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The object detection method serves as the core technology within the

unmanned driving perception module, extensively employed for detecting

vehicles, pedestrians, tra�c signs, and various objects. However, existing object

detection methods still encounter three challenges in intricate unmanned

driving scenarios: unsatisfactory performance in multi-scale object detection,

inadequate accuracy in detecting small objects, and occurrences of false

positives and missed detections in densely occluded environments. Therefore,

this study proposes an improved object detection method for unmanned

driving, leveraging Transformer architecture to address these challenges. First,

a multi-scale Transformer feature extraction method integrated with channel

attention is used to enhance the network’s capability in extracting features across

di�erent scales. Second, a training method incorporating Query Denoising with

Gaussian decay was employed to enhance the network’s proficiency in learning

representations of small objects. Third, a hybrid matching method combining

Optimal Transport and Hungarian algorithms was used to facilitate the matching

process between predicted and actual values, thereby enriching the networkwith

more informative positive sample features. Experimental evaluations conducted

on datasets including KITTI demonstrate that the proposed method achieves 3%

higher mean Average Precision (mAP) than that of the existing methodologies.
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1 Introduction

Unmanned driving, a process where vehicles employ sensors to perceive their

surroundings, make real-time driving decisions, avoid obstacles, and complete driving

tasks without human intervention, relies heavily on accurate object detection for safe

operation (Li G. et al., 2022). Despite technological advancements, challenges persist in

the practical application of object detection methods in unmanned driving technology.

Object detection methods encompass both traditional and deep learning-based object

detection approaches. Traditional methods adopt sliding windows to obtain candidate

boxes, followed by feature extraction using techniques such as Histogram of Oriented

Gradient (HOG) (Dalal and Triggs, 2005) and classification using algorithms such as

Support Vector Machine (SVM) (Cortes and Vapnik, 1995). However, these methods

suffer from poor detection performance and high computational complexity owing to

manual feature region selection. In the era of deep learning, Convolutional Neural Network

(CNN)-based object detection methods are widely used. They are classified into one- and
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two-stage algorithms based on their detection strategies, differing

in the generation of candidate regions. In 2014, Girshick

et al. proposed the Region-Convolutional Neural Network (R-

CNN), a significant advancement over traditional methods,

demonstrating improved accuracy and speed (Girshick et al.,

2014). Subsequent developments, such as Dynamic R-CNN, further

enhanced accuracy (Zhang et al., 2020); however, speed remained

a concern. Therefore, one-stage object detection algorithms have

been proposed to address speed limitations. For example, the Yolo

Only Look Once (YOLO) algorithm, proposed in 2016, directly

outputs detection results without generating candidate regions,

significantly improving detection speed (Redmon et al., 2016). This

approach has become a hallmark of one-stage detection algorithms.

Various iterations, including the Single Shot MultiBox Detector

(SSD) (Liu et al., 2016) and subsequent versions of YOLO series,

have since been developed and continually refined (Yung et al.,

2022) YOLOv7, for instance, combines variousmethods to enhance

both accuracy and speed, finding wide application in unmanned

driving and real-time monitoring (Wang et al., 2023).

However, object detection methods based on CNNs are limited

by the receptive field, which makes it difficult to model the

image globally. With the improvement in computing power,

the data demand for this method is increasingly saturated. The

Transformer-based object detection methods rely on powerful

global modeling and data fitting abilities, which are gradually

emerging in the domain of object detection. Carion et al.

proposed the Detection Transformer (DETR) object detection

algorithm in 2020, which laid the foundation for the application

of the Transformer in the domain of object detection. DETR

regards the object detection task as a set prediction problem

and uses the Hungarian algorithm to match predicted and

ground truth objects, avoiding post-processing operations such

as Non-Maximum Suppression (NMS) (Carion et al., 2020). Zhu

et al. proposed Deformable-DETR in 2021 to address the high

computational complexity of DETR (Zhu et al., 2020). In 2022,

Wang Y. et al. (2022) introduced the Anchor-DETR algorithm,

defining the query vector as the center point coordinate and

inputting it into the decoder for training, thereby significantly

improving model convergence speed. Building upon Anchor-

DETR, Dynamic Anchor Box-DETR (DAB-DETR) incorporates

query vector adjustments including the center point coordinate,

height, and width of the anchor box, alongside an Anchor-

update strategy to further improve detection accuracy (Liu S.

et al., 2022). DeNoising-DETR (DN-DETR) addresses Hungarian

matching instability, which impedes model convergence, by

proposing a query vector denoising method that significantly

accelerates convergence speed (Li F. et al., 2022). DETR

with improved deNoising anchOr boxes (DINO) integrates the

advantages of preceding algorithms and introduces a comparative

denoising method, demonstrating promising results on the

COCO dataset (Zhang et al., 2022). Additionally, Li F. et al.

(2023) present Lite DETR, a simple yet efficient end-to-end

object detection framework capable of reducing the GFLOPs

of the detection head by 60% while maintaining 99% of the

original performance.

In natural images, the aforementioned object detection method

performs satisfactorily. However, when applied to unmanned

driving images, the method encounters the following challenges:

1. Feature extraction methods employing CNNs are limited by the

receptive field. Therefore, extracting feature information from

multi-scale changing objects becomes challenging.

2. Owing to the low resolution of unmanned driving images, the

available feature information within the images is insufficient.

Additionally, pixels representing small objects are rare, resulting

in a decrease in the accuracy of small object detection.

3. The mutual occlusion of vehicles, pedestrians, and other

objects object poses a challenge in distinguishing features.

Consequently, this leads to missed and false detections,

particularly in densely occluded scenarios.

Addressing the challenges in object detection for unmanned

driving, we propose an improved method based on Transformers,

incorporating three key improvements:

1. In response to suboptimal performance for multi-scale changing

objects, we investigate a multi-scale Transformer feature

extraction method fused with channel attention. This method

uses the Transformer model to obtain the feature information of

multi-scale change objects, while the channel attention module

weights channel features to improve detection performance in

such scenarios.

2. To address the problem of low accuracy in detecting small

objects, we employ a training method for query denoising

with Gaussian decay to train the network. This method uses

a Gaussian decay function to construct a multi-scale ground

truth (GT) box with different noise levels, which is subsequently

converted into a multi-scale query vector input model for

denoising training. By introducing significant noise to small

objects, the model learns more positive and negative sample

features of small objects during the noise reduction process,

thereby promoting the detection accuracy of small objects.

3. To resolve the issue of missed and false detections of densely

occluded objects, we implement a hybrid matching method

based on optimal transport and Hungarian algorithms to

conduct the matching process between predicted and ground

truth objects. In the training phase, this hybridmatchingmethod

is used to expand the number of positive samples, enabling the

model to obtain additional feature information from positive

samples. This augmentation helps in resolving the issue of

missed and false detections in dense occlusion scenarios.

2 Related work

2.1 Transformer-based feature extraction
method

In 2020, Google introduced the Vision Transformer (ViT)

image classification model, which was the first application of the

Transformer for image classification (Dosovitskiy et al., 2020).

Compared with a CNN, the Transformer has a larger receptive

field and global modeling capability of features. Therefore, the

feature extraction network based on the Transformer can better

extract image features. In 2020, Beal et al. proposed a Version

Transformer-Faster Convolutional Neural Network (ViT-FRCNN)

object detection algorithm. The algorithm uses a Transformer-

based feature extraction network to replace the CNN-based feature
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extraction network and achieves optimal detection results (Beal

et al., 2020). However, when capturing high-resolution images,

the processing speed of the Transformer is not ideal owing to

its high computational complexity. Therefore, Liu et al. proposed

Shifted Windows Transformer (Swin-Transformer) in 2021, which

introduces a local attentionmechanism. The attention computation

is restricted within the window, significantly reducing the

computational cost (Liu et al., 2021). Wang et al. (2021) proposed

Pyramid Vision Transformer (PVT) from the perspective of

input downsampling, which reduced the computational complexity

by hierarchical image reduction. In the following year, Swin-

Transformer _v2 (Liu Z. et al., 2022) and PVT _v2 (WangW. et al.,

2022) were proposed, further improving the feature extraction

performance and decreasing computational complexity. Despite

the Transformer requiring high hardware computing power, the

receptive field of the Transformer is substantial. This indicates that

the feature extraction ability of multiscale changing objects still

needs improvement.

