors
Pitch indicates fundamental frequency variations in speech,

reflecting either high or low tone characteristics of a speaker’s voice,

including tones, pitch contours, and intonation patterns, which

remarkably reflect emotional features in speech. Energy refers to

the intensity or energy level of a speech signal and is often used

to reflect the speaker’s voice strength. Energy variations in speech

can convey a speaker’s emotional state, tone, and the manner of

expression. Self-attention mechanisms are incorporated into the

pitch and energy predictors to enhance modeling capabilities on

pitch and energy. Continuous fundamental frequency sequences

are decomposed into pitch spectrograms using continuous wavelet

transform (Suni et al., 2013). The pitch spectrograms are then

used as training targets for the pitch predictor and to optimize

the mean square error (MSE) loss. Self-attention can capture

dependencies between different positions in sequences and extract

acoustic features to predict pitch and energy features of the audio,

which enables the model to better capture correlations between

pitch/energy, thereby improving the efficiency and accuracy of the

speech synthesis.

3.3 Loss function

The loss function that guides the training process of the SR-TTS

is a sum of the phoneme reconstruction loss, Mel-Spectrogram loss,

and frame-level acoustic feature loss.

1. Phoneme Reconstruction Loss:

Phoneme reconstruction loss is introduced in the SR-TTS

model to ensure that the model accurately reconstructs the input

phoneme sequence and effectively captures prosodic structure

changes. This loss measures the differences between the predicted

phoneme probability distribution sequence and the true phoneme

sequence generated by the SR-TTS. By minimizing cross-entropy

loss, phoneme reconstruction loss guides the model to learn the

correct influence of phonemes from prosody and duration, thereby

improving the quality and naturalness of the synthesized speech.

The reconstruction loss Lphoneme can be defined as Equation (1):

Lphoneme =−
1

T

T
∑

t=1

N
∑

i=1

Ytrue (t,i) log
(

Ypred (t,i)
)

(1)

where Ytrue denotes the input phoneme sequence, Ypred represents

the predicted phoneme probability distribution, t is the sequence

length, and i is the number of phonemes.

2. Mel-Spectrogram Loss:

The Mel-Spectrogram loss is calculated by the mean absolute

error (MAE) loss function and measures the differences between
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FIGURE 1

The schematic diagram of the SR-TTS.

FIGURE 2

Detailed model structure of the rhythmic harmonizer. (A) Duration-predictor. (B) Energy/pitch-predictor. (C) Prosody-predictor. *Show that this

segment of the network structure is repeated n times.

the predicted and target Mel-Spectrograms. The Mel-Spectrogram

loss Lmel can be defined as Equation (2):

Lmel =
1

T

T
∑

t=1

∣

∣meltargets(t)−melpred(t)

∣

∣ (2)

where meltargets(t) and melpred(t) are regarded as the target Mel-

Spectrogram and the predicted Mel-Spectrogram, respectively.

3. Frame-Level Acoustic Feature Loss:

Self-attentionmechanisms and causal convolutions are adopted

in the proposed RS-TTS for an improvement in the capability of

modeling acoustic features such as duration, pitch, and energy. To

train the acoustic feature predictors, frame-level acoustic feature

loss is implanted to measure the difference between the generated

and target acoustic features. It uses Mean squared error (MSE)

loss as the guidance to minimize differences between ground truth
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(GT) and the predicted acoustic feature, which ensures accurate

capture of the target acoustic features, which advances the quality

and naturalness of synthesized speech. The frame-level acoustic

feature loss can be defined as Equations (3–5):

Lduration =
1

T

T
∑

t=1

log
(

durationtargets(t)−durationpred(t)

)

(3)

Lenergy =
1

T

T
∑

t=1

(

energytargets(t)−energypred(t)

)2
(4)

Lpitch =
1

T

T
∑

t=1

(

pitchtargets(t)−pitchpred(t)

)2
(5)

where durationtargets(t) and durationpred(t) are the target and

predicted duration features, energytargets(t) and energypred(t) are the

target and predicted energy features, pitchtargets(t) and pitchpred(t)
are the target and predicted pitch features.

