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Introduction: Reinforcement learning has been widely used in robot motion

planning. However, for multi-step complex tasks of dual-arm robots, the

trajectory planning method based on reinforcement learning still has

some problems, such as ample exploration space, long training time, and

uncontrollable training process. Based on the dual-agent depth deterministic

strategy gradient (DADDPG) algorithm, this study proposes a motion planning

framework constrained by the human joint angle, simultaneously realizing

the humanization of learning content and learning style. It quickly plans the

coordinated trajectory of dual-arm for complex multi-step tasks.

Methods: The proposed framework mainly includes two parts: one is the

modeling of human joint angle constraints. The joint angle is calculated from

the human armmotion data measured by the inertial measurement unit (IMU) by

establishing a human-robot dual-arm kinematic mapping model. Then, the joint

angle range constraints are extracted from multiple groups of demonstration

data and expressed as inequalities. Second, the segmented reward function

is designed. The human joint angle constraint guides the exploratory learning

process of the reinforcement learning method in the form of step reward.

Therefore, the exploration space is reduced, the training speed is accelerated,

and the learning process is controllable to a certain extent.

Results and discussion: The e�ectiveness of the framework was verified in

the gym simulation environment of the Baxter robot’s reach-grasp-align task.

The results show that in this framework, human experience knowledge has a

significant impact on the guidance of learning, and this method canmore quickly

plan the coordinated trajectory of dual-arm for multi-step tasks.

KEYWORDS

trajectory planning, reinforcement learning, dual-agent depth deterministic strategy

gradient, human experience constrains guidance, motion parameter mapping

1 Introduction

In recent years, more and more researchers have paid attention to dual-

arm robots, which are more similar to human beings in terms of configuration,

joint freedom, and working space. They can better replace human tasks by

imitating human arms (Wang et al., 2022). Compared with single-arm robots,

dual-arm robots have significant advantages in precision assembly with high
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coordination and multi-object assembly in unstructured

environments. Because of the high degree of freedom and

high coordination of the dual-arm robot, it requires high

dimensions and strong coupling for its motion planning. In

particular, for multi-step complex tasks, the motion process of the

dual-arm robot can be divided into multiple sub-task processes,

which increases the dimension of motion planning from the task

planning level. The traditional motion planning method mainly

solves dual-arm robots’ obstacle avoidance motion planning

problem using constraint model establishment and non-linear

solutions (Vahrenkamp et al., 2012; Fang et al., 2015; Giftthaler

et al., 2017). However, this method has little effect on dual-arm

robots’ multi-step coordination tasks, which limits the application

of dual-arm robots.

With the development of machine learning methods, more

and more researchers use intelligent learning methods to complete

the motion planning of multi-step coordination tasks of dual-

arm robots (Bing et al., 2022a, 2023b,d). Learning-based motion

planning methods are mainly divided into imitation learning and

reinforcement learning. The motion planning method based on

imitation learning learns the motion features from the teaching

demonstration and then reproduces the demonstration task

on the robot. Maeda et al. (2020) proposed a demonstration

programming method that automatically derives task constraints

from data for constraint-based robot controllers using the Dirichlet

Process GaussianMixtureModel (DPGMM) andGaussianMixture

Regression (GMR) method. In the study by Mronga and Kirchner

(2021), phase portrait movement primitives (PPMPs), which can

predict the dynamics of the low-dimensional phase space and then

can be used to control the high-dimensional kinematics of the task,

were proposed. In the study by Dong et al. (2022), a model-based

learnable graph attention network (GAT) was used to learn task-

level skills from human demonstration passively. It was validated in

a humanoid robot task experiment of waving and grasping boxes.

This category method can realize human imitation from the level

of learning content and effectively learn humanmotion knowledge,

but it can not optimize or learn new trajectories independently.

The motion planning method based on reinforcement learning

enables the agent to explore learning motion strategies by

interacting with the environment (Bing et al., 2022b, 2023a; Chu

et al., 2022). For example, Ren and Ben-Tzvi (2020) proposed

an advising reinforcement learning approach based on the depth

deterministic strategy gradient (DDPG) and hindsight experience

replay (HER), which applies the teacher-student framework to

a continuous control environment with sparse rewards to solve

the problem of extended agents. In the study by Jiang et al.