2.2 Attention mechanism

The attention mechanism focuses the model’s attention on the

crucial regions by weighting features to improve the performance of

the image-processing task. Squeeze-and-Excitation Network (SE-

Net) learns to feature weights through the loss function, enlarges

the weights of important features, and improves the network

expression ability (Hu et al., 2018). For the first time, Frequency

Channel Attention (FCA-Net) considered the attentionmechanism

from the perspective of the frequency domain, combined Discrete

Cosine Transform (DCT) with the channel attention mechanism,

and improved the Selective Kernel Networks (SE-Net) extrusion

module (Qin et al., 2021). These networks introduce the SK

module, enhancing the interaction between features by evenly

splitting feature maps and cross-attention. However, owing to

the various hyperparameters and iterations, it requires various

computing resources (Li et al., 2019). Efficient Channel Attention

(ECA-Net) proposed a local cross-channel interaction module

without dimensionality reduction, which has a small number of

parameters and negligible computation (Wang et al., 2020). Gated

Channel Transformation (GCT) improves the processing ability of

large-size images by fusing global context and local information

and reduces the number of parameters and calculations by

adopting separable convolution (Yang et al., 2020). To better retain

channel information, Ouyang et al. proposed an efficient attention

module that can learn across spaces. This module reshapes

part of channels in batches and categorizes them into multiple

groups of sub-features for spatial semantic features to be evenly

distributed in each feature group. This effectively preserves channel

information and significantly reduces the amount of calculation

(Ouyang et al., 2023). Addressing the challenge of the high

computational complexity of the Attentionmodule in Transformer,

Zhu et al. proposed Dynamic Sparse Attention to achieve more

flexible feature extraction and computation allocation. Moreover,

it exhibits superior performance in small object detection tasks

(Zhu et al., 2023). However, as an auxiliary method, the attention

mechanism is typically combined with a convolutional network.

Combination with the Transformer network is extremely crucial

for the development of computer vision.

2.3 Optimal transport theory

Optimal transport theory describes the optimal means to

transport data between two different distributions. Currently, this

theory is widely adopted in the domain of image processing.

Liu et al. (2020) integrated gradient weight into this algorithm

as an empirical distribution to address the dense matching

problem between semantically similar images. Wang S. et al.

(2022) proposed a general feature selection module based on

Optimal Transport to resolve the problem of model segmentation

performance degradation caused by domain-independent features

during unsupervised domain adaptive transfer learning. Moreover,

SuperGlue employs the matching degree score of the feature

matching vector to construct the Optimal Transport cost matrix

and uses the Sinkhorn algorithm to solve the transport plan to

complete feature point matching (Sarlin et al., 2020). In 2021,

Ge et al. (2021a) proposed an Optimal Transport Assignment

(OTA) algorithm to resolve the matching issue between samples

and the ground truth in object detection. The algorithm utilizes

Sinkhorn-Knopp to iteratively obtain an optimal transport plan. In

the same year, Ge et al. (2021b) proposed the Sim-OTA matching

strategy, replacing the Sinkhorn-Knopp algorithm with a simpler

dynamic top-k algorithm, significantly improving the detection

speed. Sun et al. (2021) proposed the Sparse Region-Convolutional

Neural Network (Sparse R-CNN) object detection algorithm in

2021. The model first uses Optimal Transport matching for

initial screening. Subsequently, it uses Hungarian matching to

complete secondary screening, removing the NMS process. Li et al.

proposed to regard inverse diffusion as the Optimal Transport

problem of latent data at different stages and proposed DPM-

OT. It effectively alleviates the modal mixing problem in the

Diffusion Probabilistic Model, Li et al. proposed to regard inverse

diffusion as the Optimal Transport problem of latent data at

different stages and proposed DPM-OT. It effectively alleviates

the modal mixing problem. Based on SuperGlue, Li Z. et al.

(2023) decouple the similarity score from the matchability score, to

effectively solve the problem of slow convergence of the Sinkhorn

algorithm in training. Based on SuperGlue, Lindenberger et al.

(2023) decouple the similarity score from the matchability score,

to effectively address the problem of slow convergence of the

Sinkhorn algorithm in training. While the optimal transport theory

has become increasingly mature, numerous challenges exist when

combining it with the Transformer-based object detection. Hence,

this study aimed to combine it with optimal transport theory.

3 Improved object detection method
for unmanned driving based on
Transformers

We propose an improved object detection method for

unmanned driving utilizing Transformers, as shown in Figure 1.
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First, an unmanned vehicle target image is input, and the multi-

scale Transformer feature extraction method fused with channel

attention is adopted to extract object features. Additionally,

multi-scale flat features are output to address the problem of

unsatisfactory multi-scale change object detection performance.

Subsequently, the multi-scale flat features are incorporated into

the Transformer encoder to obtain the feature vectors (Q,K,V).

A training method for query denoising utilizing Gaussian decay

is employed to construct GT (ground truth) boxes containing

different levels of noise and convert them into multi-scale query

vectors. These are integrated into the Transformer decoder with

the feature vector for training. The query vector is output to

resolve the issue of low accuracy in small-object detection. Finally,

the prediction results are obtained by decoding the query vector

and a hybrid matching method based on optimal transport and

Hungarian is used to output the final matching result to resolve

the issue of missed and false detections of densely occluded objects.

Based on the above framework, this study examined the multi-

scale Transformer feature extraction method fused with channel

attention, a training method for query denoising with Gaussian

decay, and a hybrid matching method utilizing optimal transport

and Hungarian as follows:

1. First, the multi-scale Transformer feature extraction method

fused with channel attention is adopted to extract the feature

information of multi-scale change objects to improve the

detection performance of multi-scale change objects. This

method uses the channel attention module to weight the multi-

scale channel features from the Transformer network, which

solves the issue of channel feature information loss in the process

of multi-scale feature fusion and improves the feature extraction

ability of the network for multi-scale changing objects.

2. Second, the training method for query denoising based on

Gaussian decay can accelerate model convergence and boost

the accuracy of small object detection. This method additionally

feeds multi-scale GT bounding boxes with different noise

levels into the Transformer decoder and trains the model to

reconstruct the original boxes. As this method adds a large

degree of noise to small objects, the model obtains more positive

and negative samples, strengthens the learning capability of the

model, and boosts the detection performance of these objects.

3. Third, a hybrid matching method based on optimal transport

and Hungarian can help the model obtain more positive

sample features. The matching results are solved by the

optimal transport and Hungarian algorithms. Subsequently, the

weighted loss of the two matching results is calculated to obtain

the total loss, which is adopted to guide the update of network

parameters.

3.1 Multi-scale transformer feature
extraction method fused with channel
attention

The CNN-based feature extraction method is limited by the

receptive field, which makes it difficult to fully extract the feature

information of multi-scale change objects, resulting in inaccurate

detection. Therefore, we adopt the multi-scale Transformer feature

extraction method fused with channel attention to obtain the

feature information of multi-scale change objects, as shown in

Figure 2. The method consists of four feature extraction stages,

each of which contains three modules: a patch-embedding module,

a Transformer encoder module, and a channel attention module.

Through feature extraction at different stages, feature maps 1–4

are obtained, respectively. The channel dimension transformation,

position encoding, flattening, and other operations were performed

on the feature maps 1–4 to obtain the flat feature maps 1–4.

Finally, the four flat features were fused and spliced to obtain

the multi-scale flat features. Compared with the original CNN-

based network, the traditional convolution is replaced by dilated

convolution in the patch embedding module, which enhances the

connection between adjacent patch blocks and extracts more local

continuous information. The global receptive field is obtained

by introducing the Transformer encoder module to promote the

global modeling capability of the network. The channel attention

module is adopted to weight the channel features and extract

more channel feature information. Multi-scale flat feature fusion

is adopted to obtain multi-scale feature information. Therefore,

the research content includes a patch embedding module, a

Transformer encoder module, a channel attention module, and

multi-scale flat feature fusion.

3.1.1 Patch embedding module
The patch embedding module is primarily used for image scale

reduction and flattening. A dilated convolution layer is adopted to

replace the original convolution layer, which enhances the direct

continuity of different patches. First, the size of the feature map

F2di ∈ RH×W×C of stage i is reduced from H ×W to H×W
P2i

(Pi is

the number of patches of stage i) by a down-sampling operation

with the dilated convolutional layer. Subsequently, it enters the

flattened layer, F2di is converted into a flat feature F1di , and the

normalization operation is performed. Finally, the flat feature is

output. The specific operation is as shown in Equation (1):

F1di = Norm(Flatten(DConv(F2di ))) (1)

where DConv represents a dilated convolution block with a

convolution kernel size Pi, step size ⌈Pi/2⌉, and dilated rate of 2.