The overall loss function can be represented as a weighted

combination of the three loss functions comprehensively and

described as Equation (6):

Ltotal = αLphoneme+
(

1− α)(Lmel+Lduration+Lenergy+Lpitch
)

(6)

where α is the hyperparameter. By minimizing the overall

loss function, we can train the model to optimize phoneme

reconstruction, duration control and acoustic feature generation,

thereby achieve more accurate and natural speech synthesis results.

4 Experiments

4.1 Experimental setup

4.1.1 Datasets
We evaluated the SR-TTS model on an English dataset LJ

Speech (Ito and Johnson, 2017) and compared the synthesized

speech with the mainstream models, including Tacotron2 and

FastSpeech2. We also applied the proposed SR-TTS to a Mandarin

Chinese dataset AISHELL3 (Shi et al., 2020) to explore its cross-

lingual modeling capabilities. The LJ Speech dataset is a public

speech dataset that consists of 13,100 short audio clips from a

single female speaker in American English, with a total duration

of 23.55 h. The AISHELL3 dataset contains 88,035 Chinese speech

utterances from 218 native speakers, with a sampling rate of

22.05 kHz. Both corpus include phoneme information, speaker

info, and text content.

4.1.2 Environment
The proposed SR-TTS was trained with a batch size of 16,

distributed on two NVIDIA GeForce RTX 3090 GPUs and each

has 24GB memory to guarantee the high-quality model training.

All experiments were conducted in an environment of CUDA

11.6 version, with Python 3.9 and PyTorch 1.12 + cu116. During

training, GT (Ground Truth), which represents real human speech,

was provided as teacher-forcing targets with the help of the Adam

optimizer for weights iterative updating based on training data. Key

hyperparameters include N = 4 for the encoder and decoder, n =

2 for feature predictors, 1 layer of LSTM for the Prosody Predictor,

and α = 0.3.

4.1.3 Evaluation
Human subjective evaluations using mean opinion score

(MOS) and comparative mean opinion score (CMOS) (Shirali-

Shahreza and Penn, 2018) were conducted to assess the quality

and naturalness of the SR-TTS. We randomly selected 50 speech

samples from those generated by each text-to-speech (TTS) system,

which were then evaluated by 8 randomly selected raters. This

means that for each TTS system, a separate set of 8 raters carried out

the assessment, involving a total of 32 raters (8 raters per system).

Specific criteria were used in the selection of raters to ensure the

quality and consistency of the assessments. Each rater was a native

speaker, had good listening skills and no hearing impairment, and

had a normal educational background. The raters were asked to

listen carefully to these speech samples and rate them on a scale

of 1 to 5 based on the overall quality of the speech, intelligibility,

natural fluency, and clarity of articulation, where 1 represents very

poor speech quality and 5 represents excellent speech quality. We

counted all the ratings of all the speech samples and calculated the

MOS score following the Equation (7) below:

MOS=

∑N
n=1 Rn

N
(7)

CMOS Experiment: 50 speech samples from each TTS were

selected. Each pair of speech samples that from two different TTS

systems was placed in A/B order (A is the compared model and B

is the proposed SR-TTS in this paper), and eight raters were invited

to score the paired speeches ranging from−3 (B is much better than

A) to 3 (A is much better than B).

4.2 Results

4.2.1 Speech synthesis ability
We evaluated the speech quality for our proposed SR-TTS

model, conventional models including Tacotron2 and FastSpeech2,

and GT as baseline through MOS and CMOS assessments on both

LJ Speech and AISHELL3 datasets. In the experiments, 17 native

listeners (including 8 native Chinese speakers and 8 native English

speakers, as well as one speech quality assessment expert) were

asked to rate the naturalness of synthesized speech samples, from

which MOS and CMOS were calculated and represented in Table 1.

To verify inter-rater agreement, we performed a statistical

consistency test on the MOS scoring results. By using the ANOVA

(analysis of variance) method, we assessed inter-rater agreement

across systems. The results showed that for all systems (including

SR-TTS, Tacotron2, FastSpeech2, and GT, inter-rater agreement

was relatively high as the ANOVA P-values for all systems were

>0.05, which indicated that there were no significant inter-rater
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TABLE 1 Mean opinion score (MOS) evaluation with 95% confidence interval computed from the t-distribution for various systems on di�erent datasets.

