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Humanoid grasping is a critical ability for anthropomorphic hand, and plays a

significant role in the development of humanoid robots. In this article, we present

a deep learning-based control framework for humanoid grasping, incorporating

the dynamic contact process among the anthropomorphic hand, the object,

and the environment. This method e�ciently eliminates the constraints imposed

by inaccessible grasping points on both the contact surface of the object and

the table surface. To mimic human-like grasping movements, an underactuated

anthropomorphic hand is utilized, which is designed based on human hand

data. The utilization of hand gestures, rather than controlling each motor

separately, has significantly decreased the control dimensionality. Additionally,

a deep learning framework is used to select gestures and grasp actions.

Our methodology, proven both in simulation and on real robot, exceeds the

performance of static analysis-based methods, as measured by the standard

grasp metric Q1. It expands the range of objects the system can handle,

e�ectively grasping thin items such as cards on tables, a task beyond the

capabilities of previous methodologies.

KEYWORDS

underactuated, anthropomorphic hand, humanoid grasping andmanipulation, dynamic

process, deep learning, sim to real

1 Introduction

The advancement of humanoid robots critically hinges on the essential capability of
anthropomorphic hands, enabling them to interact with the environment in a way similar
to human behavior. While Robotic Grasping and Manipulation Competition (Falco et al.,
2018) has demonstrated the progress made in this field, but robustly grasping arbitrary
objects with a anthropomorphic hand remains an open problem (Hodson, 2018). Although
research has been done on robot grippers with few degrees of freedom (DoF) (Fang et al.,
2023), their inherent constraints in size and degrees of freedom hinder their ability to
perform versatile grasping and manipulation. In contrast, the anthropomorphic hand is
considered the most ideal universal end effector in a human-centered environment due to
its potential to grasp objects with arbitrary shapes and uneven surfaces (Billard and Kragic,
2019). Therefore, developing effective control frameworks for the anthropomorphic hand
is crucial for a variety of applications, ranging from manufacturing to service to security.

In recent years, advancements in anthropomorphic hand have been remarkable, and
the demonstrated potential of fully-actuated robot hands has significantly influenced the
field of manipulation (Andrychowicz et al., 2020). However, the high dimensionality of the
search space for fully-actuated hands often results in low learning efficiency and unnatural
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motions (Mandikal and Grauman, 2021). Another option is
underactuated robot hand (Catalano et al., 2014). Thanks to its
light weight, compact structure and shape adaptability, it is also
widely used in grasping task. But the configuration of the fingers
is uncertain when they come into contact with an object, posing a
significant challenge for control (Yao et al., 2009).

Grasp synthesis is usually viewed as a constrained nonlinear
optimization problem (Miao et al., 2015), which can fall into a
local optimal solution due to the high-dimensional space. The
position on the contact surface between the object and the
table surface is often out of reach, which cannot be ignored
as a constraint. Consequently, statics analysis methods prove
inadequate for grasping slender objects like cards and coins.
Various distinctive gripper structures and control strategies have
been proposed, including the utilization of wide fingertips for
scooping (Babin and Gosselin, 2018) and prying grasp (Zhang
et al., 2022). Additionally, leveraging environmental fixtures (Tong
et al., 2020) and the edges of a table (Eppner et al., 2015) has been
suggested to achieve successful grasping. Hence, there is a drive
to formulate a anthropomorphic hand grasping strategy capable of
adeptly handling thin objects.

Inspired by the success of human grasping (Tong et al., 2020),
a grasping control strategy is proposed that utilizes the dynamic
process between the hands, objects and the environment. This
approach allows for any contact point to be accessed on any
surface of the object, thereby overcoming the inherent limitation of
static analysis. The effectiveness of the proposed grasping control
strategy is validated through experiments conducted in a dynamic
simulation engine MuJoCo (Todorov et al., 2012) and on the
real robot. The dynamic process enables thecontroller to grasp a
wide range of objects, including thin cards from table surface, as
shown in Figure 1. According to the grasp quality metric Q1, our
method has higher grasp quality compared to methods based on
statics analysis.

2 Related work

Grasp synthesis is a critical component of autonomous grasping
strategies, aiming to attain stability when grasping any type of
objects. This topic is approached from two distinct points of
view: enhancements in hardware technology and the progress of
algorithmic methodologies.

