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one-shot imitation learning for
robotic assembly in
semi-structured environment
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Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou,

China

Introduction: Robotic assembly tasks require precise manipulation and

coordination, often necessitating advanced learning techniques to achieve

e�cient and e�ective performance. While residual reinforcement learning with

a base policy has shown promise in this domain, existing base policy approaches

often rely on hand-designed full-state features and policies or extensive

demonstrations, limiting their applicability in semi-structured environments.

Methods: In this study, we propose an innovative Object-Embodiment-

Centric Imitation and Residual Reinforcement Learning (OEC-IRRL) approach

that leverages an object-embodiment-centric (OEC) task representation to

integrate vision models with imitation and residual learning. By utilizing a

single demonstration and minimizing interactions with the environment, our

method aims to enhance learning e�ciency and e�ectiveness. The proposed

method involves three key steps: creating an object-embodiment-centric task

representation, employing imitation learning for a base policy using via-point

movement primitives for generalization to di�erent settings, and utilizing residual

RL for uncertainty-aware policy refinement during the assembly phase.

Results: Through a series of comprehensive experiments, we investigate the

impact of the OEC task representation on base and residual policy learning and

demonstrate the e�ectiveness of the method in semi-structured environments.

Our results indicate that the approach, requiring only a single demonstration

and less than 1.2 h of interaction, improves success rates by 46% and reduces

assembly time by 25%.

Discussion: This research presents a promising avenue for robotic assembly

tasks, providing a viable solution without the need for specialized expertise or

custom fixtures.

KEYWORDS

object-embodiment-centric task representation, residual reinforcement learning,

imitation learning, robotic assembly, semi-structured environment

1 Introduction

Robotics has significantly improved industrial productivity in a wide range of

tasks. However, the reliance on task-specific fixtures and expert-driven programming

limits the broader application of robotic assembly in settings characterized by small-

batch, flexible manufacturing processes (Lee et al., 2021). These settings often present

semi-structured conditions where components destined for tight-tolerance assembly are

randomly oriented within a confined workspace. Such variability complicates the assembly

process, demanding sophisticated manipulation skills for precise alignment and force

control to ensure successful component integration.
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While both model-based and learning-based methodologies

have been developed to address these complexities (Suárez-Ruiz

and Pham, 2016; Luo et al., 2021; Mandlekar et al., 2023), they often

require prior object-specific knowledge or expensive interaction

data, limiting their effectiveness and efficiency in skill acquisition. A

promising way to overcome these limitations is a hybrid approach

that combines the strengths of model-based and learning-based

strategies, paving the way for the efficient mastery of novel tasks

without necessitating robotic expertise. Recent advancements in

Residual Reinforcement Learning (Residual RL) epitomize such

hybridmethodologies (Johannink et al., 2019). However, challenges

remain, particularly in learning full-state estimation and managing

large exploration spaces for long-horizon tasks involving variable

target positions and precision assembly (Carvalho et al., 2022;

Wang et al., 2022).

This study aims to bridge the gap in fixture-less robotic

assembly by leveraging partial knowledge of transitions to

streamline robot learning (Mandlekar et al., 2023). This approach

simplifies learning by segmenting it into geometry structure

estimation, trajectory planning, and uncertainty handling (refer

to Figure 1). It is crucial to recognize that manipulation depends

on the geometric constraints of the task, the grasp pose of the

slave object, and the master object’s location (Li et al., 2023).

Assuming the known master object’s location, we can represent

the motion trajectory and assembly relationship with a low-

dimensional framework, facilitating skill adaptation across various

poses. With the geometry structure determined, learning can

concentrate on robot and task dynamics, emphasizing smooth

trajectories and interaction behaviors (Shi et al., 2023). While

the initial transfer phase requires only smooth trajectories, the

critical assembly phase demands precise localization and intricate

contact dynamics. Focused learning allows for a balanced ratio of

exploitation to exploration, enhancing sample efficiency. However,

integrating object-embodiment-centric partial knowledge, which

simplifies the task into subtasks by encoding relevant geometric

information, presents challenges: (1) extracting and representing

this knowledge without robot experts, (2) incorporating it into

imitation learning for efficient adaptation, and (3) balancing sub-

policies for effective residual learning.

This study introduces the Object-Embodiment-Centric (OEC)

task representation in an Imitation Learning (IL) and Residual

RL framework, OEC-IRRL, which is designed for contact-rich

tasks at variable locations. This framework eliminates the need for

specific fixtures and extensive expert programming and enhances

sample efficiency by seamlessly integrating IL and RL with partial

knowledge. Our contributions are as follows: (1) Innovative

Extraction of Temporal and Spatial Task Information: OEC-

IRRL employs a via-point-based task representation to outline

temporal and spatial segments of the task, enabling the learning

of adaptive operations from a single demonstration and acceptable

interactions. We extract via-points from the demonstrated

trajectory based on velocity, dividing the task into transfer and

assembly phases. The OEC task representation includes the start

via-point in the robot base frame, as well as the middle and end

via-points in the master object frame, offering essential geometry

information without extensive robot calibration or task-specific

knowledge. This is particularly useful in dynamic environments

where the master object’s pose is estimated by a vision model.

(2) Guided Hybrid IL and Residual RL for Enhanced Learning

Efficiency: This novel approach uses the OEC representation to

guide efficient learning through VMP and limits the exploration

range of residual RL. Improved VMPs learn the motion trajectory

from demonstrations and via-points, where the basic trajectory

encodes via-point geometry and shape modulation dictates the

trajectory distribution for smooth exploration. This strategy allows

for adaptation to various settings while keeping the trajectory

profile consistent during assembly. Moreover, residual RL is

selectively applied in the assembly phase for precise localization

and contact dynamics, minimizing exploration space for efficient

learning and reusing policies across locations under the base

policy’s guidance. The exploration behavior learned from human

demonstrations notably increases success rates. (3) Experiment

Validation of OEC Task Representation and Framework: Through

extensive testing, we have shown that OEC task representations

can be effectively derived from a single demonstration, greatly

enhancing the sample efficiency of VMP-based IL and multimodal

residual RL in extended tasks. Our experiments confirm the learned

strategies’ applicability to various fixtureless assembly tasks across

different locations, significantly advancing robotic assembly.