System LJ Speech p-value AISHELL3 p-value

MOS CMOS Inference
Time(/speech)

MOS CMOS Inference
Time(/speech)

GT 4.38± 0.03 N/A N/A 0.4305 4.31± 0.04 N/A N/A 0.3501

Tacotron2 3.78± 0.05 −0.170 3.54s 0.1736 N/A N/A N/A N/A

FastSpeech2 3.89± 0.08 −0.008 1.21s 0.0746 3.71± 0.11 −0.012 1.76s 0.0834

SR-TTS 4.10± 0.02 N/A 0.97s 0.5011 4.02± 0.04 N/A 1.54s 0.4825

FIGURE 3

Comparison of synthesized Mel-Spectrograms based on the LJ Speech.

differences. These findings support the reliability and stability of

our MOS scoring results. Therefore, it is reasonable to assume that

there is a degree of consistency in the raters’ evaluations of the

different systems, thus enhancing the credibility of our findings.

One of the main contributions of this study is the incorporation

of rhythm prediction during speech synthesis to make it

more natural with more expressive rhythmic patterns. We

analyzed the rhythmic aspects of synthesized speech and mainly

focused on speech features like speech rate, stress patterns,

and intonation.

When applyingmodels on English dataset LJ Speech, the results

from Table 1 indicate that our proposed SR-TTS is superior to

the conventional TTS models as it achieved the highest MOS

of 4.10 ± 0.02 compared to Tacotron2 (MOS = 3.78 ± 0.05)

and FastSpeech2 (MOS = 3.89 ± 0.08), which is close to the

GT (MOS = 4.38 ± 0.03). Figure 3 shows the comparison of

the rhythmic features observed in Mel-Spectrograms from GT,

SR-TTS, FastSpeech2 and Tacotron2 using only LJ Speech for

an English speech generation comparison. The detailed Mel-

Spectrograms presented in the small yellow box in Figure 3 imply

that SR-TTS has advantages over innovation changes compared

to the other two conventional models as it is smoothly and

steadily without obvious abrupt changes or discontinuities. This

also indicates the energy distribution of the speech sounds from the

SR-TTS is evenly distributed without noticeable noise or distortion.

At the same time, theMel-Spectrogram shows a rich dynamic range

and transitions from relatively lower energy levels to higher ones.

Such dynamic range signifies that the synthesized speech from

SR-TTS has good volume variation and audio detail expression

capabilities. In addition, distinct rhythmic and pitch patterns

manifested as periodic energy and frequency variations that reflect

the rhythm, intonation, and pitch changes of the speech are

obviously noticed. Such rhythmic patterns make the speech lively

and naturally fluent. As shown in Figure 4, the spectral centroid

(SC) parameter in the Mel-Spectrograms can be used to evaluate

the luminance characteristics of speech. The experimental results

show that the SC value of the speech synthesis by our proposed SR-

TTS system is closer to that of a real human voice, indicating that

the SR-TTS can synthesize more natural and accurate variations of

speech luminance. This verifies the advantage of the SR-TTS system

in capturing the spectral details of speech.

4.2.2 Multilingual ability
F0 is an important acoustic feature that describes the

fundamental frequency of speech and corresponds to the height

of the human voice. It conveys the intonation of speech by the

vibration frequency of the vocal folds and is a key element in
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FIGURE 4

Comparison of speech waveforms and spectrograms with spectral centroid from GT and SR-TTS based on the LJ Speech.

conveying semantic information. Energy describes the intensity

of the speech signal, which reflects the volume and strength of

the speech, and can express the emotion and tone of the speaker.

Spectral patterns play a crucial role in speech synthesis as they help

improve the naturalness and expressiveness of synthesized speech.