2.1 Mechanical design

Mechanical design has been a key strategy for researchers who
are striving to imitate the human ability to grasp (Piazza et al.,
2019). However, the complex structure of the human hand, with its
high DoF and integration of perception systems, poses a significant
challenge for robot replication (Hodson, 2018). Additionally, both
the delicate structure (Chalon et al., 2010) of human hands is
difficult to replicate and the current robot sensors (Xia et al.,
2022) lack the precision to imitate human grasping. Researchers
have also explored achieving grasping capabilities with non-
anthropomorphic hands, such as the combination of suction and
two-finger/three-finger gripper. Improvements have been made to

the structure and transmission mode of these grippers, such as
adopting the underactuated tendon-driven method (Stuart et al.,
2017) and incorporating continuous rotation capability of rolling
fingertips in some work (Yuan et al., 2020). Grasping in a manner
similar to human can adapt to items of arbitrary shapes in daily
life. To address the design difficulties of replicating human hands,
underactuated hand with tendon driven (Shirafuji et al., 2014) has
become increasingly popular as end effectors for humanoid robots
(Diftler et al., 2012).

2.2 Analytic methods

Analytical methods usually formulate grasp synthesis as a
nonlinear constrained optimization problem. During the grasping
process, the object and hand’s velocity and acceleration are small,
enabling the simplification of the analysis through a quasi-
static method (Bicchi and Kumar, 2000). Graspit! (Miller and
Allen, 2004), being the preeminent tool within the community
for executing grasps, leverages quasi-static analysis to maximize
grasp quality. However, this method can be time-consuming for
grasp planning. To achieve real-time behavior synthesis, some
researchers have attempted to use MPC methods to realize object
grasping and manipulation (Kumar et al., 2014). However, real
robot tests have revealed sensitivity to modeling errors. In general,
analytical methods are only suitable for accurately modeling
geometries and manipulators. Some objects such as thin cards
are limited in their grasping potential as contact points cannot
be planned on the contact surface of the card and table due
to environmental constraints that can only be lifted through
dynamic processes.

2.3 Data-driven methods

With the advancement of simulators and deep learning,
a data-driven approach to the grasp synthesis holds great
promise (Bohg et al., 2014). Researchers have presented a deep
learning architecture for detecting grasps (Lenz et al., 2015),
and techniques such as adding noise (Mahler et al., 2017) and
domain randomization (Andrychowicz et al., 2020) have been
proposed to achieve the transfer from simulation to the real
robot. In the framework of deep learning, various methods have
been widely used. Supervised learning has been used to select the
best candidate grasps (Mahler et al., 2019), while learning from
demonstration has been used to achieve specific tasks (Rajeswaran
et al., 2018). For parallel gripper represented by Dex-Net 2.0
(Mahler et al., 2017), the success rate can reach 99%. However,
for anthropomorphic hand, equipped with a high DoF, presents
a significant challenge. Even without addressing the complexities
of object dynamics, exploring a reasonable grasp action for a
high DoF dexterous hand remains a challenging task (Roa et al.,
2012). The difficulty amplifies further when dealing with objects
of uncertain shapes (Li et al., 2016). Additionally, reinforcement
learning techniques have been leveraged to achieve remarkable
performance in tasks deemed challenging for humans (Chen et al.,
2022). While significant progress has been made in studying
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FIGURE 1

Successful grasp of a thin card from a table surface using our proposed method. The grasp is achieved using a Gen3 Lite robot with a custom

underactuated anthropomorphic hand, and is guided by an RGB image captured by the camera mounted on the top of the table.

specific manipulation tasks with anthropomorphic hands, their
high-dimensional search space limits their performance in grasping
objects of any shape, particularly thin objects (Liu et al., 2019). In
recent years, some work have utilized RL based on synergies (Liang
et al., 2022) to accomplish high DoF dexterous hand grasping
and manipulation, showcasing promising prospects. However, it
requires long training times and the success rate is still lower than
parallel gripper. Therefore, we adopt a supervised learning method.
Utilizing objects with simple shapes as the training dataset allows
us to derive a controller in approximately 10 min. In addition, we
explore more grasp actions using dynamic data, thereby improving
the success rate. This article based on grasp dynamic data and
synergies methods, seeks to achieve the grasping of objects of any
shape with a high DoF hand.

