
TYPE Original Research

PUBLISHED 28 March 2024

DOI 10.3389/fnbot.2024.1375309

OPEN ACCESS

EDITED BY

Rui Li,

Chinese Academy of Sciences (CAS), China

REVIEWED BY

Lin Hong,

Technical University of Munich, Germany

Hu Cao,

Technical University of Munich, Germany

*CORRESPONDENCE

Kai Huang

huangk36@mail.sysu.edu.cn

RECEIVED 23 January 2024

ACCEPTED 11 March 2024

PUBLISHED 28 March 2024

CITATION

Hong T, Li W and Huang K (2024) A

reinforcement learning enhanced

pseudo-inverse approach to self-collision

avoidance of redundant robots.

Front. Neurorobot. 18:1375309.

doi: 10.3389/fnbot.2024.1375309

COPYRIGHT

© 2024 Hong, Li and Huang. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A reinforcement learning
enhanced pseudo-inverse
approach to self-collision
avoidance of redundant robots

Tinghe Hong, Weibing Li and Kai Huang*

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China

Introduction: Redundant robots o�er greater flexibility compared to non-

redundant ones but are susceptible to increased collision risks when the end-

e�ector approaches the robot’s own links. Redundant degrees of freedom (DoFs)

present an opportunity for collision avoidance; however, selecting an appropriate

inverse kinematics (IK) solution remains challenging due to the infinite possible

solutions.

Methods: This study proposes a reinforcement learning (RL) enhanced pseudo-

inverse approach to address self-collision avoidance in redundant robots. The RL

agent is integrated into the redundancy resolution process of a pseudo-inverse

method to determine a suitable IK solution for avoiding self-collisions during task

execution. Additionally, an improved replay bu�er is implemented to enhance the

performance of the RL algorithm.

Results: Simulations and experiments validate the e�ectiveness of the proposed

method in reducing the risk of self-collision in redundant robots.

Conclusion: The RL enhanced pseudo-inverse approach presented in this study

demonstrates promising results in mitigating self-collision risks in redundant

robots, highlighting its potential for enhancing safety and performance in robotic

systems.

KEYWORDS

reinforcement learning, inverse kinematics, redundant robots, self-collision avoidance,

sim to real

1 Introduction

Kinematically redundant robots possess more degrees of freedom (DoFs) than required

to perform a user-specified task. Therefore, redundant robots deliver more advantages in

human-robot interactions. However, greater flexibility originated from redundant DoFs

increases the risk of self-collision, especially when the human operator forces the end-

effector to move close to the robot’s own links. Moreover, the robot links are constantly

moving, which makes self-collision avoidance more difficult.

The crux in the self-collision problem of redundant robots lies in the difficulty of

determining appropriate inverse kinematics (IK) (Paul and Shimano, 1978) solution.

For non-redundant robotic arms, providing a specific position and orientation for the

end effector typically results in no more than 32 IK solutions (Tsai and Morgan, 1985).

However, in the case of redundant robotic arms, there often correspond an infinite number

of solutions. This makes it challenging to determine an appropriate IK solution to avoid

self-collision.

Firstly, it is difficult to obtain the closed form solution of redundant robots directly

(Zaplana and Basanez, 2018) and it is also burdensome to meet the constraints of

self-collision avoidance. Secondly, the IK solution should be consistent with themechanical

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1375309
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1375309&domain=pdf&date_stamp=2024-03-28
mailto:huangk36@mail.sysu.edu.cn
https://doi.org/10.3389/fnbot.2024.1375309
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1375309/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

properties of the robot arm, i.e., the joint variables need to be

bounded to ensure the smoothness of the motion. Finally, the

solution should have some generality to migrate onmultiple robots.