Figure 5 shows the comparisons of Mel-Spectrograms generated

from the SR-TTS and GT on LJ Speech and AISHELL3 for further

comparisons between the synthesized and real speeches in terms

of pitch contours, durations, and energy patterns. It is obvious

to see that the Mel-Spectrograms shown in Figure 5 have clear

pitch contour and smooth energy changes with bright colors in

both English and Chinese datasets, which demonstrates the efficacy

of our proposed model in capturing spectral features regardless

of language.

From Table 1, the proposed SR-TTS not only achieve good

performance in English dataset, but also has outstanding ability

in Chinese dataset. When applying models on the Chinese dataset

AISHELL3, SR-TTS achieves a MOS of 4.02 ± 0.02 in terms

of speech naturalness while the GT is 4.31 ± 0.04, which still

outperforms compared to the conventional FastSpeech2 (MOS =

3.71 ± 0.11), which good evidence that our SR-TTS is cable of

multilingual TTS tasks.

The results of the negative CMOS indicate that the proposed

SR-TTS model achieves better performance when compared to

Tacotron2 and FastSpeech2 on either LJ Speech or AISHELL3,

which validates the efficacy of our rhythmic and duration modeling

techniques in improving synthesis speech naturalness.

4.3 Ablation experiments

In this section, we conducted three ablation studies on the

LJ Speech dataset to evaluate the impact of the rhythm predictor

module, pre-duration predictor, and self-attention mechanism on

our proposed model. Moreover, we selected speech segments with

different characteristics for the ablation experiments to visualize

the results of the ablation experiments. The MOS evaluation results
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FIGURE 5

Comparison of Mel-Spectrograms for synthesized speech on (A) LJ Speech and (B) AISHELL3.

TABLE 2 MOS evaluation with a 95% confidence interval computed from

the t-distribution for the ablation study.

Method MOS

Baseline 3.86± 0.12

+pre-duration 3.92± 0.09

+prosody-predictor 4.01± 0.06

+self-attention 3.89± 0.08

are shown in Table 2 while baseline is the original model without a

rhythm predictor, pre-duration, and the self-attention.

4.3.1 Rhythm predictor
Figure 6 shows an intuitive comparison of the Mel-

Spectrograms generated by models with or without (baseline) the

rhythm predictor where a representative set of speech samples and

several key differences can be observed:

(1) Rhythm patterns: Distinct rhythm patterns characterized by

consistent changes in energy and spectral content occurring

at fixed intervals can be obviously observed in the Mel-

Spectrograms synthesized from the model with the rhythm

predictor. These patterns reflect the natural prosodic features

of human speech including stress, rhythm, and intonation.

In contrast, the Mel-Spectrograms of the baseline lack these

prominent rhythm patterns and thus sound less expressive and

rhythmically constrained.

(2) Spectral smoothness: The Mel-Spectrograms of the model

with the rhythm predictor demonstrate smoother transitions

across frequency bands, resulting in a more continuous and

natural spectrogram representation. In contrast, the Mel-

Spectrograms of the baseline model exhibit more pronounced

discontinuities and less smooth frequency contours, which

leads to less natural-sounding speeches.

The Mel-Spectrograms of the model with the rhythm predictor

exhibit more expressiveness and accurate rhythm sense with

distinct rhythm patterns and smoother spectral transitions. These

attributes advance the naturalness and emotional richness of the

synthesized speech. The rhythm predictor plays a crucial role in

capturing and generating rhythmic patterns which helps enhance

the naturalness and expressiveness of synthesized speech, making

it sound more fluent. Compared to the model without rhythm

prediction, our model generates speech with improved quality,

intelligibility, and naturalness.

4.3.2 Pre-duration predictor
To explore the impact of whether preposing the duration

predictor improves our speech synthesis system, we conducted

comparison experiments on models with and without the preposed

duration predictor. As shown in Figure 6, prepose the duration

predictor has impressive effects on enhancing the smoothness and

rhythm patterns of the synthesized Mel-Spectrogram. Duration

predictor significantly reduces the inconsistency in time duration

for each frame between synthesized Mel-Spectrogram and GT,

which improves the naturalness and accuracy of rhythm. Results

shown in Figure 6 reinforce the importance of the proposed

duration predictor in improving the quality, naturalness, and

rhythmic sense of TTS systems.