(2021), a multiagent twin delayed deep deterministic policy

gradient (MATD3) algorithm was proposed for the on-orbit

acquisition mission of a space robot arm to generate a real-time

inverse kinematics solution for the coordinated robot arm. In

the study by Tang et al. (2022), the proximal policy optimization

(PPO) algorithm with continuous rewards was used for trajectory

planning of the two-arm robot, and the reward and punishment

function was designed based on the artificial potential field (APF)

method so that the dual-arm robot could approach and support

patients in a complex environment. This category method imitates

human beings from the level of learning style and mimics the

human trial and error reward learning mechanism. However,

the high-dimensional problem of trajectory planning brought by

dual-arm multi-step tasks which will make the search space of

reinforcement learning larger, the training process easily falls into

local optimal, and the training results are difficult to converge.

In the previous study, the DADDPG algorithm proposed

could reduce and decouple the dual-arm trajectory planning

problem to a certain extent and successfully plan the dual-arm

coordination trajectory formulti-objective tasks (Liang et al., 2023).

Based on the DADDPG algorithm, this study proposes a motion

planning framework guided by the human joint angle constraints,

which simultaneously realizes the human-like learning content and

learning style. By introducing human joint angle constraint, this

method reduces the exploration space of reinforcement learning,

rationalizes its exploration, makes its learning controllable to a

certain extent, and speeds up the learning speed.

Building a robot’s structure or control algorithm by imitating

humans or animals has long been one of the potential means

of improving robot performance (Bing et al., 2023c). The

bionics-based human-like arm motion planning method extracts

biomarkers and rules from recordedmovements for simulating arm

motion trajectory (Gulletta et al., 2020). For example, Kim et al.

proposed a method to extract human armmovement features from

the motion capture database, characterize human arm movement

according to elbow elevation angle, and use this representation to

generate human-likemovements in real-time (Kim et al., 2006; Shin

and Kim, 2014). In the study by Suárez et al. (2015), a motion

planning method for a dual-arm anthropomorphic system was

proposed, and a new basis vector of the dual-arm configuration

space returned by principal component analysis (PCA) was used to

characterize the dual-arm synergy. In this study, the human joint

angle is calculated from the demonstration data collected by IMU

and mapped to the robot model. Then, the joint angle constraint

is extracted piecewise from the multi-group human demonstration

and used to guide the autonomous learning of the multi-step

coordination trajectory of dual-arm robots.

Three existing learning optimization methods use empirical

knowledge to guide reinforcement learning: reward function

optimization, exploration behavior optimization, and network

parameter initialization (Taylor et al., 2011; Bougie et al., 2018;

Xiang and Su, 2019). Among them, optimizing reward function is

the most consistent with human behavior patterns. It models the

reward function of the reinforcement learning method based on

the empirical knowledge model, which can guide reinforcement

learning intuitively and effectively (Tian et al., 2021). The

segmented guided step reward of this study is designed to make the

joint angle constraints guide the DADDPGmethod to quickly learn

the dual-arm coordination trajectory for complex multi-step tasks.

2 Methodology

This study proposes a motion planning framework for dual-

arm robots guided by human joint constraints based on the

DADDPG method, as shown in Figure 1. In the proposed

framework, the joint angle is calculated from the demonstration

data collected by IMU and mapped to the robot model. Then,

the joint angle constraint is extracted piecewise from multiple

groups of human demonstration. The joint angle constraint is then
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FIGURE 1

The proposed framework block diagram.

TABLE 1 D-H parameters of the human arm(right).

Item θi di ai αi offseti

1 q1 0 0 π
2

π

2 q2 0 0 π
2

− π
2

3 q3 l1 0 π
2

π

4 q4 0 0 π
2

π

5 q5 l2 0 π
2

π

6 q6 0 0 π
2

π

7 q7 l3 0 0 0

l1 is the distance from the shoulder to the elbow, l2 is the distance from the elbow to the wrist,

and l3 is the distance from the wrist to the palm.

used to guide the DADDPG method to quickly learn the dual-

arm coordination trajectory for complex multi-step tasks through

reward distribution. The following is a detailed introduction

from four aspects: joint mapping model, joint angle constraint,

reinforcement learning method, and reward guidance design.

2.1 Human-robot joint mapping model

The human arm has three joints: shoulder, elbow, and wrist.