The flattened layer is responsible for converting the feature map

from two- to one-dimensional features. Norm is the normalization

layer, which prevents gradient explosion. After image reduction

operations of different stages of patch embedding modules, feature

maps of different scales can be obtained.

3.1.2 Transformer encoder module
The Transformer encoder layer at each stage contains Li

layer encoders and each layer encoder is mainly composed of

a multi-head self-attention module and feedforward layer. The

multi-head self-attention module is adopted to calculate the feature

vector (Q,K,V) to extract features. When generating K and V ,

the AvgPool layer is used for the down-sampling operation, which

is implemented as follows [the specific operations are shown in

Equations (2–4)]:

Q = Linear(Fi) (2)
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FIGURE 1

Improved object detection method for unmanned driving based on Transformers.

FIGURE 2

Multi-scale transformer feature extraction method fused with channel attention.

K,V = Linear(Reshape2(AvgPool(Reshape1(Fi)))) (3)

Attention(Q,K,V) = Softmax(
Q · KT

√
dhead

)V (4)

where Q,K,V are the three vectors required in the attention

calculation: the query, key, and value, respectively. AvgPool

operations are used to down-sample K and V such that their

dimensions are changed from (H × W,C) to (H×W
R2

,C), R =

2. Reshape1 can convert one-dimensional features into two-

dimensional features, and Reshape2 can convert two-dimensional

features into one-dimensional features. Linear represents a linear

mapping operation that converts one-dimensional features into

vectors. After feature extraction by the multi-layer Transformer

encoder, flat features are output.

3.1.3 Channel attention module
The channel attention module weights the feature map by

channel to avoid losing essential channel information in the

subsequent dimension transformation process. First, the flat

features Fi extracted by the Transformer encoder are transformed

into 2-D features using the reshape operation. Subsequently, the

dimension of Fi is converted to 1 × 1 × C by global average

pooling, and the local cross-channel method is used to obtain the

information weight of adjacent channels. The weight calculation
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formula is given by Equations (5, 6):

k =
log2(C)

γ
+

b

γ
(5)

wi = σ (

k∑

j=1

w
j
iy
j
i), y

j
i ∈ �k

i (6)

where k represents the size of the convolution kernel, C represents

the channel dimension of the feature map, b and γ are

hyperparameters, set as b = 1, γ =2, y
j
i is the feature of the j-

th nearest neighbor channel of the i-th channel, w
j
i represents

the weight of channel y
j
i, �k

i indicates the set of k adjacent

channels of y
j
i, σ represents the sigmoid function, and the specific

implementation process given by Equation (7):

F̂i = (σ (Conv1Dk(Fi)))⊗ Fi (7)

where Fi is the input feature map, F̂i ∈ RH×W×C is the

channel weighted feature map, and Conv1D is a one-dimensional

convolutional layer, ⊗ represents matrix multiply.

3.1.4 Multi-scale flat feature fusion
First, F̂i is input into the convolutional layer for channel

dimension transformation, followed by position embedding and

input into the flattening layer for flattening operation. Finally, the

multi-scale flat features are fused by Equations (8, 9):

PEi
(x,2j)
= sin(

x

T
2j
d

), PEi
(x,2j+1)

= cos(
x

T
2j
d

) (8)

Token = Concat(Flatten(PEi+Conv(F̂i))) (9)

where PEi stands for the position embedding of stage i, 2j and 2j

+ 1 denote the indices in the encoded vectors, T is a constant (the

default is 20), d is the channel number of the feature map, and x is

a float between 0 and 1 representing bounding box coordinates (Liu

S. et al., 2022). F̂i is the output feature map of stage i, Flatten and

Concat represent flattening and fusion operations, respectively, and

Token represents the multi-scale flat feature map.

3.2 Training method for query denoising
with Gaussian decay

Because of the low resolution and complexity of unmanned

images, the feature information contained in the images is

insufficient, which leads to low accuracy of small object detection.

To improve the training convergence speed and accuracy, DN-

DETR introduced a query denoising training method (Li F. et al.,

2022). Inspired by this method, this study introduces a training

method for query denoising based on Gaussian decay to solve

the problem, as shown in Figure 3. The multi-scale flat features

are input into the Transformer encoder to obtain feature vectors

(Q,K,V). The small object label noise is generated by a uniform

distribution, and the Gaussian decay function is used to construct

GT bounding box noise, which is then converted into multiscale

query vectors that are input into the Transformer decoder together

with the feature vector for training the output query vector. DN-

DETR believes that the instability of bipartite graph matching leads

to slow convergence of the model; therefore, it proposes a query-

denoising training method to enhance the stability of Hungarian

matching. However, this method does not consider the scale

difference of the objects; therefore, the detection performance for

small objects is not significantly enhanced. The proposed method

adds a large degree of noise to a small object to learn more positive

and negative sample features of small objects in the process of noise

reduction and strengthens the learning for small targets. Therefore,

the specific content includes small object label noise addition,

multi-scale ground truth box noise addition, and a training method

for multi-scale query denoising.

3.2.1 Small object label noise addition
First, a small object is identified according to the ground truth

(gt) box area of the object, and a false category label is generated

by a uniform distribution to replace the real category of the small

object to generate a small object label noise. Then, the noise is

converted into a small object-label noisy query vector by linear

mapping operation. This operation is shown in Equation (10):

query_labelk = Linear(δ(targetm, noise_labelm)), k = 1, 2, ...n

(10)

where query_labelk is the k-th group label noisy query vector,

targetm is the true label of the m-th object, noise_labelm is the false

label of the m-th object, σ represents the substitution operation,

Linear represents the linear mapping, which can convert the label

noise into a query vector, and n is the number of groups of the

noisy query vector.

3.2.2 Multi-scale ground truth box noise addition
Noise is then added to the size and position of the ground

truth (gt) box, and the gt box is known to be (x, y,w, h). Firstly,

the offset threshold coefficient ω1 and scaling threshold coefficient

ω2 are selected in (0,1), and the uniform distribution is used to

select the offset coefficient λ1 in (0,ω1), and the scaling coefficient

λ2 is selected in (0,ω2). Then, we distinguish objects of different

scales according to the area of the gt box of the object and use the

Gaussian decay function to add different degrees of noise to objects

of different scales. The specific method is to generate the inhibition

factor α with the Gaussian decay function, and the final noisy box

is generated according to Equation (11):

noise_box = (x± α1x, y± α1y,w± α1w, h± α1h) (11)

where α = a exp(−(area− b)2/2c2), area represents the ratio of

the area of the image to the area of the gt box, b represents the

offset value used to reduce the difference between the objects, 2c2

represents the degree of suppression (the smaller 2c2 is, the more

obvious the suppression performance is), and 1x = λ1w
2 , 1y =

λ1h
2 , 1w = λ2w, 1h = λ2h, which ensures |1x| < ω1w

2 , |1y| <
ω1h
2 , 1w ∈ [(1−ω2)w, (1+ω2)w], 1h ∈ [(1−ω2)h, (1+ω2)h]. The

noise addition performance of different scale objects is shown in
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FIGURE 3

Training method for query denoising with Gaussian decay.

FIGURE 4

Performance of adding noise to objects of di�erent scales.

Figure 4. As shown in Figure 4, after Gaussian decay suppression,

the position offset and size scaling performances of small objects are

unchanged, while those of large objects are significantly inhibited,

which means that the model will obtain more positive and negative

sample information of small objects, thereby strengthening the

learning of the model for small objects. The multi-scale gt box

noise is then converted into a multi-scale gt box noisy query vector

through the MLP layer, as shown in Equation (12):

query_boxk = MLP(noise_boxm), k = 1, 2, ...n (12)

where query_boxk is the k-th group of gt box noisy query vectors,

MLP is the mapping network composed of three linear layers, α

is the inhibitory factor generated by Gaussian decay function, and

noise_boxm is the noisy gt box of them-th object.

3.2.3 Training method for multi-scale query
denoising

The generated small object label noisy query vector and multi-

scale gt box noisy query vector are concatenated to constitute a

multi-scale query vector, as shown in Equations (13–15):

Q1 = Concat(query_labelk), k = 1, 2, ...n (13)

Q2 = Concat(query_boxk), k = 1, 2, ...n (14)
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Qms = Concat(Q1,Q2) (15)

where Q1 represents the multi-scale label noisy query vector,

Q2 represents the multi-scale gt box noisy query vector, Qms

represents the final generated multi-scale query vector, and Concat

represents the concatenation operation. Finally, Qms is input into

the Transformer decoder together with the outputs K,Q,V of

the Transformer encoder to output the query vector. The query

vector is divided into a matching query vector and a denoised

query vector. The denoised query vector is acquired from the noisy

query vector after denoising training. As the generated query vector

contains real object information, the denoised query vector does

not require a matching operation, and the loss can be calculated

directly to update the network parameters.