4.3.3 Self-attention
To further enhance the modeling capabilities of linguistic

features in SR-TTS, we introduced a self-attention mechanism

in pitch and energy predictor. In ablation studies, we compared

the feature prediction module with and without self-attention

and analyzed the generated pitch and energy contours by

inspecting the Mel-Spectrograms, the results are shown in

Figure 6. From Figure 6, we found that the one with self-attention

captures more subtle and smooth frequency variations. In some

sentences with complex intonation, the pitch changes generated
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FIGURE 6

The results of the ablation studies. The left column is the Mel-Spectrogram of baseline without the prosody predictor, the pre-duration predictor and

self-attention; The middle column represents the Mel-Spectrogram from the improved model with additional structures. The comparison details

from each pair can be found as A and A’, B and B’, C and C’ on the right column, respectively.

by the original model may exhibit unnatural sudden changes or

discontinuities, while the model with self-attention can produce

more coherent and natural pitch curves. This indicates that

the self-attention mechanism enhances the model’s capability in

modeling pitch changes by capturing global dependencies between

pitch and energy features, which also proves that self-attention

effectively strengthens the model’s prosody modeling capability

through context modeling, thereby improving the naturalness of

synthesized speech.

5 Discussion and conclusion

In this paper, we proposed a novel SR-TTS model that consists

of a series of innovations to address the current limitations of

traditional speech synthesis systems. The main structural parts of

the SR-TTS are made of an encoder, a rhythmic harmonizer, and

a decoder. Both the encoder and decoder inherit a Transformer-

based structure so that the model can more effectively capture

textual and acoustic features. Also, the replacement of regular

convolutional layers with causal convolution allows for efficient

processing of long sequences of data by preciously preserving the

temporal order of the time-series signal in a causal fashion.

In model comparison experiments, our SR-TTSmodel achieves

a higher MOS (Mean Opinion Score) than the traditional TTS

models Tacotron2 and FastSpeech2, no matter which language it

is in. In addition, the proposed SR-TTS shows great potential in

real-time speech synthesis tasks with the shortest inference time

among all TTSmethods.Mel spectrogram analyses of LJ speech and

AISHELL3 provide valuable insights into the acoustic properties of

the synthesized speech, and the observed smooth and continuous

spectral contours demonstrate the cross-linguistic capability of the

proposed SR-TTS model to overcome language barriers. Tacotron2

and FastSpeech2 are chosen for comparison because they are

among the most representative and widely used TTS models and

are the current mainstream of TTS in autoregressive modeling.

The MOS evaluation results from the ablation studies indicate

that the rhythmic harmonizer plays a vital important role in

the overall structure of the SR-TTS. By preposing the duration

predictor, the rhythmic harmonizer takes well control on the overall

duration for each synthesized frame, including the total time span

of the whole speech and the length of each small syllable. Compared

to FastSpeech2, this novel change in our SR-TTS contributes to

a more natural and expressive speech synthesis. In addition, the

feature predictor that is responsible for the prediction of prosody,

energy, and pitch greatly increases the accuracy of the synthesized

speech, especially in terms of speaking style and pronunciation. The

cooperation of the above results in significant improvements and

enhancements of the model’s efficiency.

In conclusion, the proposed SR-TTS model achieves good

performance in enhancing speech quality and naturalness across

multiple languages, while also significantly speeding up the

inference process. This demonstrates its great potential for various

applications in different fields. However, there are some limitations
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and unresolved challenges that require further exploration in the

field of artificial TTS systems. One limitation is the reliance of

the current deep neural network-based SR-TTS on a substantial

amount of data for training, which constrains the model’s

effectiveness in synthesizing minority languages. Future research

directions will focus on further optimizing the model architecture

and hyperparameters, exploring more sophisticated rhythmic

modeling methods, and enhancing the modeling capabilities for

audio features. Additionally, to affirm the model’s multilingual

ability, there is a need to test datasets based on other languages

for a more comprehensive experimental evaluation. Addressing

these limitations will be crucial in advancing the capabilities

and applicability of TTS systems in a wider range of languages

and contexts.
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