3 Methodology

This section delineates the method employed to achieve stable
grasp with a custom anthropomorphic hand (Bin Jin et al., 2022).
The hand is a 6 active DoF underactuated hand driven by twisted
string. The flexion of the fingers is driven by a tendon, while
the thumb’s abduction-adduction is directly driven by a motor.
This type of underactuated hand has excellent shape adaptability,
allowing us to implement open loop control of the robot hand.
The core of our approach involves the entire dynamic process, the
reduction of space dimensionality through gestures, and the metric
for evaluating the grasp action.

3.1 Definitions

GestureT: A single variable selected from three specific gestures
denoted by T1, T2, and T3 as shown in Figure 2. Santello et al.
(1998) indicates there is a high correlation between the angles of all
finger joints. This finding suggests that by using low-dimensional
gestures, the complexity of finger joint space can be significantly
reduced. And the paper by Cutkosky (1989) depicts that human
hands predominantly employ power and precision grasp for object.
For the circular object, the generalized freedom of gestures can
cover both power and precision gestures. For the prismatic object,
we have separately chosen a gesture for power and precision. As a
result, the three gestures we have defined—medium warp, power,
and precision—are capable of grasping objects of various shapes
and sizes.

Grasp action u: A tuple u = (p,φ, q) ∈ (R3 × S
3 × R

1),
where p denotes the position of the hand relative to the centroid
of the object, φ denotes the orientation of the hand, and q denotes
the generalized degrees of freedom of the selected gesture. These
variables are illustrated in Figure 3.

Depth image y: A representation of the object in the form of a
depth image y = RH×W

+ with height H and widthW. Grasp quality
metric Q: A metric used to evaluate the stability of the grasping,
defined by the equation:

Q = 2(e−x − 0.5) ∈ [−1, 1] (1)

where x represents the variance of the object displacement while
applying a random external force after the grasp is completed, as
proposed in Ferrari and Canny (1999).
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FIGURE 2

The gesture of the custom anthropomorphic hand is depicted. The underactuated hand is of similar size to a human hand and consists of 6 active

degrees of freedom and 15 passive degrees of freedom. We artificially defined three gestures: medium wrap, power, and precision. Objects exhibiting

cross-sections less than 4 cm, characterized by the longest side length, are identified as precision grasp. Conversely, they are classified as power

grasps or medium wrap grasps, contingent upon their shape. The method of specifying gestures can be seen as o�ering multiple types of end

e�ectors for grasping objects with di�erent shapes. The correlation between the degree of control for every gesture and the configuration of the

finger is elucidated on the right side of the figure. A detailed numerical relationship is provided in Table 1.

TABLE 1 Numerical relationship between gesture control amount and finger joint angle.

Index Middle Ring Little Thumb (aa) Thumb (fe)

Medium wrap q× 1.57 q× 1.57 q× 1.57 q× 1.57 1.8 q× 0.3

Power q× 1.57 q× 1.4 q× 1.4 q× 1.57 1.4 q× 0.4

Precision q× 1.57 q× 1.57 0 0 1.4 q× 0.2

3.2 Problem statement

The challenge of planning a robust grasp for a single

rigid object can be addressed by selecting the most suitable
gesture T and grasp action u. This article aims to find

the gesture T and grasp action u that maximize the
grasp quality Q, which can be inferred from the depth
image y.

The gesture T can be selected from the set T = {T1,T2,T3}
using a gesture selection neural network. The optimal gesture T is

determined by the equation:

T∗ = argmax
T∗∈T

f (y,T) (2)

The grasp action u can be selected from a set of candidates by a
grasp quality evaluator, which maps the grasp action u to a quality
metricQ. The optimal grasp action u is determined by the equation:

u∗ = argmax
u∗∈U

Q(u, y) (3)
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FIGURE 3

Overview of our approach. A monocular depth image is generated from 3D meshes captured by a camera positioned above the table (As shown in in

the lower left corner). This image is crucial in estimating the centroid and the rotation φ0 within the plane. Our objective is to select the gesture T

and grasp action u based on the depth image y (exemplified in the upper left corner) after maxpooling. The three types of gestures T are illustrated in

Fig.2. The grasp action u is defined by the relative position of the hand with respect to the object centroid p ∈ R3, the orientation in Cartesian space,

and the close ratio of the hand q ∈ R1.