Among them, the shoulder joint has three rotational degrees of

freedom, the elbow joint has two rotational degrees of freedom,

TABLE 2 D-H parameters of Baxter arm(right).

Item θi di ai αi offseti

1 q1 0.27 0.069 − π
2

0

2 q2 0 0 π
2

π
2

3 q3 0.364 0.069 − π
2

0

4 q4 0 0 π
2

0

5 q5 0.375 0.01 − π
2

0

6 q6 0 0 π
2

0

7 q7 0.28 0 0 0

and the wrist joint has two rotational degrees of freedom. The

kinematics model of the human arm and Baxter is established

using the standard D-H method (Denavit and Hartenberg, 1955).

The parameters are shown in Tables 1, 2. q1, q2, q3 is the rotation

angle corresponding to the shoulder joint, q4, q5 is the rotation

angle corresponding to the elbow joint, and q6, q7 is the rotation

angle corresponding to the wrist joint. Input the same joint

angle value, and the posture of the two models is consistent, as

shown in Figure 2. Figure 2A is the simplified kinematics model

of the human arms, and Figure 2B is the kinematics model of the

Baxter robot.

The following describes how to solve the corresponding joint

angle from the demonstration data measured by the IMU. The

presenter wears six IMUs, as shown in Figure 3A, three for each
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FIGURE 2

Comparison of human and robot pose when joint angle

ql = qr = [−0.078,−0.968,−1.150, 1.923, 0.648, 1.008,−0.483] is set.

(A) Simplified kinematic model of human arms. (B) Kinematic model

of Baxter robot.

arm, to measure the spatial orientation of the upper arm, forearm,

and palm. Taking the right arm as an example, the coordinate

system is presented in Figure 3B: G is the global coordinate frame,

U is the upper arm coordinate frame, F is the forearm coordinate

frame, P is the palm coordinate frame, IU is the coordinate frame of

the IMUon the upper arm, IF is the coordinate frame of the IMUon

the forearm, and IP is the coordinate frame of the IMU on the palm.

The initial position of the right arm joint angle is specified as

qr0 = [q1, q2, q3, q4, q5, q6, q7] = [0, 0, 0, 0, 0, 0, 0]. In the initial

joint angle configuration, the orientation of each frame of the right

arm with respect to the global frame is represented as: R0GU =

R0GF = R0GP = [0, 0, 1; 0, 1, 0;−1, 0, 0]. The measured values of the

IMU on the upper arm, forearm, and palm are R0GIU , R
0
GIF

, and R0GIP ,

respectively, that is, the orientation of the IMU’s frame with respect

to the global frame. The orientation of the IMU relative to the arm

can be determined as shown in Equation (1):











RUIU =
(

R0GU
)T

R0GIU
RFIF =

(

R0GF
)T

R0GIF
RPIP =

(

R0GP
)T

R0GIP

(1)

where RUIU is the orientation of the IMU’s frame on the upper

arm relative to the upper arm’s frame, RFIF is the orientation of the

IMU’s frame on the forearm relative to the forearm’s frame, and

RPIP is the orientation of the IMU’s frame on the palm relative to

the palm’s frame.

When the arm moves to a new position, the orientation of the

IMU concerning the arm remains unchanged, assuming that the

new orientations of the IMU’s frame relative to the global frame are

RnewGIU
, RnewGIF

, and RnewGIP
. The orientation of the upper arm, forearm,

and palm can be calculated using Equation (2):











RnewGU = RnewGIU

(

RUIU
)T

RnewGF = RnewGIF

(

RFIF
)T

RnewGP = RnewGIP

(

RPIP
)T

(2)

where RnewGU is the orientation of the upper arm’s frame with respect

to the global frame in new position, RnewGF is the orientation of the

forearm’s frame with respect to the global frame in new position,

and RnewGP is the orientation of the palm’s frame with respect to

the global frame in new position. The relationship between the

orientation of the upper arm’s frame with respect to the global

frame and the joint angles q1, q2, and q3 is shown in Equation (3):

RnewGU = RX
(

−q1
)

RY
(

q2
)

RZ
(

q3
)

(3)