In this study, the experiments showed that by adding a large

degree of noise to small objects, the detection accuracy of objects

of other scales will slightly decrease, but the detection accuracy of

small objects will significantly increase. This is because the method

improves the difficulty of small objects’ noise recovery and provides

the model with more positive and negative sample information on

small objects, thus strengthening the model’s learning ability for

small objects.

3.3 Hybrid matching method based on
optimal transport and Hungarian

In an unmanned driving scene, owing to the occlusion of

vehicles and pedestrians, it is difficult to distinguish object features;

therefore, there are problems of missed and false detections of

densely occluded objects. In this regard, this study adopted a hybrid

matching method based on optimal transport and Hungarian to

complete the matching process between the ground truth and

predicted objects, to expand the number of positive samples and

improve the detection performance of densely occluded objects, as

shown in Figure 5. First, after decoding the query vector to obtain

the prediction box and prediction category, class and regression

losses are calculated. Then, the optimal transport and Hungarian

cost matrices are generated according to the loss value, and the

optimal transport matching method and Hungarian matching

method are used to obtain the matching results. Finally, the

two matching losses are multiplied by the corresponding weight

coefficients α and β to obtain the total loss, which is used to guide

the model to update parameters. Meanwhile, the object detection

image is output according to the Hungarian matching result. The

original method adopts only the Hungarian matching method

to match the ground truth and predicted box. Although this

one-to-one matching method avoids post-processing operations,

such as NMS, most of the prediction boxes are divided into

backgrounds, resulting in limited positive sample features. Thus,

there are problems of missed and false detections of occluded

objects. The hybrid matching method can help the model obtain

abundant positive sample features in the process of matching the

predicted and ground truth objects to effectively solve this problem.

Therefore, the specific content includes the optimal transport

matching method branch, Hungarian matching method branch,

and hybrid matching method.

3.3.1 Optimal transport matching method branch
As a one-to-many matching method, the optimal transport

matching method can be used to solve the matching issue between

ground truth objects and predicted boxes. It consists of two main

processes: constructing the cost matrix and solving the allocation

scheme.

The first is the construction of the cost matrix. For picture I,

there are m ground truth (gt) objects and n predicted boxes (pbox),

and the cost of matching the i-th gt object and j-th pbox is Cij. For

the cost matrixC, if the predicted box pboxj is a positive sample, the

cost of matching gti with pboxj is C
fg
ij , where C

fg
ij is the weighted

sum of the class loss and regression loss, as shown in Equation (16):

C
fg
ij = αLcls(p

cls
j (θ), gclsi )+ βLreg(p

box
j (θ), gboxi ) (16)

where pclsj , pboxj denote the class prediction and prediction box

localization results, respectively, and gclsi , gboxi represent the

true class and ground truth box, respectively. Lcls represents the

classification loss, as shown in Equation (17). Lreg is regression

loss, which is used to measure the difference between the position

and size of the pbox and gt box. In this study, GIOU and L1

were adopted to calculate the regression loss of the predicted boxes

(Rezatofighi et al., 2019), as shown in Equations (18, 19):

Lcls = −α

n∑

i=1

(1− pi)
γ log2(pi)− (1− α)

n∑

i=1

p
γ
i log2(1−pi) (17)

LGIOU = 1−
(A ∩ B)

(A ∪ B)
+

Ac − (A ∩ B)

Ac
(18)

L1 =
1

N

N∑

i=1

|f (xi)− yi| (19)

where pi represents the probability that sample i is positive, and α

and β are the hyperparameters of the focal loss function (Lin et al.,

2017). A represents the area of the ground truth box, B represents

the area of the predicted box, and Ac represents the minimum

closure region area between the predicted box and ground truth

box (Rezatofighi et al., 2019).

In addition, many predicted boxes are negative samples, so

the “background” category is introduced to match the negative

samples. Classifying a sample as the background class requires only

the calculation of the classification loss, as shown in Equation (20):

C
bg

cls
= FocalLoss(pclsj , ∅) (20)

where ∅ represents the background class. The final cost matrix

C ∈ R(m+1)×n is obtained by concatenating Cbg ∈ R1×nwith the

last row of Cfg ∈ Rm×n. However, it is easy to assume that the

categories do not match but the positions are close in the early

stages of training, which leads to transmission errors and causes

false detection. To avoid the error transmission problem as much

as possible, the cost matrix is weighted by class accuracy weight.

Class accuracy weight S is defined as Equation (21):

pj =
exp(−zj)

k∑
i=1

exp(−zi)

, Sij = Lcls(pj, g
cls
i ) (21)

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1342126
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhao et al. 10.3389/fnbot.2024.1342126

FIGURE 5

Hybrid matching method based on optimal transport and Hungarian.

where pj represents the probability that a predicted box belongs to

the j-th class, zi represents the value of the output i-th pbox, and Sij
represents the probability that the i-th pbox belongs to the j-th true

class. The construction formula for the weighted optimal transport

cost matrix C is given by Equation (22):

C = (C⊙ S)ij (22)

where S represents the class accuracy weight matrix and Cij is the

cost loss value between the i-th pbox and j-th gt box, ⊙ represents

Hadamard product.

This is followed by solving the allocation plan. The objective

function of the optimal transport matching is to obtain an

allocation plan π∗ ∈ R(m+1)×n = {πij|i = 1, 2, ...m + 1, j =

1, 2, ...n}, as shown in Equation (23):

min
π

m+1∑

i=1

n∑

j=1

Cijπij,(

m∑

i=1

πij = dj,

n∑

j=1

πij = si,

m+1∑

i=1

si =

n∑

j=1

dj,

πij ≥ 0, i = 1, 2, ...,m+ 1, j = 1, 2, ..., n)

(23)

si = {
k,i≤m
n−m×k,i=m+1

(24)

where si is the number of predicted boxes matched by the i-th

ground truth box [as shown in Equation (24)], and dj(dj = 1) is the

number of ground truth boxes matched by the j-th predicted box.

Then, we use the dynamic top−k strategy instead of the Sinkhorn-

Knopp algorithm to obtain the optimal transport matching scheme

π∗, which is the allocationmatrix of the predicted and ground truth

boxes.

3.3.2 Hungarian matching method branch
In image I, there are m ground truth(gt) and n predicted

objects, and assuming n > m, the number of gt objects is extended

to n by padding ∅, where ∅ represent the background class.

The construction process of the cost matrix is the same as that of

the optimal transport matching method. The objective function of

Hungarian matching aims to obtain an allocation plan u ∈ Rn×n =

{uij|i = 1, 2, ...n, j = 1, 2, ...n}, as shown in Equation (25):

min
u

n∑

i=1

n∑

j=1

Cijµij,(

n∑

i=1

µij = 1,

n∑

j=1

µij = 1,

n∑

i=1

n∑

j=1

µij = n,

µij ≥ 0, i = 1, 2, ..., n, j = 1, 2, ..., n)

(25)

where C ∈ Rn×n is obtained by concatenating Cbg ∈ R(n−m)×n

with the last row of Cfg ∈ Rm×n. Then, the cost matrix C is

input into the Hungarian matching method to obtain the allocation

scheme µ of Hungarian matching. Considering that this method

is essentially an assignment problem, the linear-sum-assignment

function is called directly in this study.

3.3.3 Hybrid matching method
The allocation scheme µ of the Hungarian matching method

and the matching scheme π∗ of the optimal transport matching

method are adopted to calculate the classification and regression

losses, respectively, as shown in Equation (26), and the hybrid

matching loss function is shown in Equation (27):

τO, τH =

n∑

i=1

[Lcls(p
cls
σ (i), g

cls
σ (i))+ 1

{gcls
σ (i)
6=∅}

Lreg(p
box
σ (i), g

box
σ (i))] (26)

τ = α ∗ τH + β ∗ τO (27)

where Lcls and Lreg are given in Equations (14–16), σ (i)

represents the index of the ground truth box corresponding to

the i-th predicted box, σ (i)is the total loss, τH represents the

Hungarian matching loss, τO is the optimal transport matching

loss, and α, β are the corresponding loss weights. The training

direction of the model is controlled by α and β . As shown

in Figure 6, the optimal transport matching method assigns more

positive samples to each object, so the model obtains more positive

sample features and resolves the issue of missed and false detections

of densely occluded objects. This hybrid matching method is only

adopted in the training phase; in the inference phase, only the

Hungarianmatchingmethod is used, thus avoiding post-processing

operations, such as NMS. The pseudo-code of the hybrid matching

method based on optimal transport and Hungarian is shown in

Algorithm 1.
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FIGURE 6

Comparison of matching results between Hungarian matching and optimal transport matching.