There are some limitations in the existing IK solutions. Some

researchers have proposed numerical methods for solving inverse

kinematics problems, such as the Jacobian matrix inversion-based

solution (Colomé and Torras, 2015), the transposed Jacobian

matrix-based solution (Wolovich and Elliott, 1984), and the

damped least squares (DLS) solution (Nakamura and Hanafusa,

1986). Based on the current joints’ status and the Denavit-

Hartenberg (D-H) parameters (Denavit and Hartenberg, 1955) of a

given robot, the end-effector can be continuously controlled under

the guidance of one predetermined path. Unfortunately, numerical

methods only provide a feasible set of IK solutions, which cannot

be selected in complex cases. In contrast, Heuristic-based methods

transform the IK problem into an optimization problem and select

adaptive solutions. Momani et. al used a genetic algorithm to

solve the IK problem and obtains a continuous smooth solution

(Momani et al., 2016). In Rokbani and Alimi (2013) and Dereli and

Köker (2018), different variants of the particle swarm optimization

were presented to solve the IK problem for redundant robots. In

Dereli and Köker (2020), a quantum particle swarm was proposed

to compute the IK solutions of a 7-DoF robot. Koeker and Cakar

improve the control accuracy of a robotic arm by combining neural

networks, simulated annealing, and genetic algorithms (Köker

and Çakar, 2016). Although heuristic methods can address IK

problems under constraints, the dynamic nature of the robotic

arm’s motion creates a constantly changing environment, making

it challenging for heuristic methods to converge. Furthermore,

heuristic approaches often focus on solving for a specific state of

the environment, overlooking the temporal and spatial continuity

of the robotic arm’s movement.

In contrast to traditional methods, machine learning

approaches offer greater adaptability to complex tasks in

controlling robots. In Cao et al. (2022, 2023a,b), authors have

employed deep learning techniques to control robotic arms for

grasping tasks. In a variety of machine learning approaches,

Reinforcement learning (RL) (Sutton and Barto, 2018) involves

a method that an agent explores the environment to achieve

a maximum reward. Therefore, RL is suitable for finding

an appropriate IK solution for a redundant robot under the

constraint of collision avoidance. In Bing et al. (2023a,b), the

authors employed meta-RL to control robots in simulated

environments to achieve specific objectives. In Bing et al. (2022b),

the authors utilized RL to control the locomotion of a snake-like

robot. However, in self-collision avoidance situations, there

are challenges in sample acquisition. Direct control of robot

joints by reinforcement learning agents may cause difficulties

in obtaining successful samples. In contrast, when controlling

robot joints using the traditional IK method, collision samples

are rare, which makes it difficult for the agent to learn how to

avoid collisions.

To address the issues mentioned above an RL-enhanced

pseudo-inverse approach is proposed in this paper. The RL solver

does not directly control the robot, but imposes an interference to

the pseudo-inverse solver to avoid self-collision of the robot. The

main contributions of this paper are listed as follows:

• Firstly, an RL-enhanced pseudo-inverse solution method is

proposed. In this approach, the RL agent outputs interference.

The pseudo-inverse solver incorporates these interference

into the computation to obtain an IK solution for robotic

positioning with self-collision avoidance.

• A novel replay buffer is designed to adjust sample proportions

under self-collision avoidance scenarios. This enhances the

learning efficiency of the agent by elevating the diversity of

samples in the buffer.

• Finally, a simulated training and testing environment was

established in CoppeliaSim, and the effectiveness of the

proposed method is validated through simulations and

experiments using the Frank Emika Panda robotic arm.

2 Related work

Collision avoidance is always one of the critical issues to be

solved in robotic arm control. The method in Guo and Hsia (1990)

and Cheng et al. (1998) maximizes the distance between the robot

arm and the obstacle to avoid collisions, but it is unnecessary to

always maximize the distance when the robot is far away from

the obstacle. In Duguleana et al. (2012), the authors propose

an improved quadratic programming(QP) problem formulation,

representation of the collision-free scheme as a dynamically

updated inequality constraint. Haviland and Corke (2021) present

a motion controller which is wrapped into QP. The controller can

avoid static and dynamic obstacles while moving to the desired

end-effector pose.

As an intelligent learning method, RL does not require an

accurate model or prior knowledge, thus providing a new solution

to the complex redundant robot control problem. The authors

of Al-Hafez and Steil (2021) take the concept of redundancy

resolution and propose a policy search with redundant action bias

to control the motion of the robotic arm and avoid collisions by

maximizing the distance between the linkage and the obstacle. In

Li et al. (2022) the authors propose a framework that employs deep

reinforcement learning (DRL) to find the most efficient path in

Cartesian space and to compute the most energy-efficient solution

for robot IK. In Bing et al. (2022a, 2023c), the authors trained

robotic arms to evade obstacles and grasp targets using a method

based on Hindsight Goal Generation.