2 Related work

Deep reinforcement learning (DRL) techniques have become

increasingly popular for contact-rich activities due to their potential

to provide an alternative to the complicated and computationally

expensive process of modeling intricate environments. Despite its

potential, the application of DRL to complex manipulation tasks

has been hampered by issues related to sample efficiency and safety.

To mitigate these challenges, previous task-specific knowledge

has been exploited, including bootstrapping from demonstrations

through a specific teleoperation system in the study by Nair

et al. (2018), utilizing high-performance simulators for sim2real

in the study by Amaya and Von Arnim (2023), and exploiting

knowledge of similar tasks by pre-training on the task family in

the study by Hao et al. (2022). Although these strategies have

shown the potential to improve sample efficiency and ensure

safer DRL applications, extracting and using prior knowledge

requires a lot of engineering effort. Therefore, this section discusses

methods that extend RL to perform accurate assembly tasks in

semi-structured environments via a base policy, which is accessible

in manufacturing.

2.1 Model-based base policy

Residual RL was originally proposed to integrate conventional

controllers with DRL to solve complex manipulation tasks. RL

is utilized to handle the unknown aspects of the task, while a

hand-designed controller manages the known elements in the

study by Silver et al. (2018); Johannink et al. (2019). This

integration simplifies controller design and improves sample

efficiency. Different controllers and integration techniques have

been examined in the current literature. Schoettler et al. (2020)
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FIGURE 1

OEC-IRRL overview. We introduce an e�cient and e�ective hybrid learning system that can perform precise assembly tasks in a semi-structured

environment from a single human demonstration and less than 1.2 h of interactions.

applied Residual RL in real-world industrial tasks using a hand-

designed P-controller as the base policy. In contrast, Beltran-

Hernandez et al. (2020) concentrated on learning force control

for position-controlled robots using a state-based controller gain

policy. Additionally, Ranjbar et al. (2021) proposed a hybrid

residual RL approach and aimed at modifying both the feedback

signals and the output via the RL policy to prevent the low-level

controller’s internal feedback signals from restricting the RL agent’s

capacity to optimize its policy, thus hindering learning.

Visual servoing and motion planning have played a crucial

role in guiding DRL methods in unstructured environments. Shi

et al. (2021a) have introduced a visual RL method that unites

a fixed visual-based policy and a parametric contact-based

policy, guaranteeing a high success rate in the task and the

capacity to adapt to environmental changes. Meanwhile, Lee

et al. (2020) quantify uncertainty in pose estimation to determine

a binary switching strategy using model-based or RL policies.

Additionally, Yamada et al. (2023) implemented an object-centric

generative model to identify goals for motion planning and a

skill transition network to facilitate the movement of the end-

effector from its terminal state in motion planning to viable

starting states of a sample-efficient RL policy. However, these

methods require the model of the object, in particular, the manual

specification of a goal state in the robot’s frame and control policy

design (Yamada et al., 2023). Additionally, they face difficulties in

providing comprehensive guidance in both free space and contact-

rich regions due to the limitedmotion planning in tasks that require

environmental interaction and the scarcity of visual servoing in

addressing geometric constraints.

2.2 Imitation learning-based base policy

Leveraging prior knowledge in the form of demonstrations can

extend the application of residual RL to scenarios where accurate

state estimation and first-principle physical modeling are not

feasible (Zhou et al., 2019; Wang et al., 2023). Mathematical model-

based movement primitive (MP) with compact representation is

a promising method for learning controllers that can solve the

non-linear trajectories from a few human demonstrations. For

instance, Ma et al. (2020) recently presented a two-phase policy

learning process that employs a Gaussian mixture model (GMM)

as a base policy to accelerate RL. Davchev et al. (2022) introduced

a framework for employing full pose residual learning directly

in task space for Dynamic Movement Primitives (DMP) and

demonstrated that residual RL outperforms RL-based learning of

DMP parameters. Carvalho et al. (2022) investigated the use of

variability in demonstration of Probabilistic Movement Primitives

(ProMP) as a decision factor to diminish the exploration space

for residual RL. They compared this method with a distance-

based strategy. Neural networks are also used well for imitation

learning methods in residual RL.Wang et al. (2022) have developed

a hierarchical architecture for offline trajectory learning policies,

which are complemented by a reinforcement learning-based force

control scheme for optimal force control policies.

Visual imitation learning is essential to enable residual

RL of difficult-to-specify actions under diverse environmental

conditions. Alakuijala et al. (2021) suggest learning task-specific

state features and control strategies from the robot’s visual

and proprioceptive inputs using behavioral cloning (BC) and

convolutional neural network (CNN) on demonstrated trajectories

for residual RL. The resulting policy can be trained solely using

data, which is demonstrated for the base controller and with

rollouts in the environment for the residual policy. However,

achieving generalization through adaptable control strategies

and state estimation from high-dimensional vision information

requires a significant number of demonstrations. Additionally,

to prevent unnecessary exploration in free space regions, the

activation decision of the residual policy needs to be closer

to the assembling phase and rely on trajectory distributions

from numerous demonstrations or task-specific knowledge for

geometric constraints.