The main objective of this paper is to develop a robust grasp
planning system that successfully grasps an object based on its
depth image y.

3.3 Method

The grasping problem is approached by dividing it into
two sub-problems. Firstly, a gesture selection neural network
(GSNN) is trained as a classification problem to determine
the appropriate gesture T∗. Secondly, a dynamic grasp
quality neural network (DGQNN) is trained to map the
grasp action u and the quality metric Q. Both evaluators, the
GSNN and DGQNN, are trained using supervised learning.
Consequently, the selection of gestures and grasp actions becomes
decoupled, utilizing independent datasets to optimize their
respective performances.

3.3.1 Gesture selection neural network
To reduce the computational complexity of analyzing the high-

dimensional degrees of freedom of a custom anthropomorphic
hand, three gestures are manually defined based on grasp taxonomy
research: power, intermediate, and precision. Figure 2 illustrates
that these gestures can effectively cover objects with basic shapes
such as box, sphere, cylinder, etc. Most objects in daily life can be
approximated to these fundamental shapes. Our method refers to
the neural network framework of LeNet-5 (LeCun et al., 1998) and
utilizes the convolutional neural network structure depicted in the
upper part of Figure 5 to train the GSNN. Approximately 60,000
data are generated to train the gesture evaluator. For example,
we manually designed the medium wrap gesture for rod-shaped
objects, and power and precision gestures are distinguished by the
size of the object’s longest side length. Those with cross-sections
greater than 4 cm had the longest side length are labeled as a power
grasp, while those with the longest side length less than 4 cm are
labeled as a precision grasp. The dataset is split into training and
test sets, the GSNN attained 99% accuracy on the test dataset.
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FIGURE 4

The pipeline for training data generation. In the (A), it is shown that objects in daily life are composed of objects with simple shapes, and the training

datasets include seven types of 3D object meshes. In the (B), an object is randomly placed on the table, and its depth image is recorded by the

camera above the table. The object’s centroid and rotation φ0 is calculated based on the image, and grasp action is sampled near the centroid. The

grasp quality is then evaluated, and its probability density distribution is shown in the (C). The grasp quality distribution for the triangular prism reveals

that good grasp occupy only a small part of the entire sampling space. In the (D), it is shown that each dynamic grasp data contains a 32× 24 depth

image y, grasp action u, and the corresponding quality Q. There are nearly 300,000 entries in the full dataset. (E) This is a heat map indicating the

grasping success rate of triangular prism with a rotation of φ0 plotted on the xy plane at z = −0.8cm,ψ = 0rad, θ = 0.3rad,φ = 0.5rad, within a range

of [–3 cm, 3 cm]. (F) Visualization of successfully grasped positions in the simulation environment.

3.3.2 Grasp action dataset
Collecting dynamic data is essential for learning a grasp

quality evaluator to evaluate the performance of grasping. The
intuitive approach to evaluating grasp quality is based on the
maximum wrench magnitude over all possible directions (Ferrari
and Canny, 1999). An advanced dynamics simulation engine
MuJoCo (Todorov et al., 2012) us used to simulate the entire
dynamic process of grasp and generate grasp action dataset.

At the initiation of each grasping attempt, an object is
randomly selected from the seven basic shape types as shown in
Figure 4A, and placed on the table with random size and location.
Subsequently, a depth image y of the object is captured by a
camera directly positioned above the table. The object’s centroid
and rotation φ0 is calculated based on the image,and the image

undergoes downsampling to a resolution of 32 × 24 is saved
through max pooling, which is deployed to retain the object’s
edge information to the greatest extent feasible. Next, the grasp
action u is uniformly sampled near the object’s centroid in the
space of x, y, z ∈ [−3cm, 3cm],ψ ∈ [−0.2rad, 0.2rad], θ ∈
[−0.1rad, 0.6rad],φ ∈ [φ0 − 1.57rad,φ0 + 1.57rad]. After the
grasp is completed, the grasp quality Q is evaluated based on the
ability to resist external forces f as indicated by the variance of
the slip distance x of the object. The pipeline for training data
generation is shown in Figure 4. The grasp dataset contains a depth
image y, a grasp action u, and the corresponding grasp quality
Q. The full dataset contains almost 300,000 samples. As shown in
Figure 4B, a triangular prism object as a representation, situated
near the centroid, with uniform sampling in the space of x, y, z ∈
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FIGURE 5