In Martin and Millán (1997) the authors employ proximity

sensors and reinforcement learning methods to solve the self-

collision problem of redundant robotic arms. However, this

approach is specific to two-dimensional robotic arms and difficult

to extend to three-dimensional space. In Agarwal et al. (2016)

and Schappler and Ortmaier (2021), the authors employed the

null space projection to address singularity avoidance in three-axis

planar robots and six-axis serial robots, respectively. In comparison

to singularity avoidance, self-collision avoidance requires more

consideration of the robotic arm’s structure, as arms with different

structures have varying joint positions during motion, making it

more challenging to predict the location of the links.

In summary, the issue of self-collision in robotic arms becomes

increasingly significant with the growth of joint complexity,

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

and there is currently limited attention given to this problem.

Traditional collision avoidance methods typically focus on

obstacles with fixed or uniform motion or impose restrictions

on the number of joint angles of the robotic arm. The proposed

method in this paper aims to avoid irregularly moving robotic arm

links and is insensitive to both the number and structure of joints

in redundant robotic arms.

3 Mathematical model

Generally, the control of a robotic arm is associated with a

mapping from the work space to the joint space. However, it is

difficult to directly calculate the relationship between the change

in end-effector’s pose and the change in joints’ states. Therefore, a

common approach is to map the change in pose to the change of

joint velocity, and the work space and joint space are related by a

Jacobian matrix in the mapping.

Set the desired velocity of the end-effector of the robot arm to

be ẋ, which is a 6-dimensional vector (three translations and three

rotations), and let J denote the Jacobian matrix. The joint velocity

of the robot arm is an n-dimensional vector, referred to as q̇, where

n represents the number of DoFs of the robot. The velocity of the

end-effector ẋ could be obtained from q̇ and J in Equation (1):

ẋ = Jq̇. (1)

Then, based on the pseudo-inverse method, it yields Equation

(2):

min ‖ q̇ ‖2

subject to ẋ = Jq̇.
(2)

The pseudo-inverse method uses the minimum joint velocity

as the optimization objective to improve the motion efficiency.

However, this optimization objective cannot satisfy the need for

self-collision avoidance. As a result, a controllable interference i̇ is

added, where i̇ represents a vector with the same dimension as q̇ in

Equation (3):

min ‖ q̇+ i̇ ‖2

subject to ẋ = Jq̇.
(3)

According to the Lagrange multiplier method (Boyd and

Vandenberghe, 2004), it leads to

q̇ = JT(JJT)−1(ẋ+ Ji̇)− i̇. (4)

Define J† = JT(JJT)−1. Since JJ† = I,J† is the right

pseudo-inverse of the Jacobian matrix J. Therefore, Equation (4)

is equivalent to

q̇ = J†(ẋ+ Ji̇)− i̇. (5)

The right pseudo-inverse of the Jacobian matrix can be

solved with any of the optimization solvers without affecting the

computation of q̇. The existence of the pseudo-inverse solutionwith

interference is not affected since the inverse matrix is replaced by

the pseudo-inverse and J† necessarily exists.

FIGURE 1

Structure of RL enhanced pseudo-inverse controller.

Lemma 1. After adding the interference, the resulting q̇ still allows

the end-effector to move with the desired velocity ẋ.

Proof. Multiplying J left on both sides of Equation (5), then get

Equation (6):

Jq̇ = JJ†(ẋ+ Ji̇)− Ji̇

= ẋ+ Ji̇− Ji̇

= ẋ.

(6)

This proves that q̇ with interference i̇ can generate the desired

velocity for robot motion control.

4 Proposed RL enhanced controller

The proposed controller contains two solvers, the RL solver

and the pseudo-inverse solver. The RL solver accepts observation

from the environment and returns interference i̇. The pseudo-

inverse solver accepts the Jacobian matrix J from the environment

and calculates the velocity q̇ of robot joints in the current state

by combining interference i̇ according to the method in Equation

(5). A series of actions will be obtained through the controller.

The structure diagram of the controller is shown in Figure 1.