In response to these challenges, this study proposes a

novel OEC task representation within imitation learning (IL)

and residual RL frameworks, which are tailored to enable the

learning of adaptive operations from minimal demonstrations and

interactions. This approach builds upon these foundations of the

prior vision model from the model-based methods (Lee et al.,

2020; Shi et al., 2021a; Yamada et al., 2023) and the mathematical

model from the imitation learning-based methods (Carvalho

et al., 2022; Davchev et al., 2022). Our approach distinguishes

itself by: (1) streamlining robot programming through extracting

via-points from demonstrated end-effector trajectories for task
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representation, thereby simplifying the reconfiguration costs and

improving adaptability. (2) Integrating IL and Residual RL to

effectively manage both free space and contact-rich regions,

overcoming the limitations of previous approaches in terms of

learning efficiency and effectiveness. In contrast to the study by

Mandlekar et al. (2023), Zang et al. (2023) using the base policy

for data augmentation, this study uses residual RL for further

optimization on the base policy.

3 Problem statement

In this study, we formalize contact-rich assembly tasks in

a semi-structured environment as a Markov Decision Process

(MDP), M = (S,A, P, r, γ ,H). For a system with the transition

function P and reward function r, we want to determine a policy π ,

which is a probability distribution over actions a ∈ A conditioned

on a given state s ∈ S, to maximize the expected return
∑H

t=0 γ
tr in

the rollout with a horizon of H.

The assumption employed in this study can be stated as having

partial knowledge of the transition function P (Lee et al., 2020),

including a two-stage operation process and a coarse estimation of

the environmental state. The policy is typically formulated from a

combination of sub-policies, which may depend on time and state

as Equation (1) (Johannink et al., 2019; Davchev et al., 2022):

π(a|s, t) = α(s, t)πb(s, t)⊕ β(s, t)πθ (a|s, t) (1)

where πb is a base policy (offline learning or model-based),

πθ is an online learning-based policy, and α and β are

the adaptation parameters. The operation ⊕ depends on the

integration method.

By leveraging a precomputed offline continuous base policy, πb,

the task complexity for πθ is significantly reduced (Carvalho et al.,

2022). Thereafter, the residual policy is tasked with learning how to

deviate from the base policy to overcome model inaccuracies and

potential environmental changes during execution. The final policy

canmitigate system uncertainties and ensure contact safety through

adaptation parameters. To optimize the objective derived from the

sampled trajectories, a policy gradient method is implemented to

update the πθ .

A key question in this context is how to obtain the πb and

adaptation parameters to guide πθ . The proposed methodology

entails directly acquiring them in task space from a demonstrated

trajectory and a prior vision model, as described in the

following section.

4 Method

This study introduces an OEC-IRRL framework for precise

assembly tasks without specific fixtures (see Figure 2 for an

overview). It encompasses a coarse operation for long-horizon

exploration and a fine operation for uncertainty compensation.

The OEC-IRRLmethod begins by pre-processing the recorded data

from a single demonstration trajectory of the end-effector τ =

[Xn]
N
n=1 and the master object pose BXO obtained from an eye-

to-hand camera. This pre-processing step involves the generation

of the OEC task representation, which enables efficient learning

policies that adapt to new settings. Via-points (VPs) are extracted

from the trajectory based on the velocity and then converted

into OEC-VPs representing task robot-related temporal and spatial

information (Section 4.1). Subsequently, a base policy (πb) based

on piece-wise VMP is fitted using the VPs and trajectory to

facilitate coarse movements, including transferring and assembling

(Section 4.2). Leveraging πb and VPs, a multimodal residual policy

(πθ ) is learned through RL to enable precise localization and

variable force control in contact-rich tasks (Section 4.3). Following

the learning process, the obtained sub-policies (OEC-VPs, πb, and

πθ ) and the current state (including master object pose BXO and

end-effector pose BXE) are utilized for skill execution. New VPs

are obtained from OEC-VPs by representation adaptation. The πb,

after shape modulation by VPs, guides the robot in both free space

and contact-rich regions. The πθ is selectively activated by the VPs

in contact-rich regions, working in conjunction with the parallel

position/force controller to effectively reproduce the demonstrated

skill (Section 4.4).

4.1 Task representation

Demonstration-based programming has been proposed to

handle variations in geometry with less engineering effort in robot

calibration and task-specific reconfiguration (Shi et al., 2021b).

The goal of this section is to extract and define an OEC task

representation with a single demonstration and a prior vision

model, which provides the task and robot-related information for

efficient learning in long-horizon tasks and adaptability to variable

positions in a semi-structured environment.

This study equips an eye-to-hand camera to provide a global

view of the workspace, capturing a 2D image denoted Ieth. The

relative pose of the master object in the robot’s base frame BXO

can be obtained from extrinsic and intrinsic camera parameters by

hand-eye calibration and YOLO-based detectors fine-tuned to the

domain. The YOLO algorithm is widely used to detect objects in the

image or video streams (Mou et al., 2022). For each object in the

image Ieth, the algorithm makes multiple predictions of bounding

boxes that contain information concerning the object’s position

(x, y), size (w, h), confidence ccon, and category ccate, as shown in

Equation (2). The algorithm selects the most effective predicted

bounding box for the object based on a predefined confidence level.

[ccate, x, y,w, h, ccon] = YOLO(Ieth) (2)

A perception system based on object detection generates a

bounding box around the master object to obtain the location

(x0, y0), and two additional bounding boxes are generated around

the predefined feature structures to obtain the locations (x1, y1) and

(x2, y2). Using the eye-to-hand transformation BTC , the estimated

points (x′i, y
′
i) are converted to the robot frame, as shown in

Equation (3). The partial pose information of the master object,

including its orientation in Rx and Ry and translation in z

dimensions zcon, is taken into account to determine the pose BXO,

as shown in Equation (4). The calculated position is accompanied
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FIGURE 2

System overview. The first step is to extract structured information from the demonstration using the OEC task representation. Then, the OEC task

representation is used to plan the elementary trajectory in the o	ine IL, with the dynamic behavior in the demonstration encoded by shape

modulation. Finally, the residual policy is selectively activated by the OEC task representation to concentrate on the uncertainty during assembly. To

adapt to di�erent poses, the base trajectory is revised using an adaptive OEC task representation which directs invariant dynamic behavior and

handles uncertainty, enabling the reproduction of assembly skills.