Input: I represents an image, gt represents the ground

truth in image I

Output: τ represents total loss

1: m← |gt|

2: Pcls,Pbox = Forward(I, gt)

3: Pclass = softmax(−Pcls), Sij = FocalLoss(pclassj , gtclsi )

4: c
ij

cls
= FocalLoss(pclsj , gtclsi ), c

ij
reg = GIOU(pboxj , gtboxi )

5: c
bg

cls
= FocalLoss(pclsj ,∅), cfg = αccls + βcreg

6: C = concat(c
bg

cls
, cfg )

7: C = C ∗ S

8: si(i = 1, 2, ...m)←Dynamic k Estimation according to gt

9: for i = 1 to m do

10: j = topk(Ci, k = si),Mij = true

11: end for

12: if sum(Mi > 0) > 0 then

13: indices← Filter(Mi)

14: end if

15: compute optimal transport matching plan π∗ from

indices

16: indices← linear_sum_assignment(C)

17: compute Hungarian matching plan µ from indices

18: τO = loss(gt,π∗, Pcls, Pbox), τH = loss(gt,µ, Pcls, Pbox)

19: τ = α ∗ τH + β ∗ τO

20: return τ

Algorithm 1. Hybrid matching method.

3.4 Summary

From the above discussion, we propose an improved object

detection method for unmanned driving based on Transformers.

First, this method uses a multi-scale Transformer feature extraction

method fused with channel attention to solve the issue of

unsatisfactory multi-scale change object detection performance.

Then, a training method for query denoising with Gaussian decay

is adopted to solve the low detection accuracy of small objects,

and a hybrid matching method based on optimal transport and

Hungarian is used to address the issue of missed and false

detections of densely occluded objects. In the following section, the

improved content of this study is applied to the DINO model, and

relevant experiments and analyses are reported.

4 Experimental results and analysis

4.1 Experimental setup

The experimental dataset for the DETR series models was

mostly COCO2017 (Lin et al., 2014). As this study focused on object

detection in unmanned driving scenarios, cars, trucks, and buses

were selected from the COCO2017 dataset to form a new dataset

called COCO-driving. In total, there were 43,250 car objects, 9,096

truck objects, and 6,035 bus objects in this dataset. In addition, this

study also uses WiderPerson (Zhang et al., 2019), KITTI (Geiger

et al., 2013), andWaymo open (Sun et al., 2020) datasets to conduct

experiments to show the advancement of the proposed method.

Considering that the Waymo Open dataset is substantial, 15,990

images are selected as the training set and 3,400 images are selected

as the validation set. The optimizer used the AdamW optimization

algorithm based on weight decay, where batch size = 2 and the

initial learning rate was set to 0.00005 on an NVIDIA V100 GPU.

These three improvements were applied to the DINO model

to verify the performance of the proposed method, and Average

Precision (AP) and Params were used as evaluation indicators. AP

was adopted to measure the model detection accuracy, which is the

area under the PR (precision-recall) curve. Precision (P) and Recall

(R) were calculated using Equations (28, 29):

P =
TP

TP + FP
(28)

R =
TP

TP + FN
(29)

AP =

∫ 1

0
P(R)dR (30)

where TP represents correctly identified positive samples,

FP represents incorrectly identified positive samples, and FN

represents incorrectly identified negative samples. The mAP is

obtained by averaging the AP of multiple categories as shown
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FIGURE 7

Parametric analysis of the number of channel attention modules.

in Equation (30); the larger the mAP, the higher the detection

accuracy, as shown in Equation (31):

mAP =

n∑
i=1

APi

n
(31)

where APi is the AP of the i-th category, and the IOU thresholds of

AP are 0.5 and 0.5 ∼ 0.95, which are denoted as mAP50 and mAP,

respectively. mAPs is used to measure the detection performance

for small objects of less than 32×32 pixels. In addition, The model

size is measured using the number of model parameters (Params).

GFLOPs are used to measure the computational complexity of the

model, and FPS is used to measure the detection speed.

4.2 Analysis of experimental parameters

4.2.1 Parametric analysis of the number of
channel attention modules

To explore the performance of the number of channel attention

modules in the multi-scale Transformer feature extraction method

fused with channel attention, this study set the number of channel

attention modules k as the experimental parameter and designed

five groups of experiments with k = 0, 1, 2, 3, and 4, where k = 0

means that the channel attention module was not used, k = 1means

that the channel attention module was used in stage 4, k = 2 means

that the channel attention module was used in stages 3 and 4, and

so on. Because multi-scale objects are to be studied, the mAPs of

all objects (mAP-all), medium objects (mAP-medium), and small

objects (mAP-small) were compared.

As shown in Figure 7, in the mAP-all comparison, it has a

slight upward trend with the increase of k and finally achieves

the maximum value at k = 4. However, in the mAP-medium

comparison, it shows a slow decreasing trend with the increase of k,

while in the mAP-small comparison, it presents a clear increasing

trend with the increase of k, again reaching a maximum value at

k = 4. As the information of small targets is preserved completely

FIGURE 8

Parameter analysis of the training method for query denoising with

Gaussian decay.

in the low-level features of the image, the detection effect of small

objects gradually becomes better with the increase of the number

of channel attention layers. In unmanned driving scenarios, the

detection of small objects becomes challenging; hence, a slight drop

in mAP-medium is acceptable.

4.2.2 Parameter analysis of the training method
for query denoising with Gaussian decay

To explore the suppression performance of the Gaussian

decay function with different parameters on objects of different

scales, we analyzed the k, a, and c parameters of f (x) =

a exp(−(area− b)2/2c2). For convenient representation, k = 2c2

was set, a = 1, b = 0, k = 0.005, 0.01, 0.05, 0.1 and a = 1, b = 0.01, k =

0.005, 0.01, 0.05, 0.1, for a total of eight groups of experiments, and

mAP-all and mAP-small were compared.

As shown in Figure 8, in the mAP-all comparison, the results

of the eight groups of experiments are quite similar. However, in

the comparison of mAP-small, when the b value is the same, the

overall trend increases first and then decreases with the increase

of k. For the same value of k, the results with b = 0 are all

higher than those with b = 0.01. The best result is obtained when

b = 0 and k = 0.01. This is because k can control the width

of the Gaussian figure, thus affecting the scaling performance of

objects of different scales. When the value of k is too small, it will

significantly enhance the suppression performance between small

objects, resulting in a large gap between small objects and a slight

decline in the detection performance of small objects. When k is

too large, there will be no obvious size difference between different

objects, and the suppression performance of the Gaussian decay

function will fail. b, as the offset coefficient, can shift the Gaussian

figure to reduce the scale difference between objects. When b = 0,

the difference between different scale objects is obvious, and when b

= 0.01, the difference between different scale objects becomes small,

which affects the suppression performance and leads to a decline in

detection accuracy.
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FIGURE 9

Weight parameter analysis of hybrid matching method.

4.2.3 Weight parameter analysis of hybrid
matching method

To explore the influence of weight parameters on the results

of the hybrid matching method based on optimal transport and

Hungarian, this study adjusted the weight parameter k of optimal

transport matching to different values: k = 0, 0.5, 0.8, 1, 2. Here, k =

0 indicates that the optimal transport matching method is not used,

while the weight parameter α of Hungarian matching remains

constant at 1. By adjusting the weight parameters, the balance

between the two matching methods’ influence can be controlled

during the model training. The evaluation metrics in this study

were mAP-all and mAP-small. As shown in Figure 9, according

to the changes of mAP-all and mAP-small, both of them show a

trend of first increasing and then decreasing as k increases. Among

them, when k = 0.8, the results reach the highest value, mAP-all is

0.545, and mAP-small is 0.304, which are 0.8 and 2.5% higher than

that of the original method (k = 0). This is because as a one-to-many

matching strategy, the optimal transport matching can obtain more

positive sample features and promote the detection accuracy of the

collaborative model when the weight proportion is small. However,

when the weight proportion is large, it will mislead the Hungarian

matching process, thus dominating the training direction of the

model, and leading to a decrease in detection accuracy.