The pseudo-inverse solver has been explained in Section 3. Next,

we will present the key elements of the RL solver and the RL

network structure.

4.1 Observation space

The RL agent receives the environment information through

the observation space at each step. In RL, the correct choice of

observation space parameters is crucial as the agent needs the

correct set of information to understand the causality of a given

reward based on the behavior.

The observation space ot is given in Table 1. φ is an n-

dimensional vector to present the current robot joints’ angle. Define

ṗ as the difference of coordinates between the target point and the

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

TABLE 1 The observation space o
t of the RL controller.

Symbols Description

φ Current joints angle

ṗ Difference between target and current position

ṙ Difference between initial and current rotation

current robot end-effector. The target point position coordinates

is denoted as ṗtar , and the end-effector position is denoted as

ṗee. ṗ, ṗtar , and ṗee, are 3-dimensional vectors. The 3 dimensions

correspond to the coordinates of the Cartesian coordinate system

in the x, y and z directions. ṗ can be obtained from

ṗ = ṗtar − ṗee. (7)

Define ṙ as the angle difference between the end-effector at

the beginning and the current position. The initial end-effector

rotation is denoted as ṙinit , and the current rotation is denoted as

ṙcur , then obtain the rotation difference from Equation (8):

ṙ = ṙinit − ṙcur . (8)

Similarly, ṙ, ṙinit , and ṙcur are all 3-dimensional vectors that

represent the rotation about the x, y, z axes in the Cartesian

coordinate system.

In summary, an overall (n + 6)-DoFs observation space is

used in this work. In the simulation of this paper, the position

and rotation information of the end-effector are obtained from the

simulator directly. For the robotic arm in a physical environment,

this information can be estimated using forward kinematics.

4.2 Action space

At time t, the final output of the controller is an n-dimensional

vector at , denoted as q̇ in the Equation (5), where n represents the

DoF of the robotic arm. The values of at fall within the range of [-1,

1] and are transformed linearly to correspond to the velocities of the

respective joints. The RL solver produces the interference vector it ,

which is also an n-dimensional vector, representing the interference

i̇ in the Equation (5) at time t. It is worth noting that this paper

primarily focuses on the robot’s kinematics, and joint torques are

beyond the scope of this study.

4.3 Single-step reward

When the RL solver introduces excessive disturbance to the

Pseudo-inverse solver, it can result in deviations of the end effector’s

motion from the target trajectory or unexpected rotations. For

instance, when the joint motion of the robotic arm exceeds limits,

it may cause a significant deviation of the end effector from the

designated motion trajectory.

To prevent the occurrence of the aforementioned phenomena,

it is essential to calculate rewards for each step of the RL solver’s

output. The reward function for the single-step reward comprises

translation and rotation components.

For the translation component, we take the current velocity

vector of the end-effector, the angle θ with the target direction

vector, and compute cos(θ). In the following steps, we take the

single-step translation reward as cos(θ)− 1 to ensure it is negative.

When the end-effector moves exactly in the specified direction,

the reward is set as the maximum value of 0. The translation

component is denoted as Rl, it could be found that,

Rl =
ṗ · vee

|ṗ||vee|
− 1, (9)

where vee is a 3-dimensional vector to represent the current

translation velocity of the end-effector.

For the rotation component, as this paper primarily focuses on

position inverse kinematics issues, we take the default rotation of

the end-effector to make a difference with the current rotation. The

2-norm is taken for the resulting vector. Finally, the obtained value

is divided by a factor k to balance the value with the translation

component. With the translation component, a non-positive value

is taken for the obtained value, which is rewarded as a maximum

value of 0, when the end-effector remains theinitial rotation. Let

the rotation component be Rr , it can be computed as follows,

Rr = −ṙ/k, (10)

where ṙ be computed from Equation (7). In this paper, k is set as

100. The coefficient k balances the translation reward and rotation

reward, avoiding that one reward is too large and agent ignores the

other one.

Combining Equations (9, 10), yields the reward function for

each step

Rs = Rl + Rr . (11)

When the end effector moves in the vicinity of the robotic

arm according to the specified trajectory, the single-step reward

approaches zero. However, if the robotic arm’s joints exceed limits

or other geometric structural issues impede its normal motion, the

single-step reward significantly decreases. This encourages the RL

solver to avoid situations where the robotic arm becomes stuck.