Architecture of the dynamic humanoid grasp. (Top) The Gesture Selected Neural Network (GSNN) is trained o	ine to select the optimal gesture from

the depth image. The architecture consists of two convolutional layers in pairs of two separated by ReLU nonlinearities followed by four fully

connected layers. (Bottom) The Dynamic Grasp Quality Neural Network (DGQNN) is trained o	ine to predict the quality of candidate grasps from

depth images using grasp action dataset. The architecture consists of three convolutional layers in pairs of two separated by ReLU nonlinearities

followed by eight fully connected layers and a separate input layer for the grasp. (Left) When an object is presented to the robot, a depth camera

captures a depth image, and one thousand grasp candidates are generated in the sampling space. (Right) The DGQNN rapidly determines the most

robust grasp candidate, which is executed with the Gen3 robot.

[−3cm, 3cm],ψ ∈ [−0.2rad, 0.2rad], θ ∈ [−0.1rad, 0.6rad],φ ∈
[φ0−1.57rad,φ0+1.57rad]. Notably, only a small part of the grasp
actions proved successful, as shown in Figure 4C. We tested the
success rate every 2 mm within the range of x ∈ [−3cm, 3cm], y ∈
[−3cm, 3cm] on the plane, with the parameters z = −0.8cm,ψ =
0rad, θ = 0.3rad,φ = 0.5rad,φ0 = 0.5rad being fixed. Each
case undergoes 20 trials of grasp to establish the success rate.
The heat-map obtained by statistics is shown as Figure 4E, and
the corresponding grasp position has been mapped to Figure 4F.
Interestingly, the position with the highest success rate of grasp is
near x, y = (−2.8cm, 1cm), not near the centroid of the object,
which is contrary to people’s understanding. This is because at these
positions, the interaction of the robot hand with the object and
the table breaks the limit of the contact surface, thereby achieving
successful grasp. Indeed, it is through the utilization of this dynamic
data that we are able to break the limitations of the contact surface
of object and table surface, resulting in a significantly improved
success rate.

3.3.3 Dynamic grasp quality neural network
Once the appropriate gesture is selected, the objective is to

determine the optimal grasp action u. However, the dynamic grasp
dataset in Figure 4C indicates that the number of successful grasps
is extremely small, necessitating the establishment of a grasp quality
evaluator to fit this data and identify the optimal grasp action u. To
accomplish this objective, we construct a Dynamic Grasp Quality
Neural Network (DGQNN) inspired by the GQ-CNN network

(Mahler et al., 2017), as demonstrated in Figure 5 bottom.

θ∗ = argmax
θ∈2

L(Q,Qθ (u, y)) (4)

The DGQNN is defined by the set of parameters θ that represent
the grasp quality evaluator Qθ . The input data undergoes a
normalization process before being passed through a series of
convolutional layers for image input y. Concurrently, the grasp
action input u is directed through fully connected layers to achieve
an estimation of grasp quality denoted by Q. The neural network
has approximately 60,000 parameters, which are optimized using
backpropagation with stochastic gradient descent and momentum.
The training configurations of the two networks are shown in
Table 2. The neural network is trained using Torch on NVIDIA
GTX 1080Ti, and the training can be completed in about 10 min
as shown in Figure 6.

4 Results

A comprehensive evaluation of grasp performance is
conducted in both simulation and real robot, utilizing a custom
anthropomorphic hand and the KINOVA gen3 robot. To establish
a benchmark for grasp performance, a comparison is made
with other approaches for high DoF anthropomorphic hand
grasping (Liu et al., 2019, 2020). The results demonstrated that
our framework outperformed other methods, as measured by the
standard metric (Ferrari and Canny, 1999).
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4.1 Simulation results

During the grasp planning phase, our primary step entails
computing the centroid and rotation φ0 of the target object utilizing
the original depth image. For precision and medium wrap gestures,
the hand is need to aligned with the object φ0. And then the
optimal gesture is selected by maximizing the gesture evaluator
f (y) among the gestures. Subsequently, 1,000 grasp actions are
sampled uniformly in the space of x, y, z ∈ [−3cm, 3cm],φ ∈
[φ0 − 1.57rad,φ0 + 1.57rad], θ ∈ [−0.1rad, 0.6rad],ψ ∈
[−0.2rad, 0.2rad], near the object’s centroid and rotation, and
the highest quality grasp action candidate is determined using
the grasp quality evaluator Qθ∗ . A uniform sampling of 1,000
points is conducted in a 6-dimensional space, yielding an average
of 6

√
1000 ≈ 3 points for each dimension. These three points

represent the minimum, median, and maximum values of this
dimension, covering the entire space. The grasp action policy

TABLE 2 The training configurations of the two networks.