4.3 Ablation studies and analysis

To evaluate the performance of the proposed method, we

applied the three improvements to the DINOmodel and conducted

ablation experiments on the COCO-driving dataset, as shown in

Table 1, Exp1 represents the original method. Exp2 incorporates

a multi-scale Transformer feature extraction method fused with

channel attention, exhibiting improved small object detection

performance with a 1.4% increase in mAP and a 1.5% increased in

mAPs. Exp3 involves training with query denoising using Gaussian

decay, resulting in a modest 0.1% increase in mAP but a notable

2.4% improvement in small object features. Exp4 utilizes a hybrid

matching method of optimal transport and Hungarian, leading

to a 0.6% increase in mAP and a significant 2.5% increase in

mAPs, demonstrating effectiveness in occlusion of dense occlusion

object detection owing to fewer pixels being available. Thus, Exp4

shows that the proposed method is ideal for dense occlusion

object detection. Exp5 is the experimental result of applying three

improved contents together. Compared with the original method,

mAP increases by 1.5% and mAPs by 2.3%. Although mAP and

are not as good as some methods, for example, mAP decreases by

0.2% compared with Exp2, mAPs increases by 0.7%. In addition,

from the perspective of the AP of each category, the APs of

Exp1 are 0.484, 0.420, and 0.707, respectively, and those of Exp5

are 0.502, 0.433, and 0.718, respectively. The detection accuracy

of each category in other experimental groups also improved to

different degrees. In the measurement process of parameters and

computation, the uniform image size is 640 × 640. From the

perspective of Params, compared with the original method, the

proposed method is reduced by 7.89 From the results of model

computational complexity (GFLOPs) and model processing speed

(FPS), the results of Exp1 are mirror those of Exp3 and Exp4. This

is because the innovative content of Exp3 and Exp4 is only enabled

in the training phase, and the Transformer feature extraction

network fused with channel attention is adopted in Exp2 and

Exp5. Compared with the original method, the GFLOPs of Exp2

and Experiment 5 increased by 38%, and the FPS decreased by

21%. It is evident that the real-time performance of the proposed

method is poor, and the FPS is 18, which cannot meet the real-

time requirements. However, the poor real-time performance of the

proposed method is caused by the high computational complexity

of the Transformer feature extraction network that fuses channel

attention, and the other two improvements will not affect the real-

time performance of the model, so we can consider reducing the

feature extraction network to improve the real-time performance

of the model.

The changes in the AP values in the above experiments are

shown in Figure 10. The improved content was applied to the

DINO model and trained for 24 epochs. From the overall point

of view, it shows a sharp rise in the first, then tends to be a flat

trend. At the 12th epoch, the mAP (map-all) and mAPs (mAP-

small) value can be seen to improve rapidly, which is because

the dropout operation is used to remove redundant parameters

and avoid overfitting so that the performance of the proposed

method on the validation set can be improved. In addition, it can

be seen that the curve of mAP-small fluctuated greatly, which was

caused by using mAP-all as the evaluation criterion to update the

network parameters during the training process, and the small

object features were difficult to learn.

In Figure 11, both the proposed method and the original

method exhibit a sharp decrease in loss value initially,

followed by gradual convergence and eventual stabilization

at the 20th epoch. Despite incorporating optimal transport

matching loss into the hybrid matching method during training,

the proposed method maintains a lower training loss than

the original method, indicating superior feature learning

capability. Additionally, the validation loss of the proposed

method is slightly lower than that of the original method,

indicating the absence of overfitting and validating the proposed

method’s performance.
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TABLE 1 Experimental results on the COCO-driving.

ID MTC GDN HM mAP mAPs APcar APtruck APbus Params GFLOPs FPS

Exp1 0.537 0.279 0.484 0.420 0.707 46.67M 279 23

Exp2 X 0.551 0.294 0.510 0.428 0.719 38.78M 284 18

Exp3 X 0.538 0.305 0.482 0.432 0.714 46.67M 279 23

Exp4 X 0.545 0.302 0.490 0.434 0.710 46.67M 279 23

Exp5 X X X 0.552 0.304 0.502 0.433 0.718 38.78M 284 18

We use the terms “MTC,” “GDN,” and “HM" to denote “Multi-scale Transformer with Channel Attention,” “Gaussian decay De-Noising Training,” and “Hybrid Matching,” respectively.

FIGURE 10

AP convergence change diagram of the proposed method on the COCO-driving dataset. (A) mAP of all objects. (B) mAP of small objects.

4.4 Comparison with state-of-the-art
object detection methods

4.4.1 Objective analysis
To verify the superiority of our method over other advanced

object detection methods, we conduct comparative experiments,

including Transformer-based methods: DAB-DETR (Liu S. et al.,

2022), DN-DETR (Li F. et al., 2022), Deformable-DETR (Zhu et al.,

2020) and DINO (Zhang et al., 2022). Two-stage methods: Fsater-

RCNN (Ren et al., 2015) and Sparse R-CNN (Sun et al., 2021);

One-stagemethods: YOLOX (Ge et al., 2021b) and YOLOv7 (Wang

et al., 2023). These methods are tested on COCO-driving (Lin

et al., 2014), WiderPerson (Zhang et al., 2019), KITTI (Geiger

et al., 2013), and Waymo Open (Sun et al., 2020) datasets,

and the experimental parameters, with consistent environmental

experiments. The results are presented in Tables 2–5.

The experimental results of the proposed method and existing

advanced methods on the COCO-driving dataset are shown

in Table 2. Compared with Transformer-based object detection

methods, the proposed method exhibits notably advantages in

detection accuracy and parameter quantity. For example, compared

to the original method (DINO), the proposed method achieves an

increase of 2.7 and 11% in mAP and mAPs, respectively, while

reducing parameter quantity (Params) by 16%. The GFLOPs only

increases by 1.7%; however, regarding detection speed (FPS), the

FPS of the proposed method decreases by 21%. Additionally, while

FIGURE 11

Loss curves of the proposed method and the original method on the

COCO-driving dataset.

Deformable-DETR shows a 1% higher mAPs than the proposed

method, the latter outperforms in mAP by 13% with 8.4M fewer

parameters, making the cost acceptable. Comparing with two-stage

object detection surpassing Faster-RCNN and Sparse-RCNN by

21 and 28% in mAP, respectively. Concurrently, the number of
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parameters of the proposed method is also reduced by 2.54M and

2.57M, respectively. However, from the perspective of GFLOPs, the

computational complexity of Sparse-RCNN is the lowest among all

methods, and the proposed method is 226% higher than that of the

proposed method, which means that the proposed method requires

higher hardware performance in the training and inference process.

Compared with the single object detection method, the detection

accuracy of the proposed method is still ahead. While the mAP50
of YOLOv7 is 0.6% higher than that of the proposed method, the

mAPs of the proposed method is 2% higher than that of YOLOv7,

which indicates that the proposed method has a better effect on

small object detection. Thus, while the proposed method boasts

the highest detection accuracy, its computational complexity and

detection speed require improvement. Addressing these concerns

will be the focus of future research endeavors.

The mAP convergence curves of the proposed method and

some object detectionmethods using the COCO-driving dataset are

shown in Figure 12. This figure indicates that the proposed method

achieved satisfactory results after 24 training epochs. Figure 12A

shows that the mAP-all value of the proposed method was 0.552,

which is higher than those of the other methods. Figure 12B shows

that only DN-DAB-Deformable-DETR is slightly higher in the

detection accuracy of small objects than the proposed method. The

detection accuracies of the other methods were lower than that

of the proposed method. Therefore, on the whole, the detection

accuracy of the proposed method is still the highest.

The experimental results of the proposedmethod and advanced

methods on the WiderPerson dataset are illustrated in Table 3.

The dataset notably presents densely occluded pedestrians, posing

significant challenges for object detection. Despite this, the

proposed method maintains a leading position in detection

accuracy. Among the transformer-based object methods, DINO

achieves the highest detection accuracy. DN-Deformable-DETR,

originally excelling in small object detection in the COCO-driving

dataset, shows relatively poorer performance, with 1.3% lower

mAPs than DINO. The proposed method achieves mAP and mAPs

of 0.498 and 0.228, respectively, surpassing DINO by 1.4% and

3.6%, highlighting its superiority in detecting small objects and

densely occluded objects. Compared with two-stage methods, the

proposed method demonstrates a 15% and 20% higher Map than

Faster-RCNN and Sparse-RCNN, respectively. Notably, for small

object detection, the proposed method’s mAPs is 20% and 57%

higher than Faster-RCNN and Saprse-RCNN, respectively. This

underscores the advancement of the proposed method. Compared

to single-stage methods, YOLOv7 achieves a 1.5% higher mAP50.