By substituting Equation (2) into Equation (3), the joint angles q1,

q2, and q3 corresponding to the shoulder joint can be calculated as

Equation (4):











q1 = −atan2
(

−RnewGU (2, 3) ,RnewGU (3, 3)
)

q3 = atan2
(

−RnewGU (1, 2) ,RnewGU (1, 1)
)

q2 = atan2
(

−RnewGU (1, 3) ,
RnewGU (1,1)

cos(q3)

)

(4)

The orientation of the forearm relative to the upper arm can be

calculated using Equation (5):

RnewUF =
(

RnewGU

)T
RnewGF (5)

The relationship between the orientation of the forearm’s frame

with respect to the global frame and the joint angles q4 and q5 is

shown in Equation (6):

RnewUF = RY
(

q4
)

RZ
(

q5
)

(6)

By substituting Equation (5) into Equation (6), the joint angles

q4 and q5 corresponding to the elbow joint can be calculated as

Equation (7):

{

q4 = atan2
(

−RnewUF (1, 3) ,RnewUF (3, 3)
)

q5 = atan2
(

−RnewUF (2, 1) ,RnewUF (2, 2)
) (7)
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FIGURE 3

IMUs and coordinate frame schematic. (A) The position of the IMU on the presenter’s arm. (B) Coordinate frame diagram.

The orientation of the palm relative to the forearm can be calculated

using Equation (8):

RnewFP =
(

RnewGF

)T
RnewGP (8)

The relationship between the orientation of the palm’s frame with

respect to the global frame and the joint angles q6 and q7 is

shown in Equation (9):

RnewFP = RY
(

q6
)

RZ
(

q7
)

(9)

By substituting Equation (8) into Equation (9), the joint angles

q6 and q7 corresponding to the wrist joint can be calculated
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as Equation (10):

{

q6 = atan2
(

−RnewFP (1, 3) ,RnewFP (3, 3)
)

q7 = atan2
(

−RnewFP (2, 1) ,RnewFP (2, 2)
) (10)

In this way, the right arm joint angle is calculated, and the left arm

joint angle can also be calculated by the above method.

2.2 Joint angle constraint

A human demonstration can be divided into multiple

trajectories for a complex multi-step task. For example, a bottle

cap screwing task can be broken down into reaching, grabbing,

aligning, and screwing steps. Suppose a multi-step task is artificially

divided into N sub-tasks; in the sub-task n, the angle constraint of

the k-th joint of the human arm can be expressed as Equation (11):

ank ≤ qnk ≤ bnk (11)

where 0 < n ≤ N, 0 < k ≤ 14, an
k
is the lower limit for the k-

th joint angle in sub-task n, bn
k
is the upper limit for the k-th joint

angle in sub-task n.

When there are M groups of human demonstrations, the

trajectories can be divided into M ∗ N sub-trajectories, where N is

the number of sub-tasks. Then, for sub-task n, the angle constraint

of the k-th human arm joint can be expressed as Equation (12):

Cn
k
:







qn
k
≥ min

(

an
k,1
, an

k,2
, · · · , an

k,m

)

qn
k
≤ max

(

bn
k,1
, bn

k,2
, · · · , bn

k,m

) (12)

where 0 < m ≤ M, an
k,m

is the lower limit of the k-th joint angle in

the sub-task n of the demonstrationm, bn
k,m

is the upper limit of the

k-th joint angle in the sub-task n of the demonstrationm.

2.3 Reinforcement learning method

The DADDPG method proposed in previous study can plan

the coordinated trajectories of dual-arm robots for multi-objective

tasks (Liang et al., 2023). In this study, the DADDPG algorithm is

chosen as the algorithm of reinforcement learning, which uses two

agents to plan the coordinated trajectory of the left arm and the

right arm simultaneously. Each agent contains four networks: Actor

µi(si|θi
µ), Critic Qi(s, ai|θi

Q), Target Actor µ′i(s
′
i|θ

µ′

i ), and Target

Critic Q′i(s
′, a′i|θ

Q′

i ), where i = 1, 2.