It is noteworthy that the rewards returned by Equation (11) are

for each step and do not encompass the rewards for each episode.

Episode rewards will be explained in the next subsection.

4.4 Episode rewards

The single-step reward calculation involves the rewards

received by the agent for each action taken. Episode rewards, on

the other hand, are computed based on the outcomes after the

completion of an episode. Since the position relationship between

adjacent state-action pairs is lost during retraining after replays are

placed into the buffer, it is necessary to finalize the reward allocation

for each episode before adding the replay to the buffer. In this paper,

a Monte Carlo-like method is employed, where the final reward

accumulated at the end of an episode is propagated backward and

assigned to all steps within that episode.

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

Assume there are k replays in one episode, meaning that this

episode takes k steps. Rj is the jth step reward in episode buffer,

then adjusted the rewards in episode buffer as

Ra = Rj + γ k−jRend, (12)

where Ra is the adjusted reward. Rend is the end reward of an

episode, based on if the episode results in success or failure, its value

is represented by Equation (13).

Re =

{

Rpos when reach the target

Rneg other,
(13)

where Rpos > Rneg , it indicates that the reward obtained

upon successfully reaching the target position exceeds the reward

obtained upon failure.

The intuition behind Equation (12) is to reinforce the

correlation between adjacent replays. If an action results in the

robotic armmoving toward a collision direction, the reward for the

corresponding state-action pair is correspondingly reduced.

While it is possible to enhance training performance by

magnifying the reward/punishment values at the conclusion of

each episode and transmitting this value through the Bellman

equation, it is observed that directly amplifying these values during

training often led to frequent training failures. The approach

outlined in Equation (12), however, facilitates more successful

training. We hypothesize that the use of Equation (12) disperses

the reward/punishment values across multiple records, preventing

issues associated with excessively large gradients.

4.5 Dynamic balancing replay bu�er

The role of the replay buffer in RL is to improve the

utilization of samples and to enable the agent to train offline. The

rewards generated by the interaction between the agent and the

environment are stored in the replay buffer.

The usual approach is to add the rewards returned by the

environment directly to the replay buffer, then randomly select

some replays from the buffer to train the agent. However, there are

two challenges in this paper.

One of the challenges is that the movement of the robot is

continuous, and collisions occur not triggered by only one action.

The usual approach destroys the cause-and-effect relationship

between adjacent actions.

The other challenge is that during the training of the combined

controller, the domination of any solver causes reward/penalty

sparsity. For example, when the RL solver dominates, the untrained

RL solver makes the robot always collide and causes it difficult

to converge. On the other hand, when the pseudo-inverse solver

dominates, the robot rarely collides, which leads the RL solver

difficult to get trained because of the lack of collision samples.

The first challenge was addressed in the preceding subsection

through an episode-based approach. As for the second challenge,

the proposed solution in this paper involves the introduction of a

dynamic balancing mechanism for the replay buffer.

Let info return at the end of an episode. Return True when the

end-effector successfully reaches the target, otherwise return False.

Let the total number of steps from successful episodes in the

current replay buffer to ns and the total number of steps from failed

episodes to nf .

The replays in episode buffer will be added to the replay buffer

only when:

1). info = True and ns ≤ nf , or

2). info = False and ns > nf

This dynamic balancing mechanism ensures that the number

of successful and failed steps in the replay buffer is similar, thus

avoiding the problem of difficult convergence due to the lack

of samples.

4.6 Network and training

Given the input (observation ot) and the output (action at), the

details of the network structure are introduced. We train our agent

using the TD3 (Fujimoto et al., 2018) based on the Actor-Critic

architecture, thus requiring two Critic networks and one Actor

network. Each Critic network contains two fully connected hidden

layers that act as non-linear function approximators of Q value. The

dimension of the input layer is the sum of the dimensions of ot

and at . Both hidden layers have 128 PReLU (He et al., 2015) units.

The last layer outputs a Q value. The Actor network also contains

two fully connected hidden layers. The input layer has the same

dimensions as ot . Both two hidden layers have 128 ReLU units, with

the last layer outputting the interference i̇.