FIGURE 3

OEC task representation. The trajectory is demonstrated as shown in (A) and analyzed as shown in (B) for OEC task representation.

by an error Er .

(x′i, y
′
i) =

BTC(xi, yi), i = 0, 1, 2 (3)

BXO = [x′0, y
′
0, zcon, 0, 0, arctan(

y′2 − y′1
x′2 − x′1

)]+ Er (4)

The demonstration is performed by a tele-operation system,

which first moves the slave object to the master object and then

assembles them, as shown in Figure 3. In the demonstration, BX0
O

observed at the start and the trajectory of the end-effect BXi
E at each

step Ti is recorded τ = [(Ti, BXi
E,

BX0
O)]

N
n=1.

To reduce the exploration horizon, this study analyzes

the assembly process and extracts the bottleneck pose for

task segments. Although various techniques, such as dynamic

programming algorithm (Shi et al., 2023) or stochastic-based

method (Lee et al., 2019), have been used for automatic waypoint

extraction, this study uses a simpler method of velocity-based

motion mode switch detection (VMMSD), which is motivated by

the instinctive switching between fast arrival and safe fine-grained

operation behavior modes, as shown in Figure 3. First, we define P

as the 3-d translation of BXE for the bottleneck position estimation.

Second, we estimate the nominal velocity v = [(Ti, vi)]Nn=1 and

smooth it using a moving average, as shown in Equation (5). The

pose with the highest velocity change serves as the bottleneck
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poses BXm
E , as shown in Equation (6), which divides the skill into

transferring in the free space and assembling in the contact-rich

region.

v̂ = convolve(v,w), vi =
Pi − Pi−1

Ti − Ti−1
(5)

m = argmax(a), ai =
v̂i − v̂i−1

Ti − Ti−1
(6)

where w is the moving average window, a is the nominal

acceleration, andm is the bottleneck position index.

For temporal and spatial adaptation, we have established an

OEC task representation for learning. We first define the via-

points BXvia
E to represent structured information. Together with

the extracted bottleneck pose BXm
E , the start pose BXs

E and the

goal pose BX
g
E are specified as the first and last poses of the

trajectory, as shown in Equation (7). A canonical variable t serves

as a virtual timer, linearly increasing from 0 to 1 in this study. We

then transform the bottleneck and goal pose in via-points from the

robot base frame into the task frame using the master object pose

estimated by the object detection model, as shown in Equation (8).

This allows the task robot-related information to be scaled to scenes

with different robot and master object poses.

BXvia
E = [(0,B Xs

E), (tm,
B Xm

E ), (1,
B X

g
E)], tm =

m

H
(7)

B−OXvia
E = [BXs

E,
O Xm

E ,
O X

g
E] = [BXs

E, (
BXO)

−1(BXm
E ,

B X
g
E)] (8)

4.2 O	ine learning

In semi-structured environments, a concise trajectory

representation is required to encode geometry constraints and

motion dynamics related to the task and robot while being

adaptable to various target positions. Therefore, this section

presents OEC piece-wise VMP and demonstrates the importance

of the bottleneck pose in via-points.

Motion primitives are commonly employed to model

movements in few-shot imitation learning. In this study, VMP

is used due to the enhanced capability of via-point modulation

compared with DMP and ProMP (Zhou et al., 2019). The VMP

method combines a linear elementary trajectory h(t) with a

non-linear shape modulation f (t), as shown in Equation (9).

y(t) = h(t)+ f (t) (9)

where t is the canonical variable increasing linearly from 0 to 1, and

y is the generated current pose.

It is assumed that the elementary trajectory h(t) serves as the

fundamental framework alongside the extracted via-points. The

cubic spline is a commonly used interpolation technique which

ensures that the position and velocity curves remain continuous,

which is equivalent to the goal-directed damped spring system of

DMP. The elementary trajectory can be obtained as Equation (10).

h(t) =

3
∑

k=0

akt
k (10)

The parameters ak results from the four constraints, as shown

in Equation (11).

h(t0) = y0, ḣ(t0) = ẏ0, h(t1) = y1, ḣ(t1) = ẏ1 (11)

where (t0, y0) and (t1, y1) are two adjacent via-points.

The shape modulation term f (t) encodes the dynamic behavior

of the demonstrated trajectory. It is explained as a regression model

consisting ofNk squared exponential kernels, as shown in Equation

(12).

f (t) = 9(t)Tω,ψi = exp(−hi(t − ci)
2), i ∈ [1,Nk] (12)

where hi and ci are predefined constants. Similar to ProMP, VMP

assumes that the weight parameter ω ∼ N(µ, σ ) follows a Gaussian

distribution. The parameter ω can be learned via maximum

likelihood estimation (MLE) from the trajectory between t0 and t1.

To handle intermediate via-point, we divide the trajectory into

segments to create piece-wise VMP, as shown in Equation (13). In

particular, we only use h(t) during the transfer phase, which leads

the robot through free space and disregards the suboptimal curved

trajectory.

y(t) =

{

ht(t), t0 = 0, t1 = tm t ≤ tm

ha(t)+ fa(t), t0 = tm, t1 = 1 t > tm
(13)

This study implements via-point modulation to adapt to

different positions by manipulating the elementary trajectory, h(t),

using the OEC task representation.

To investigate the effect of via-points on the reproduction

results (Wang et al., 2022), we introduce a translation to the

goal pose in the VMP formulation of a sine wave, as depicted in

Figure 4. The yellow line represents a sine wave trajectory with

Gaussian noise. We spatially scale the sine wave to match a new

goal y′(1) using one-dimensional VMP. The blue curve represents

the scaled trajectory using vanilla VMP (DMP), i.e., no mid-point

is considered. With such a baseline, we then add a bottleneck pose

to the VMP formulation and show the scaled trajectory as the green

curve. The results indicate that the bottleneck pose can maintain

the invariant trajectory of assembling in scaling. As the relative

position of the start and goal points varies, the trajectory profile of

the blue curve is changed, while the middle via-point maintains the

unchanged part between itself and the goal.