For the agent i, the parameters of the Critic network are

updated by minimizing MSBE loss Lc by the gradient descent

method using Equation (13) (Liang et al., 2023):

Lc = (yi − qi)
2 = (Qi(sj, aj,i|θ

Q
i )− rj,i + γ (1− done)

Q′i(sj+1,µ
′
i(sj+1,i|θ

µ′

i )|θQ
′

i ))2 (13)

The parameters of the Actor network are updated by maximizing

the cumulative expected return J of agent i by the gradient ascent

method using Equation (14) (Liang et al., 2023):

▽θ
µ
i
J = E

s∼µ1 ,µ2

[

▽aiQi(s, ai|θ
Q)|s=sj ,ai=µi(sj,i) ▽θ

µ
i

µi(si|θ
µ
i )|sj,i

]

(14)

The parameters of the target networks are updated by way of soft

update using Equation (15) (Liang et al., 2023):

{

θ
Q′

i ← τθ
Q
i + (1− τ )θ

Q′

i

θ
µ′

i ← τθ
µ
i + (1− τ )θ

µ′

i

(15)

2.4 Guided reward design

Based on the reward function designed in the previous study

(Liang et al., 2023), this study develops the segmented guided step

reward term so that the human joint angle constraint can guide the

learning process of the reinforcement learning method and narrow

its exploration space. The reward of agent i can be calculated using

the reward function. The segmented guided step reward term rguide
is shown in Equation (16):

rguide =
∑

k

rn,k (16)

where

n =























1 if goal1 = False

2 if goal1 = True, goal2 = False

· · ·

N if goal1, goal2, · · · , goalN−1 = True, goalN = False

,

goaln is the target of sub-task n. rn,k =
{

c0 if qk satisfies the constraint C
n
k

−c0 else
, c0 is a positive constant.

The step reward term of the reward function is shown as

Equation (17):

rstep = −distance(pos_gripperi, pos_finalgoali)+ rguide (17)

The reward function is the sum of the three items shown in

Equation (18) (Liang et al., 2023):

R = rstep + rgoal + rcoordinate (18)

3 Experiment

3.1 Validation of joint angle mapping
method

This experiment set up a human armmovement trajectory, and

the arm posture data were measured using IMUs. The arm joint

angle was calculated using the method in Section 2.1 and input into

a simplified D-H model of the human arm. The human arm pose

sampled at five positions was compared with the D-H visualization

model pose, as shown in Figure 4.

In the D-H visualization model, the X-axis of the coordinate

frame at the end of the right arm corresponds to the direction of

the right hand, and the Z-axis corresponds to the direction of the

fingers when the right hand is opened. The X-axis of the coordinate

frame at the end of the left arm corresponds to the direction

of the left hand, and the Z-axis corresponds to the direction of

the fingers when the left hand is opened. As can be observed

from the comparison in Figure 4, the orientation of the two end
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FIGURE 4

Comparison of human arm sampling pose and D-H visual model pose.

coordinate frames of the model is consistent with the orientation

of the IMUs worn on the demonstrator’s palms, and the posture of

the demonstrator’s arm and the model’s arm is also very similar.

Therefore, the joint angle calculation and mapping method in this

study are effective.

3.2 Validation of joint angle constraint
guidance method

In this section, the effectiveness of the proposed joint angle

constraint guidance method was verified on a Baxter robot in a

GYM simulation environment for multi-step tasks. The set multi-

step task consists of three sub-steps: reach, grasp, and align. Ten

groups of demonstration data of human execution of the reach-

grasp-align task were collected, calculated, and processed to obtain

joint angle constraints. Then, the constraint guidance is added

to each time step of DADDPG algorithm learning trajectory. To

verify the framework’s effectiveness proposed in this study, the

learning effects of single-segment constraint introduction, multi-

segment constraint introduction, and unconstrained introduction

are compared.

3.2.1 Experiment settings
The reach-grasp-align task scene of the Baxter robot in the

GYM simulation environment is shown in Figure 5. The black

block is the operating object of the left arm, the yellow block is

the operating object of the right arm, the red sphere is the target

position of the left arm, and the blue sphere is the target position

of the right arm. The parameters of the DADDPG algorithm were

set the same as in the study by Liang et al. (2023), except that the

dimension of observation was changed.

3.2.1.1 Constraints

This experiment used two types of constraints: single-segment

and multi-segment constraints. When the calculated joint angle

data were not segmented, the entire motion process included reach,

grasp, and align sub-steps, and a single segment constraint C1 was

obtained. When the calculated joint angle data were segmented,

it was divided into reach, grasp, and align sub-steps. Because

the joint movement of the grasp substep was tiny, constraint

C2 was obtained from the joint angle data of the reach substep

and the grasp substep, and constraint C3 was obtained from

the joint angle data of the align substep. C2 and C3 form a

multi-segment constraint.