GSNN DGQNN

Learning rate 0.01 0.0001

Batch size 64 100

Number of epochs 30 100

Momentum 0.5 0.9

Dropout 0.5 0.5

Optimizer SGD SGD

Loss function Cross-entropy loss Cross-entropy loss

πθ (y) = argmax
u∈C

Qθ (u, y) is employed to execute the grasp action

u, where C specifies constraints on the set of feasible grasps such as
collisions or kinematic feasibility. By optimizing the gesture T and
grasp action u, this approach enables effective and reliable grasp.

The generalization capability of the method is assessed
through grasping tests on objects not encountered during training.
Impressively, this method achieves the success rate of 93.4%,
successfully grasping thin-shell objects like cards and triangular
prisms, which fail with static methods. In Figures 7A–C, regardless
of the specific gesture, the control strategy adopts an approach
that utilizes as many contact points as possible to grasp objects,
significantly increasing the success rate. For instance, in Figure 7B,
our initial gesture design aimed to pinch the object using the
thumb, index finger, andmiddle finger. However, during testing, we
observed that when dealing with long objects, the ring finger and
little finger are employed to provide additional support and hold
the object firmly. This adaptability is a direct result of our dynamic
process that explores and selects grasping methods with the highest
quality, ensuring robust and versatile grasping performance.

In comparison to other High-DoF Gripper planners designed
for YCB objects as shown in Table 3 (Liu et al., 2019, 2020), our
method demonstrates a superior success rate of 92% in a test
involving 50 objects. The definition of a successful grasp is as
follows: Initially, the relative position of the object to the wrist is
recorded upon the completion of the grasp action by the robot
hand. Next, the object is lifted 30cm upwards while maintaining an
unchanged wrist pose. Throughout this operation, an external force
of f ∈ [0, 5N] is exerted, its direction randomly sampled within
the entire space. Changes in the relative position are recorded. The
grasp is label as successful if the spatial variance remains under
1cm. Comparatively, the objects employed for testing are selected

FIGURE 6

Learning curve for GSNN (A) and DGQNN (B).
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FIGURE 7

Shows the results of testing the generalization for all objects, none of which were included in the training dataset. (A–C) depict the process of object

grasping, highlighting its natural and human-like characteristics. It is noteworthy that regardless of the specific gesture design, our method

consistently utilizes as many contact points as possible, leading to a significant increase in the grasp success rate. (D) shows the grasping results of

the objects in the YCB database, demonstrating the generalization capability of our method for objects with complex shapes. The results in the figure

are not near the centroid of the object, for example, the airplane. In the figure, some of the grasp positions are not near the centroid of the object, as

exemplified by the airplane. This is due to the interaction between the robot hand and the object.

TABLE 3 For the 50 YCB objects in the testing set, we compare the predicted quality of grasp poses in terms of the Q1 metric, planning time, success

rate for the grasp and success rate for the thin object.

Method Q1 Planning time(s) YCB success rate Thin object success rate

Ours 0.31 0.41 92.0 % 100%

Liu et al. (2019)

0.23 3 66.0% 0%

Liu et al. (2020)

0.11 / 54.0% 0%

from the YCB objects, mirroring those utilized in our baseline
comparisons. This is attributed to our method’s utilization of a
dynamic database and exploration of various grasp actions for
establishing contact points in the object’s surface, thereby yielding
superior grasp quality as shown in Figure 7D. Additionally, our
method employs gestures to enhance computational efficiency. The

entire process, encompassing image processing, gesture selection,
and grasp action selection, requires a total of 0.41s, with 0.02s
allocated to gesture selection and 0.39s to grasp action selection,
signifying a significant improvement over previous works. While
our method successfully addresses the grasping of thin objects, we
encountered failures with four objects characterized by oversized
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FIGURE 8

Shows the test set of six objects of di�erent shapes and sizes used to evaluate the generalization performance of the controller. The experiments on

real robot demonstrate that all the previously defined gestures are e�ectively utilized for grasping and achieve good grasp quality.