4.3 Online learning

The residual policy is learned from interaction under

exploration guidance to compensate for uncertainties in position

and contact dynamics. Together with the OEC task representation,

the learned VMP guides the RL in two ways, exploration range

and distribution in the contact-rich region. Different from Jin

et al. (2023), this study jointly trains vision-force fusion and policy

by an error curriculum learning for robust residual policy in the

insertion task.

Compliance enables a trade-off between tracking accuracy

and safety requirements, especially active compliance is
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FIGURE 4

Comparison of VMP and DMP in scaling to a new goal position. The

yellow line is a simulated demonstration using a sine wave trajectory

and Gaussian noise. The blue curve is the scaled trajectory using

DMP without a middle via-point. The green curve is the scaled

trajectory with the middle via-point.

particularly useful in making system dynamics more easily

adjustable (Schumacher et al., 2019). Based on the mass-spring-

damper model, a basic parallel position/force controller is utilized

as the low-level controller to integrate the two components of

the assembly policy, thereby generating a velocity command. The

absence of integral and differential terms ensures that both the

force and trajectory strategies have equal importance, rather than

excessively prioritizing positional accuracy. The robot exhibits

compliance and directly learns the operation skills in the task space.

The control law for joint velocities q̇ can be given as Equation (14).

q̇ =
J−1M−1

s+M−1B

[

K (Xd − X)− (Fd − F)
]

(14)

where J is the Jacobian matrix, which maps joint velocities to end-

effector velocities. M, B, and K are the virtual mass, damping, and

stiffness matrices. F and Fd are the measured interaction force

and desired force. X and Xd are the current pose and desired

reference pose.

This study formulated the combination of base and residual

sub-policies based on the compliance controller in task space as

Equation (15).

π(a|s, t) = K(t)(πb(t)− Xt)+ β(t)(πθ (a|s, t)− Ft) (15)

where stiffness K(t) and selective activation β(t) work as

adaption parameters.

To enable effective decision-making in residual policy,

multimodal information is fused to uniquely identify the states

of physical contact with the environment, and stochastic policy

representation is used to balance exploration and exploitation.

The multimodal policy consists of two elements. The two-layer

Long-Short-Term Memory (LSTM) network with 64 hidden nodes

is used to extract 6-dimensional latent features from time-series

contact force [Ft−n, ..., Ft] and relative pose [Rpt−n, ...,Rpt]. A

three-layer convolutional neural network (CNN) converts the

high-dimensional visual information Ieih into a corresponding 6-

dimensional feature vector. After that, a multilayer perceptron

(MLP) is employed to integrate the low-dimensional latent features

and generate Gaussian distributions for action sampling. The action

a of stochastic policy is mapped to the desired force Fd as the input

of the position/force controller based on the estimated safe contact

force range Fd
max, which is defined as Equation (16).

Fd = diag(a) · Fd
max (16)

Our choice of reinforcement learning (RL) method is Soft-

Actor-Critic (SAC), which is considered to be a state-of-the-art

model-free approach. SAC is a deep RL algorithm of the off-policy

actor-critic type, based on the maximum entropy reinforcement

learning framework. It aims to maximize the expected reward while

optimizing maximum entropy. The reward is defined by the goal

pose BX
g
E, and distance and force punishment reward shaping is

employed to balance between efficient and gentle behavior.

The trajectory τ can be divided into two phases: transfer in free

space and assembly in contact-rich regions using via-points from

the demonstration. This approach ensures low tracking error in free

space, aided by a large stiffness Kh, and a low gain Kl is required

for safety during assembly with limited tolerance. Nevertheless,

uncertainties and low gains prevent the controller from perfectly

following the desired trajectory, resulting in the inability to

complete the task. This study uses learning from interaction with

exploration guidance to compensate for the uncertainties within

the contact-rich region. Therefore, the stiffness switch and learning

process are activated at the bottleneck pose tm for efficient and safe

learning, as shown in Equation (17).

K(t),β(t) =

{

Kh, 0 t ≤ tm

Kl, 1 t > tm
(17)

The error curriculum is used to allow the agent to first

concentrate on managing accurate localization and contact

dynamics and then enhancing robustness to random position error

in unfixed insertion tasks. With an initial Er0, the error increases

δr as the success rate sr reaches a and decreases as it reaches b, as

shown in Equation (18). The error e is introduced to the base policy

as Gaussian noise, as shown in Equation (19).

Eri+1 = Eri + δr(sr>a) − δr(sr≤b) (18)

πb(t) = πb(t)+ e, e ∽ Gaussian(0,Er) (19)

To investigate the effect of residual policy and adaptation

parameters on the motion results, we introduced a random residual

policy on the scaled trajectory with different K(t) and β(t), as

shown in Figure 5. The green curve in the first subfigure indicates

the scaled trajectory. We activate the residual policy at the start

point in Figure 5B and at the middle point in Figure 5C. The

residual policy is activated using weekly trajectory guidance, as

shown in Figure 5D. The figure displays the exploration space of

the residual policy, with the profile surrounding the green curves.

The results demonstrate that the VMP with a middle via-point

providesmore effective guidance, taking into account the geometric

constraint. The exploration space can be further narrowed through

selective activation and an error curriculum, utilizing uncertainty-

aware exploration.
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FIGURE 5

Selective activation and error curriculum for residual learning. The yellow and green curves in (A) are the simulated demonstration and scaled

trajectory. The profile around the green curves in the figure shows the search space of residual policy with full activation in (B), selective activation in

(C), and error curriculum in (D).

4.4 Skill execution

Using the OEC-IRRL framework and learned sub-policies,

task execution can be completed at variable target locations

within the workspace. Execution follows three steps: representation

adaptation, elementary trajectory replanning for transferring, and

hybrid policy activation for assembling.