3.2.1.2 Observation

Joint angle constraint guidance must introduce the state of the

robot’s joint angle in the observation to guide the agent’s learning.

The observation was therefore set as: s = (sl, sr), sl is the state of

the robot’s left arm and its target, including the position of the left

gripper, the position of the left arm joint angle, the position of the

left object, the relative position of the left object and the left gripper,

the state of the two fingers of the left gripper, the orientation of the

left object, the linear velocity of the left object, the angular velocity

of the left object, the linear velocity of the left gripper, the speed of

the two fingers of the left gripper, and the position of the left target.

sr is defined as the variable corresponding to the right arm.

When no constraints are introduced, the state of the robot’s

joint angle is not required. The observation was the same as in the

study by Liang et al. (2023).

3.2.1.3 Reward

This experiment used the reward function designed in Section

2.4. Set the guiding reward constant to 0.01 for the reach and

grasp stages and 0.05 for the align stage. Set the reward of subgoal

reaching rg1 = 1, the reward of subgoal grasping rg2 = 20, the

reward of coordinate rc = 4000.

3.2.2 Results
The comparison of training curves of the DADDPG algorithm

with single-segment constraint introduction, multi-segment

constraint introduction, and no constraint introduction in
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FIGURE 5

GYM simulation environment for Baxter robot’s reach-grasp-align task. Baxter’s arms reach the position of their respective object box, then grasp

their respective object box, and finally align the two object boxes.

FIGURE 6

Comparison of the average cumulative return curves of the DADDPG algorithm with single-segment constraint introduction, multi-segment

constraint introduction, and no constraint introduction trained in the reach-grasp-align task of the dual-arm robot.

the reach-grasp-align task of the dual-arm robot is shown

in Figures 6, 7.

Figure 6 shows the curve comparison of the average cumulative

return as the number of training increases. The DADDPG

algorithm with single-segment constraint introduction, multi-

segment constraint introduction, and no constraint introduction

was trained 10,000 episodes. As can be observed from the figure,

the average cumulative return curve of an agent guided by

multi-segment constraints C2&C3 converges at approximately

4,000 episodes, that of an agent guided by single-segment

constraints C1 converges at approximately 5,600 episodes,

and that of an agent guided by no constraints converges

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1362359
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liang et al. 10.3389/fnbot.2024.1362359

FIGURE 7

Comparison of average success rate curves of the DADDPG algorithm with single-segment constraint introduction, multi-segment constraint

introduction, and no constraint introduction in the reach-grasp-align task of the dual-arm robot.

at approximately 7,000 episodes. Regarding the number of

training episodes for the average cumulative return curve

convergence, the number of training episodes required for

converging multi-segment constrained guided agents is 71%

for single-segment constrained guided agents and 57% for

unconstrained guided agents. The number of necessary training

episodes for single-segment constrained guided agent convergence

is 80% of that needed for unconstrained guided agents. The

results show that adding single-segment constraints to DADDPG

can significantly improve the speed of training convergence.

Improving the rate of training convergence by introducing

constraints in segments is more prominent. This verifies the

validity of the motion planning framework for two-arm robots

based on the DADDPG method, which is guided by human

joint constraints.

Figure 7 shows the curve comparison of the average success

rate as the number of training increases. As can be observed

from the figure, the average success rate of the agent guided by

multi-segment constraint C2&C3 is 0.85 or above approximately

4,480 episodes, and the average success rate of the agent guided

by single-segment constraint C1 is 0.85 or above approximately

5,810 episodes. The average success rate of agents without

constraint guidance is 0.85 and above approximately 7,685

episodes. Regarding the number of training episodes required to

achieve a success rate of 0.85 and above, the multi-stage constraint

is 77% of the single-stage constraint guidance and 58% of the

unconstrained guidance. In addition, themaximum average success

rate for multi-segment constrained booting is 0.98, the maximum

average success rate for single-segment constrained booting is 0.94,

and the maximum average success rate for unconstrained booting

is 0.98. The results show that using joint Angle constraint to

guide the learning of the agent can improve the learning speed

without sacrificing the success rate. The results demonstrate the

superiority of the proposed framework in the performance of

multi-step tasks.