However, the proposed method outperforms in mAP and mAPs
by 1.8% and 2.2%, respectively, surpassing YOLOv7 in detection

accuracy. However, in parameter comparison, the method requires

1.87Mmore parameters and exhibits 2.7 times higher GFLOPs than

YOLOv7, indicating higher storage and computational costs for the

proposed method.

The experimental results of the proposed method on the

existing advanced methods in the KITTI autonomous driving

dataset are shown in Table 4. The KITTI dataset has been widely

recognized in the field of autonomous driving, so the detection

results on this dataset can prove the robustness and advancement

of the method in this study to a certain extent. Compared with

the Transformer-based object detection method, the detection

accuracy of the proposed method is still the highest, and mAP50,

mAP, and mAPs are 2.3%, 3%, and 5.4% higher than the original

method (DINO), respectively. In the two-stage object detection

method, Faster-RCNN has the best detection performance, and the

mAP50 and mA of the proposed method are 1.2% and 9.9 higher

than that of Faster-RCNN, respectively. However, the mAPs of

the proposed method is 0.002 lower than that of Faster-RCNN.

The object detection accuracy of the proposed method is still

significantly ahead of Faster-RCNN. In the comparison of single-

stage object detection methods, the mAP50 of YOLOv7 is still

2.6% higher than that of the proposed method, but the mAP and

mAPs of the proposed method are 0.5 and 3.9% higher than those

of YOLOv7, which proves that the proposed method has better

detection performance for small objects. Although the proposed

method is ahead of YOLOv7 in terms of detection accuracy, the FPS

of the proposedmethod is only 18, while the FPS of YOLOv7 is 103,

which is far lower than the detection speed of YOLOv7. Therefore,

how to further improve the detection speed of the proposedmethod

is an important direction for future research.

The experimental results comparing the proposed method with

existing methods on the Waymo Open dataset are presented in

Table 5. This dataset encompasses diverse traffic scenes, including

nighttime driving and adverse weather conditions. Owing to the

complexity and variability of the scenes, overall experimental

results tend to be lower. Among Transformer-based object

detection methods, DINO achieves the highest mAP and mAP50,

while DN-DAB-Deformable-DETR records the highest mAPs.

Compared to DINO, the proposed method exhibits an increase

of 8.1%, 6.5%, and 27%, respectively in maps. Additionally, the

proposed method’s mAPs surpasses that of DN-DAB-Deformable-

DETR by 2.1%. Additionally, the proposed method boasts lower

parameter counts than those of the Transformer-based methods.

However, due to the high computational complexity inherent in

Transformers, the performance in terms of GFLOPs and detection

speed (FPS) is suboptimal. The proposed method’s detection

speed is only a quarter of YOLOX’s and significantly lags behind

YOLOv7. Despite its higher detection accuracy compared to

YOLOX and YOLOv7, the proposed method falls short of meeting

practical requirements. Future research will focus on enhancing the

detection speed of the proposed method.

4.4.2 Visual analysis
To further demonstrate the robustness of the proposed method

in detecting unmanned driving scenarios, we compared it with

existing methods and visualized the results, setting the confidence

threshold to 0.5. The detection performances are depicted in

Figures 13–17. Analysis of the results reveals that other methods

often fail to detect objects when they are either too small or heavily

occluded. Conversely, the proposed method effectively addresses

the these challenges, demonstrating detection performance even for

some small and densely occluded objects.

In Figure 13, the vehicle object appears small and heavily

occluded, resulting in different degrees of false and missed

detections. However, the proposed method effectively addresses

these challenges by employing the query and noise reduction

training method based on Gaussian attenuation, along with the
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TABLE 2 Experimental results of the proposed method and existing methods on COCO-driving dataset.

Model mAP50 mAP mAPs Epoch Params GFLOPs FPS

DAB-DETR (Liu S. et al., 2022) 0.672 0.424 0.215 50 43.87M 94 17

DN-DAB-DETR (Li F. et al., 2022) 0.681 0.445 0.183 50 43.47M 101 16

Deformable-DETR (Zhu et al., 2020) 0.626 0.438 0.264 50 39.85M 196 22

DN-Deformable-DETR 0.721 0.487 0.307 50 47.18M 265 23

DN-DAB-Deformable-DETR 0.720 0.533 0.293 50 47.21M 273 15

DINO (Zhang et al., 2022) 0.728 0.537 0.273 24 46.67M 279 23

Faster-RCNN (Ren et al., 2015) 0.621 0.455 0.266 36 41.32M 180 26

Sparse-RCNN (Sun et al., 2021) 0.612 0.428 0.267 36 41.35M 87 23

YOLOX-l (Ge et al., 2021b) 0.721 0.526 0.231 100 54.21M 155 69

YOLOv7 (Wang et al., 2023) 0.747 0.550 0.298 100 36.91M 103 161

Proposed method 0.742 0.552 0.304 24 38.78M 284 18

TABLE 3 Experimental results of the proposed method and other methods on the WiderPerdion dataset.

Model mAP50 mAP mAPs Epoch Params GFLOPs FPS

DAB-DETR (Liu S. et al., 2022) 0.671 0.447 0.164 50 43.87M 94 17

DN-DAB-DETR (Li F. et al., 2022) 0.699 0.414 0.132 50 43.47M 101 16

Deformable-DETR (Zhu et al., 2020) 0.749 0.465 0.191 50 39.85M 196 22

DN-Deformable-DETR 0.759 0.471 0.217 50 47.18M 265 23

DN-DAB-Deformable-DETR 0.761 0.472 0.204 50 47.21M 273 15

DINO (Zhang et al., 2022) 0.723 0.491 0.220 24 46.67M 279 23

Faster-RCNN (Ren et al., 2015) 0.716 0.431 0.189 36 41.32M 180 26

Sparse-RCNN (Sun et al., 2021) 0.693 0.412 0.145 36 41.35M 87 23

YOLOX-l (Ge et al., 2021b) 0.766 0.461 0.212 100 54.21M 155 69

YOLOv7 (Wang et al., 2023) 0.797 0.489 0.223 100 36.91M 103 161

Proposed method 0.785 0.498 0.228 24 38.78M 284 18

TABLE 4 Experimental results of the proposed method and other methods on the KITTI dataset.

Model mAP50 mAP mAPs Epoch Params GFLOPs FPS

DAB-DETR (Liu S. et al., 2022) 0.731 0.421 0.172 50 43.87M 94 17

DN-DAB-DETR (Li F. et al., 2022) 0.752 0.432 0.197 50 43.47M 101 16

Deformable-DETR (Zhu et al., 2020) 0.778 0.472 0.212 50 39.85M 196 22

DN-Deformable-DETR 0.832 0.547 0.432 50 47.18M 265 23

DN-DAB-Deformable-DETR 0.850 0.551 0.431 50 47.21M 273 15

DINO (Zhang et al., 2022) 0.849 0.559 0.423 24 46.67M 279 23

Faster-RCNN (Ren et al., 2015) 0.858 0.524 0.448 36 41.32M 180 26

Sparse-RCNN (Sun et al., 2021) 0.819 0.519 0.418 36 41.35M 87 23

YOLOX-l (Ge et al., 2021b) 0.863 0.547 0.422 100 54.21M 155 69

YOLOv7 (Wang et al., 2023) 0.892 0.573 0.429 100 36.91M 103 161

Proposed method 0.869 0.576 0.446 24 38.78M 284 18

matching method based on optimal transmission and Hungarian

fusion. This approach approximately the occurrence of false

positives and missed detection. For example, the black car under

the right street light was only successfully detected by the proposed

method. Specifically, DN-DAB-DETR, DN-Deformable-DETR,

Sparse-RCNN, YOLOX, YOLOv7, andDINO detected seven, eight,
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TABLE 5 Experimental results of the proposed method and other methods on the Waymo open dataset.