With the current pose of the master object BXO and the end-

effector pose BXE in the robot base frame, the OEC-VPs B−OXvia
E

can be transformed into via-points in the robot base frame BXvia
E .

After that, the via-points BXvia
E are used to replan the elementary

trajectory of the VMP in the current scene. The reproduced desired

trajectory guides the robot’s end-effector to the location of the

master object by the compliance controller with high stiffness in

free space. After tm, the stiffness is switched, and the residual

RL policy is activated to handle the uncertainties caused by pose

estimation, demonstration, and execution.

5 Experiments

These experiments evaluate the effectiveness of the OEC

task representation in scaling the demonstrated trajectory to a

variable goal pose using VMP and in appropriately activating the

residual policy for efficient residual learning. This section presents

the experimental setup, comparison with existing work, and

experiments to evaluate the proposed approach. The experiments

are structured into four parts. First, the VMMSD is evaluated by

detecting the bottleneck pose in demonstrations from various poses

and tasks. Second, the piece-wise VMP approach is used to learn the

operational trajectory and assess its robustness in scaling different

positions. Third, the effect of the activation point on the learning

efficiency of the residual RL is analyzed on a gear insertion task.

Finally, the hybrid policy is evaluated by comparing OEC-IRRL

with three other baselines in a semi-structured environment.

5.1 Experimental setup

We investigate the applicability of OEC-IRRL in learning to

assemble gears in a semi-structured environment using a UR5

manipulator, as shown in Figure 6. The assembly process involves

inserting a gear through a shaft and aligning the wheels with

corresponding teeth on another gear. This operation necessitates

tight tolerances of less than 0.1 mm and 0.03 radians. The residual

policy is initially trained in a structured environment to facilitate

easier initialization and subsequently guided by the base policy to

replicate the task randomly placed in a workspace. Additionally,

before training and executing the assembly task, the slave object

is manipulated using a two-finger gripper and a hand-designed

policy, being grasped and moved from a fixture to the workspace.

5.2 Comparison with existing studies

There is a critical challenge in the field of robotic assembly

research—the absence of universally accepted benchmarks and

the difficulty in replicating exact task conditions and equipment

across different studies. In this study, we have made every effort

to compare our control strategies with those from other studies

by selecting benchmarks that are as close as possible in terms
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FIGURE 6

Gear assembly in a semi-structured environment using a UR5 manipulator. (A) shows the precise assembly of gears with tight tolerances of less than

0.1 mm and 0.03 radians. (B) presents the well-organized environment and hand-designed initialization policy for residual RL. (C) illustrates the

semi-structured environment used for evaluation.

of task complexity and manipulator characteristics. Where direct

comparisons were not feasible, we have provided a detailed

discussion of the context in which each control strategy was trained

and evaluated. We initially evaluate the performance of our guided

RL system by comparing the task setting, sample efficiency, and the

results with existing assembly systems to provide a comprehensive

assessment of the proposed approach.

Experimental results indicate that our proposed method

outperforms existing baseline work broadly, as shown in Table 1.

In contrast to the study by Song et al. (2016), our approach

leverages one-shot imitation learning to determine the optimal

assembly direction and configuration and employs reinforcement

learning (RL) to autonomously refine assembly strategies, thereby

accommodating a broader range of positional errors and improving

the success rate of contact-rich operations without the need

for expert-derived experience. Zang et al. (2023) utilize the

ProMP method to model global task space strategies from limited

demonstration data and subsequently apply Behavior Cloning (BC)

to facilitate neural network training for global skill acquisition.

Our method advances this approach by extracting geometric

information from the demonstration to improve the VMP, enabling

global skill learning from a single demonstration. Additionally,

our application of RL for fine-tuning strategies in contact-rich

tasks results in higher success rates. Jin et al. (2023) introduces

a vision-force fusion curriculum learning scheme to effectively

integrate features and generate precise insertion policies for pegs

with 0.1 mm clearance. Following a similar line of thought, we

implement a base policy with an error curriculum to guide RL for

direct learning on real robots. Our method extends to handling

large pose errors within the workspace through one-shot imitation

learning and a general vision model. Although our approach does

not achieve the high sample efficiency and success rate in the

study by Zhao et al. (2023), our approach minimizes reliance on

expert knowledge by similarly segmenting the state space and

deriving the base strategy from demonstration data. In addition,

the base strategy guides RL to effectively fuse the vision and force

for efficient learning contact-rich manipulation instead of visual

servo policy. Comparing our method with the baseline from the

study by Shi et al. (2021b), our system demonstrates superior

performance at variable poses in semi-structured environments

by VMP and a general vision model. Despite similar learning

costs, our system achieves a higher success rate by incorporating

visual information into the residual RL framework. Building on the

study by Carvalho et al. (2022); Davchev et al. (2022), we further

extract the geometry information to estimate the uncertainty

region from the demonstration data, which is used to structure

the policy to reduce human demonstrations and interaction with

the environment. Overall, our method as a promising automatic

assembly method shows great advantages in success rate and

human involvement, and the training time is acceptable for

many scenarios.

5.3 Bottleneck extraction from
demonstration

This study introduces a methodology based on VMMSD for

extracting bottleneck poses, which is critical for representing the

task structure and enhancing the adaptability of the acquired

policy across different positions. This section aims to evaluate

whether VMMSD can detect the bottlenecks in demonstrations

with different relative poses and tasks with varying geometry.

In total, 2 distinct tasks, gear insertion and peg-in-hole, and 20

random relative poses, within a 0.1 m safe area around the task,

were employed to evaluate the methodology. The effectiveness

is estimated by measuring the distance between the detected

bottleneck pose and the goal pose, contrasting it with the ground

truth determined by the geometry constraint.

Result: The result shows that the VMMSD can effectively

identify bottlenecks in demonstrations, as shown in Figure 7.
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TABLE 1 Comparison with existing studies.