Figure 8 compares the actual training time of DADDPG

algorithm with single-segment constraint introduction, multi-

segment constraint introduction, and no constraint introduction in

the reach-grasp-align task of the dual-arm robot. The DADDPG

algorithm with single-segment constraint introduction, multi-

segment constraint introduction, and unconstrained constraint

introduction was trained in 10,000 episodes on the same device.

As can be observed from the figure, the average cumulative return

curve of an agent guided by multi-segment constraints C2&C3

converges at approximately 48590s, that of an agent guided by

single-segment constraints C1 converges at approximately 75830s,

and that of an agent guided by no constraints converges at

approximately 96393s. Regarding actual training time for average

cumulative return curve convergence, the training time required

for multi-stage constrained guided agent convergence is 64%

of that for single-stage constrained guided agent and 50% for

unconstrained guided agent. The results show that although the

joint angle constraint guidance needs to increase the observation

dimension and improve the computational complexity to a certain

extent, the actual training time is still significantly reduced. The

results further demonstrate the effectiveness of the proposed

framework in reducing training time.

4 Discussion

Improving the learning efficiency of dual-arm robots’ motion

planning is always a primary concern, as it can save the investment

in time and hardware. In this article, we introduced human
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FIGURE 8

Comparison of actual training time curves of the DADDPG algorithm with single-segment constraint introduction, multi-segment constraint

introduction, and no constraint introduction in the reach-grasp-align task of the dual-arm robot.

joint angle constraints into the DADDPG method for improving

the motion planning framework of dual-arm robots. We tested

the improved framework on a Baxter dual-arm robot in the

Gym simulation environment. The performance of the proposed

motion planning framework was evaluated in multi-step tasks

(reaching, grasping, and aligning). The results show that the

introduced human angle constraints effectively guide robots to

learn tasks faster.

Human movement patterns are energy consumption optimal

solutions learned through life experience. Inspired by human

movement patterns during reaching, grasping, and aligning objects

in random places, we extracted human motion features from joint

angle curves for faster learning and a higher task completion

rate. These features are transformed into constraints in each

step during learning. In Section 3.2, three operations were

planned using the same constraints. As shown in Figures 6,

8, the real learning time and the number of iterations were

reduced. This phenomenon demonstrates that constraining the

angle range of the robot joint can narrow the exploration space

of the end trajectory, thus improving the learning efficiency.

To further enhance learning efficiency, smaller constraints

were defined for reaching/grasping and aligning, respectively.

The real learning time and the number of iterations were

shorter. The effectiveness of the introduced human joint angle

constraints is verified.

This study defined the constraints for the joint angle of dual-

arm robots. Thus, a smaller search space of the end is obtained.

Some other motion parameters, such as joint angular velocity

or acceleration, can also be constrained to improve the learning

efficiency. The constraints can be defined more strictly according

to the human motion features with respect to these motion

parameters. Therefore, the proposed constraint-based dual-arm

robot motion planning framework has a scalability potential.

In our future studies, the performance of the proposed

planning framework will be verified on the objects unseen in

the Gym simulation learning. A more complicated task pool

will also be developed to show the potential of this work. The

additional tasks are mainly focused on three application scenarios:

a) dynamic assembly of parts in the factory, b) valve screwing in

the space environment, and c) multi-objects sequentially screwing

in housekeeping and healthcare.

5 Conclusion

This study proposes a motion planning framework based on

reinforcement learning guided by human joint angle constraints,

and the DADDPG algorithm is selected as part of reinforcement

learning. First, the human joint angle is calculated from the

demonstration data collected by IMU and mapped to the robot

model. The joint angle constraint is extracted piecewise from

multiple groups of human demonstrations. Then, the segmented

step guidance reward is designed, and the joint angle constraint is

introduced into the reinforcement learning algorithm to guide the

autonomous learning of the multi-step coordination trajectory of

both arms. Finally, for the reach-grasp align task of the two-arm

robot, the effectiveness of the proposed framework was verified

in terms of training convergence speed, success rate, and training

duration under the GYM simulation environment of the Baxter

robot. The method will be extended to more complex multi-step

tasks and applied to bottle cap screwing scenarios for home services

in future studies.
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