Model mAP50 mAP mAPs Epoch Params GFLOPs FPS

DAB-DETR (Liu S. et al., 2022) 0.476 0.229 0.031 50 43.87M 94 17

DN-DAB-DETR (Li F. et al., 2022) 0.499 0.247 0.042 50 43.47M 101 16

Deformable-DETR (Zhu et al., 2020) 0.556 0.311 0.063 50 39.85M 196 22

DN-Deformable-DETR 0.522 0.387 0.092 50 47.18M 265 23

DN-DAB-Deformable-DETR 0.537 0.394 0.139 50 47.21M 273 15

DINO (Zhang et al., 2022) 0.623 0.398 0.111 24 46.67M 279 23

Faster-RCNN (Ren et al., 2015) 0.557 0.346 0.068 36 41.32M 180 26

Sparse-RCNN (Sun et al., 2021) 0.549 0.328 0.074 36 41.35M 87 23

YOLOX-l (Ge et al., 2021b) 0.653 0.414 0.115 100 54.21M 155 69

YOLOv7 (Wang et al., 2023) 0.675 0.421 0.124 100 36.91M 103 161

Proposed method 0.674 0.424 0.142 24 38.78M 284 18

FIGURE 12

The mAP convergence curves of the method proposed and other object detection methods. (A) mAP-all convergence curves. (B) mAP-small

convergence curves.

13, nine, 11, and 10 objects, respectively. However, the proposed

method detected 14 objects, highlighting its superiority in detecting

small objects and densely occluded objects.

As shown in Figure 14, owing to the large proportion of

white vehicles, several vehicles are occluded, posing a significant

challenge to object detection. For example, DN-DAB-DETR,

Deformable-DETR, and DINO only detected four objects, YOLOX

detected six, and the proposed method, Sparse-RCNN, and

YOLOv7 detected seven. Considering that eight objects exist in the

graph, the detection results of the proposed method are acceptable.

As depicted in Figure 15, the image contains numerous

densely occluded objects, presenting significant challenges to

the object detection process owing to the presence of various

objects and mutual occlusions. For example, DN-DAB-DETR,

Faster-RCNN, Sparse-RCNN, YOLOX, YOLOv7, detected 18,

23, 25, 22, and 12 objects, respectively. This indicates that the

YOLOv7 method exhibits a relatively poor detection effect on

densely occluded objects. Conversely, the method proposed in

this study enhances the number of positive samples by using

a hybrid matching method based on optimal transmission and

Hungarian algorithm, thereby obtaining more positive sample

information. Consequently, this approach effectively addresses

the problem of false positives and missed detections of densely

occluded objects. Finally, the method employed in this study

achieves the detection of 27 objects, thereby attaining optimal

detection results.

As illustrated in Figure 16, the image was captured at night,

and the object features were not apparent owing to insufficient

light. This resulted in significant challenges to the object detection

task. For example, the girl at the zebra crossing, DN-DAB-DETR,

and DINO were not successfully detected. Finally, DAB-DETR,

Deformable-DETR, Sparse-RCNN, YOLOX, YOLOv7, DINO

detected 5, 8, 12, 12, 10, and 7 objects, respectively. Additionally,

the proposed method detected 11 objects. This finding proves

that the proposed method still has superior robustness in complex

traffic scenes.
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FIGURE 13

Comparison of the detection performance of the proposed method and other object detection methods on the COCO-driving dataset for small

objects. (A) is the original image, (B) is the detection image of DN-DAB-DETR, (C) is the detection image of Deformable-DETR, (D) is the detection

image of Sparse-RCNN, (E) is the detection image of YOLOX, (F) is the detection image of YOLOv7, (G) is the DINO model detection image, (H) is the

detection image of the proposed method.

FIGURE 14

Comparison of the detection performance of the proposed method and other object detection methods on the COCO-driving dataset for dense

occlusion objects. (A) is the original image, (B) is the detection image of DN-DAB-DETR, (C) is the detection image of Deformable-DETR, (D) is the

detection image of Sparse-RCNN, (E) is the detection image of YOLOX, (F) is the detection image of YOLOv7, (G) is the DINO model detection image,

(H) is the detection image of the proposed method.

As shown in Figure 17, considering that the left vehicle in

the figure is in the shadow of the trees and the vehicles occlude

each other, it is challenging to detect. Finally, DAB-DETR, Faster-

RCNN, Sparse-RCNN, YOLOX, YOLOv7, and DINO detected

nine, 14, 13, 12, 13, and 12 objects, respectively. The method in

this study improves the feature extraction ability of the model

by fusing the multi-scale Transformer feature extraction method

using channel attention. Subsequently, it improves the detection

accuracy and detects 14 objects, highlighting the advancement and

robustness of the study’s method.

The method employed in this study is tested oacross various

datasets including KITTI, WiderPerson, and Waymo Open.

The Waymo Open dataset, notable for its large volume and

diverse unmanned driving scenes featuring and the method

in this study always has the highest detection accuracy. This

indicates that the proposed method has better robustness to

some extent.

5 Discussion

Addressing the challenge of low detection accuracy for multi-

scale changing, small, and densely occluded targets in complex

traffic environments, this study proposes an improved object

detection method utilizing Transformer and conducts experiments

on COCO-driving, WiderPerson, KITTI, and Waymo open

datasets. The experimental results consistently demonstrate that

the superior target detection accuracy of the proposed method
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FIGURE 15

Comparison of the detection performance of the proposed method and other object detection methods on the WiderPerson dataset for small and

dense occlusion objects is illustrated as follows: (A) denotes the original image, (B) represents the detection image of DN-DAB-DETR, (C) illustrates

the detection image of Faster-RCNN, (D) represents the detection image of Sparse-RCNN, (E) denotes the detection image of YOLOX, (F) denotes

the detection image of YOLOv7, (G) represents the DINO model detection image, and (H) represents the detection image of the proposed method.

FIGURE 16

Comparison of the detection performance of the proposed method and other object detection methods on the Waymo Open dataset is illustrated as

follows: (A) represents the original image, (B) denotes the detection image of DN-DAB-DETR, (C) illustrates the detection image of

Deformable-DETR, (D) indicates the detection image of Sparse-RCNN, (E) represents the detection image of YOLOX, (F) denotes the detection image

of YOLOv7, (G) indicates the DINO model detection image, and (H) represent the detection image of the proposed method.

than existing advanced methods, revealing its robustness and

advancement. However, practical implementation considerations,

particularly considering the performance of unmanned driving

perception system hardware, reveal the following limitations of the

method:

1. Despite the high detection accuracy of the proposed method,

its inference time is prolonged, resulting in subpar real-time

performance owing to hardware limitations in the unmanned

driving perception system.

2. The method exhibits high computational complexity,

necessitating computational resources for both training

and inference processes.

3. While the method in this study features a relatively small

number of parameters, it is still slightly large, potentially

consuming excessive storage space and memory. This

could adversely affect the multi-task execution ability of

the system.

Therefore, the focal point of future research will be on

reducing the computational complexity of the model and

improving the detection speed of the proposed method,

while simultaneously ensuring the object detection’s

accuracy. For example, knowledge distillation can be used

to reduce the number of parameters and improve the

detection speed.
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FIGURE 17

Comparison of the detection performance of the proposed method and other object detection methods on the KITTI dataset is illustrated as follows:

(A) depicts the original image, while (B) illustrates the detection image of DN-DAB-DETR. Additionally, (C) represents the detection image of

Faster-RCNN, (D) depicts the detection image of Sparse-RCNN, (E) shows the detection image of YOLOX, (F) illustrates the detection image of

YOLOv7, (G) displays the DINO model detection image, and (H) showcases the detection image of the proposed method.

6 Conclusions

To address the problems existing in unmanned driving object

detection methods, we proposed an improved object detection

method for unmanned driving leveraging Transformers. First, a

multi-scale Transformer feature extraction method, fused with

channel attention, addresses suboptimal detection of multi-scale

changing objects. Second, we employ a training method for

query denoising using Gaussian decay to enhance small object

detection accuracy. Third, a hybrid matching method combining

optimal transport and Hungarian algorithms resolves missed and

false detections of densely occluded objects. This study adopts a

method based on the DINO algorithm. The experimental results

demonstrate the effectiveness of the proposed method.

Experiments are conducted on COCO-driving, WiderPerson,

KITTI, andWaymo datasets, comparing the proposedmethod with

DINO-DETR, YOLOv7, and other object detection algorithms. The

experimental results indicate that the proposed method achieves

the highest object detection accuracy. However, analysis of GFLOPs

and FPS reveals that while the proposed method significantly

improves detection accuracy for multi-scale changing objects, small

objects, and densely occluded objects, it also requires substantial

computing resources, resulting in slow training and inadequate

real-time performance. Therefore, future research will focus on

reducing computational complexity, accelerating training speed,

and improving real-time performance of the model.
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