Baselines Clearance Pose error Coarse policy Fine policy Success rate

Song et al. (2016) 0.1 mm 8 mm Hand-designed Hand-designed 84%

Zang et al. (2023) 0.5 mm Unfixed 10 demonstrations - 87%

Jin et al. (2023) 0.1 mm 15 mm - 100 k 95.2%

Zhao et al. (2023) - Unfixed Hand-designed 5 k 100%

Shi et al. (2021b) - 2 mm 1 demonstration 200 episodes 91%

Davchev et al. (2022) 0.4 mm 0 mm 1 demonstration 700 episodes 97.9%

Carvalho et al. (2022) 3 mm Unfixed 5 demonstrations 3 k 60%

Ours 0.1 mm Unfixed 1 demonstration 300 episodes (15 k) 100%

FIGURE 7

The results of the bottleneck pose extraction for the gear-insertion

and peg-in-hole tasks. The distance between the bottleneck pose

extracted from the demonstrations and the ground truth is reported

as the average value with the corresponding standard deviation.

Compared with the ground truth determined by the geometry (Shi

et al., 2021b), the bottleneck poses detected by us show a greater

distance, which is the safe area to avoid collisions. It is important

to note that the error caused by the safe area will be eliminated

by the shape modulation term, and the effect of slightly earlier

activation on sample efficiency is deemed acceptable. In addition,

the VMMSD method provides a practical alternative that requires

a single demonstration and simplifies the identification process

compared with learning the variance frommultiple demonstrations

(Carvalho et al., 2022).

5.4 Adaptation of OEC VMP to variable
positions

In this study, we introduce an OEC task representation and

VMP to encode the assembly relationship and motion trajectory

extracted from a single demonstration and adapt to varying

positions in a semi-structured environment. This section aims to

evaluate the accuracy of the reproduction and compare it with

the DMP (Davchev et al., 2022) without considering the middle

via-point. A trajectory, represented by the blue curve as shown in

Figure 8, is generated using keyboard teleoperation. As the object’s

pose changes, the trajectory is regenerated at different positions.

We assume that precise guidance during the transferring and

assembling phases is essential for efficient residual learning. The

correlation distance between the bottleneck pose and the assembly

pose is used to measure the loss of geometric information of the

regenerated trajectory.

Result: The results demonstrate that the OEC task

representation and VMP effectively scale the demonstration

to varying positions by incorporating the master object pose, as

shown in Figure 8. The green curves represent the reproduced

and scaled results of the DMP. While the DMP can reproduce

the demonstrated trajectory, significant changes in the trajectory

profile, particularly when the scaled pose deviates from the

demonstrated one, result in the loss of geometric constraint details

in the assembling. In contrast, VMP can preserve the integrity of

via-points and offer precise motion guidance, as evidenced by the

red curve, as shown in Figure 8.

5.5 OEC residual RL for contact-rich
manipulation

Reproducing the trajectory and identifying the activation point

to guide the RL agent is crucial for efficient learning and successful

application in a contact-rich setting, as it is believed that extensive

exploration may cause a decline in performance. This section

aims to evaluate how the guidance affects efficiency and whether

the OEC-task representation can provide adequate guidance. We

compare activation points along the trajectory in learning with

an error curriculum, as shown in Figure 9. These points are

represented as “p-x,” where “p-0” represents the ground truth of

the bottleneck pose determined by geometric information, and “x”

represents the distance (m) from “p-0.” The increase of random

error in the curriculum is recorded in the training process to

measure learning efficiency.

Result: The results indicate that the distance between the

activation and the ground truth has a significant impact on the
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FIGURE 8

Comparison of VMP and DMP in scaling variable goal poses. (A) displays three dimensions of trajectories that were demonstrated and reproduced for

translation, illustrating the adaptability of both methods to changes in the goal pose. (B) shows the x dimension of trajectories demonstrated and

reproduced at a new target point along with the canonical variable t, specifically 0.03 meters (m) away from the original teaching target point, to

highlight the precision of the scaling.

FIGURE 9

E�ect of selective activation on learning e�ciency. (A) shows the activation poses “p” selected from the demonstration to train the residual policy. (B)

shows the range of random errors in the curriculum to represent learning e�ciency.

learning efficiency, as shown in Figure 9. Comparing error growth,

the closest point to the ground truth achieves the best performance.

Although the learning efficiency decreases with distance, this

decrease is not significant within a range of 50 mm. This suggests

that it is feasible to activate residual strategies by extracting the

bottleneck pose from the demonstrated trajectory with a distance

of approximately 10 mm.

5.6 Framework evaluation and comparison
with baselines

We evaluate the execution of the learned policy in a semi-

structured environment by performing a gear assembly task, as

shown in Figure 10. The residual policy is trained for 100 episodes,

lasts for 1.2 h. We employ a prior YOLO-based pose estimator and

OEC task representation to evaluate the impact of VMP as the base

policy, comparing it with two other baselines. Notably, we also use

only VMP without residual policy as another baseline to illustrate

how the hybrid policy can enhance functionally intricate models

through synergy. Baseline 1 (Shi et al., 2021a): Visual servo serves as

the base policy, with the residual policy consistently active; Baseline

2 (Lee et al., 2020): Model-based trajectory planning is employed

as the base policy, taking into account geometric constraints, with

the residual policy activated upon reaching the bottleneck pose.

Baseline 3: Only VMP is utilized, taking into account temporal and

spatial adaptation, but without the residual policy.

In the evaluation, we initialize each episode using a hand-

designed policy that contains grasping and transferring to account

for the uncertainty introduced by grasping. The base policy for

transferring and assembling in semi-structured environments is
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FIGURE 10

Video stills of the robotic assembly in semi-structured environments. (A) shows initialization using a hand-designed policy in a structured

environment and manipulation by a learned policy in a semi-structured environment. (B) shows the master object placed in the workspace for

teaching and testing.