FIGURE 9

A comparison of grasping performance based on dynamics and statics. (A) illustrates the performance of grasp based on statics, which is not a force

closure grasp. In contrast, (B) depicts the performance of grasp based on dynamics with a grasp quality of 0.1, which is considered a good grasp

based on the metric.
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shapes and specific grasp position requirements, namely, the
Master chef can, pitcher base, pitcher lid, and plate.

4.2 Real robot experiments

Experiments are also conducted on a real robot comprising an
underactuated custom anthropomorphic hand, a KINOVA gen3
robot, and an RGBD camera. The gesture T and grasp actions u are
executed using the previously mentioned strategy, with the input
depth image of the object. In the actual grasping experiment, the
hand executed a predetermined gesture, and after the KINOVA
gen3 robot arrived at the specified pose, the hand is closed based
on the output generalized degrees of freedom to complete the
grasping. As demonstrated in Figure 8, our approach successfully
transferred to reality. The gestures are effectively applied to objects
of various sizes and shapes, with precision gesture employed to
grasp small objects and power gesture employed to grasp larger
objects. Our controllers demonstrated adaptability to the shape,
size, and hardness of objects.

4.3 Evaluation metric

To demonstrate the effectiveness of our method, a comparison
is made with the quasi-statics method using the standard grasp
quality metric Q1 as shown in Figure 9. A good grasp is typically
defined by the force closure grasp criteria (Ferrari and Canny,
1999), which means that the applied forces and torques at the
contact points can balance the external force and torque.

As an example, we considered grasping a triangular prism from
a table to illustrate the advantages of our method based on dynamic
processes. Using statics analysis, the contact points can only be
planned on the surface of the object not in contact with the table
surface. As shown in the left picture of Figure 9, force closure grasp
cannot be achieved without the contact point on the contact surface
between the object and the table surface. However, by considering
the dynamic process of picking up a triangular prism from the table
with nails, the position of the contact point can be placed on the
entire surface of the object through the dynamic contact of the hand
and the object, resulting in a good grasp. Our method has indeed
achieved grasping a triangular prism from the table surface using
the aforementioned dynamic process.

The grasp quality is significantly enhanced by the dynamic
process, as indicated by the standard grasp quality metric Q1. The
local grasp quality measure (LQ)

LQω = max
g∈ωA

||ω||
||g||

(5)

is defined as the maximum ratio between the resulting wrench g

and applied force for a given wrench direction ω. The grasp quality
measure is defined as the minimum LQ value over all possible
wrench directions:

Q = min
ω

LQω (6)

The results of the two grasping methods are compared on
the Graspit! simulator (Miller and Allen, 2004). The grasp using

dynamic process has a grasp quality measure of 0.1, while the grasp
based on the statics analysis is not a force closure grasp when

the friction coefficient is less than
√
3
3 . For unique objects such as

triangular prisms or thin cards, the dynamic process can convert a
failure of the original method into a success. For most objects, the
contact point can be placed on the contact surface of the objects and
the table surface via the dynamic process, resulting in an improved
grasp quality.

5 Discussion

In this article, we propose a learning and control framework
for grasping with a high DoF hand. The approach conceptualizes
grasping as a detection problem, integrating deep learning
with dynamic data to acquire high quality grasp. Through
the incorporation of gestures, the control dimensionality is
significantly reduced, reframing the challenge of high DoF hand
control into the selection of a gesture and its generalized
degree of freedom. The method has demonstrated generalization
to objects of different shapes and successfully transferred to
real robot.

Compared to methods based on static analysis, our approach
provides higher grasp quality, enabling a broader range of objects,
such as thin objects like cards. The results indicate that our control
strategy can and achieve a success rate of over 90% for grasping
objects of different sizes and shapes based on the depth image of
the object, employing three hand-designed gestures.

Decoupling the selection of gestures and the choice of
actions effectively addresses the challenges in controlling high
DoF anthropomorphic hands. Moreover, the controller utilizes
dynamic process data to explore a larger contact space on
the object surface, thereby enhancing the success rate of
grasping. As a general conclusion, the design of gestures and
dynamic process can be considered in future research on
anthropomorphic hands.
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