TABLE 2 Comparison of execution with three strategies.

Task Success rate Cost time (s) Contact force-x (N) Contact force-y (N) Contact force-z (N)

Baseline 1 0.533 19.000± 5.751 1.321± 0.453 1.322± 0.402 2.978± 1.074

Baseline 2 0.733 18.227± 4.399 1.101± 0.109 1.110± 0.146 3.466± 1.371

Baseline 3 0.067 23.170± 2.345 0.433 ± 0.051 0.120 ± 0.045 3.131± 0.705

Ours 1.0 14.920 ± 4.210 1.073± 0.102 1.081± 0.094 2.208 ± 1.029

Our methodology achieves the best success rates and cost times. The forces during assembly are optimized by reinforcement learning, while baseline 3 has smaller contact forces in the x and y

directions due to a lower insertion success rate.

obtained with only one demonstration. The starting point is outside

the workspace so that the image captured by the eye-to-hand

camera and the pose estimation by YOLO can avoid the occlusion

problem. For robustness evaluation, we introduced variability in

several ways to simulate real-world conditions. The master object

is placed in the center of a 300 × 300 mm workspace for teaching

and anywhere randomly in the workspace for testing. This random

placement introduces variability in each episode, requiring the

strategies to be adaptable to different conditions. The use of a hand-

designed strategy, which includes grasping and transferring actions,

introduces variability related to the uncertainty of grasping. This

aspect of the experiment simulates the unpredictable nature of real-

world object manipulation. We conducted each strategy over 15

executions to statistically evaluate the success rate, the time cost for

each episode, and the average contact force. This sample size was

chosen to balance the need for a comprehensive evaluation with

the practical constraints of experimental time and resources.

Result: The results in Table 2 illustrate the effectiveness of the

proposed framework in the jigless assembly task. When visual

servo is used as the base policy, direct movement toward the

goal pose may cause collisions with the target object, thereby

lowering the success rate and increasing the contact force in the

x and y dimensions. On the other hand, maintaining a constant

velocity in model-based trajectory planning results in increased

contact force during the search phase, causing larger positional

variability and a lower success rate. Compared with baselines 1 and

2, our approach improves the success rate by 46% and reduces the

time required by 25%. This improvement is particularly notable

as the VMP can learn the geometric constraint and exploratory

behavior from a single demonstration. Additionally, the reduced

contact force implies a smoother operation and decreased energy

consumption. It is important to note that baseline 3, encompassing

only coarse operation, was almost unsuccessful inmultiple attempts

due to uncertainties.

6 Discussion

Our experimental results have demonstrated the feasibility

of learning a base policy from only one demonstration and

a prior vision model to extend residual RL for contact-rich

tasks in semi-structured environments. Incorporating additional

partial knowledge of the transition function into biomimetic

control architectures has a positive effect on sample efficiency,

enabling the robot to acquire knowledge akin to that of a well-

trained worker based on a specific knowledge architecture. This

study introduces an OEC task representation as fundamental

common knowledge within the architecture. Imitation learning

is demonstrated to be effective in acquiring a base policy

from non-expert demonstrations, as evident in two previous
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studies (Alakuijala et al., 2021; Carvalho et al., 2022). By utilizing

the temporal and spatial information provided by fundamental

common knowledge, it is possible to learn the base policy of

piece-wise VMP from a single demonstration. This approach

can adapt to varying positions while maintaining the invariant

trajectory for assembly in a semi-structured environment. The

use of VMP guidance allows residual RL to account for contact

dynamics resulting from unknown physical properties and pose

errors due to visual localization and unfixed manipulation, in

line with two previous studies (Johannink et al., 2019; Lee et al.,

2020). VMP with mode switch detection additionally constrains

the exploration space, allowing the agent to perform focused

searches around the goal and improving the likelihood of achieving

successful exploration toward the goal. The comparison and

evaluation results in semi-structured environments suggest that

partial knowledge of the transition function is a critical factor for

efficient RL in complex tasks, and conversely, RL can facilitate

the execution of high-level planning by addressing uncertainty.

In other words, the hybrid policy exhibits potential for embodied

agents since it enables efficient and safe learning by learning a

more powerful known part from low-cost data and the unknown

part from interactions. This includes task planning based on large

language models (LLMs), which are advanced AI models capable

of processing and generating human-like language. LLMs can assist

in understanding complex instructions and generating actionable

plans for embodied agents, thereby enhancing their ability to

perform tasks autonomously (Ahn et al., 2022). While our method

has demonstrated enhanced learning effectiveness by leveraging

partial knowledge, it is crucial to recognize possible limitations in

its implementation. The OEC-VMP-based IL does not account for

unforeseen obstacles within the workspace, potentially resulting

in dangerous collisions. The proposed approach faces difficulties

in generalizing tasks due to the limited number of samples for

residual learning.

7 Conclusion and future work

This study introduces OEC-IRRL, a framework that improves

the sample efficiency of hybrid IL and RL by incorporating

additional partial knowledge of transition. The framework

proposes an OEC task representation based on a single

demonstrated trajectory and a prior vision model, ultimately

reducing the number of demonstrations for IL and interactions

for RL. OEC-IRRL is designed to be scalable among various task

locations. The policy, derived from a single demonstration and

less than 1.2 h of interaction, achieves precise assembly tasks

in a semi-structured environment with a 100% success rate and

an average completion time of 14.92 s. This approach presents

a sample-efficient learning-based solution for robotic assembly

in flexible manufacturing settings. Future studies will focus

on the following areas: (1) Anomaly monitoring and recovery

strategies will be explored to ensure the robustness and safety of

the system in unstructured environments (Lee et al., 2019); (2) The

proposed framework will be utilized to generate more effective real

interaction data across diverse tasks for general policy learning

through offline reinforcement learning (Hussing et al., 2023) or

behavior cloning (Mandlekar et al., 2023).
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