Theoretically, any deterministic policy RL algorithm can be

applied to our method, but the RL algorithm with a stochastic

policy may cause the robot arm to jitter, such as the SAC (Haarnoja

et al., 2018) we have tested which shown in Section 5.

5 Simulation and experiment

In this section, simulative and experimental validations

were conducted to assess the effectiveness of the proposed

approach in avoiding self-collision for redundant robotic arms. In

both simulation and experimentation, the end effector’s motion

trajectory was defined to compel its movement in proximity to the

robotic arm’s own structure. The experimental scenarios simulated

situations that might occur when an operator directly manipulates

the end effector of the robotic arm.

Coppeliasim is a kind of mainstream robot simulator, which

can simulate the motion and collision detection of robot arms.

In the simulation, a built-in Franka Panda robotic arm with 7-

DoFs are employed. The initial joint angles are set to [0◦, −17◦,

0◦, −126◦, 0◦, 114◦, 45◦]. The initial coordinate position of the

end-effector is [0.499m, 0m, 1.189m].

The goal of the simulation and experiment is to guide the end-

effector motion to the target point. The target points are generated

in a hemispherical space of 0.5 m radius around the first joint of

the robot arm. A series of path points are generated at 0.01 m

intervals along a straight line between the initial position and the

target point position to force the end-effector to move near the

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

TABLE 2 Convergence verification parameter.

Parameters Value

Episodes 1, 000

Critic learning rate 2× 10−4

Actor learning rate 1× 10−4

robot arm itself. When the distance between the end effector and

the target is less than 0.001 meters, the end effector is considered to

have reached its destination. Millimeter-level accuracy is deemed

sufficiently precise given the range of motion of the robotic arm in

this experiment. Additionally, the methods employed in this study

are iterative, and demanding excessive precision would result in

the control algorithm consuming an impractical number of steps

during the final convergence process. In the simulation, the built-

in collision detector in Coppeliasim is employed to detect whether

the robotic arm has collided. PyRep (James et al., 2019) is employed

to set up the reinforcement learning environment.

The platform configuration of training and simulation is

listed as follows: CPU: i9-9900K; GPU: 2080ti; Memory: 64G.

Coppeliasim version is 4.1 EDU and the operating system is Ubuntu

18.04 LTS.

5.1 Convergence validation simulation

This simulation compares the convergence with and without

the use of our improved replay buffer. The algorithm has been

trained for 1000 episodes, which is about 200,000 steps. The

parameters employed during training are outlined in Table 2. For

the sake of stability during training, Stochastic Gradient Descent

(SGD) was utilized instead of momentum-based optimizers. The

results shown in Figure 2 represent the upper and lower bounds

and average values for 25 replicate simulations.

As can be seen from the Critic convergence curve, the improved

replay buffer makes the algorithm converge more stably. On

the other hand, the unimproved replay buffer affected Critic’s

convergence and even led to failure to converge. Since Critic

estimates Q values of state-action pairs, it is verified that our

improved replay buffer improves the accuracy of the agent’s

estimation of the environment.

While the lower Actor loss is better, the unimproved replay

buffer leads to an inaccurate estimate of Critic. Thus the lower loss

under the unimproved replay buffer is not convincing. In contrast,

our improved replay buffer exhibits more stability compared to the

unimproved replay buffer.

Benefiting from better stability, our improved replay buffer

allows for higher rewards per step and lower volatility during

multiple training sessions.

5.2 Single target positions arrival
experiment

In this simulation, 1071 final target points are evenly distributed

in the hemispherical space around the robot arm. In each episode,

FIGURE 2

Convergence verification under initialization conditions dominated

by RL solver.

the end-effector of the robotic arm starts from the same initial

position and follows a moving target to reach the final target point.

The moving target moves in a straight line, forcing the end-effector

to move close to the arm’s own structure.

Six different methods are compared in this simulation. To

compare methods without collision avoidance policies, PI (pseudo-

inverse) and TJ (Jacobian Transpose) methods are introduced

in this simulation as comparisons. NEO (Haviland and Corke,

2021) is introduced into the comparison as a non-learning-based

obstacle avoidance method. The RL method uses only the TD3

algorithm as a comparison of not improving on the replay buffer.

HER (Andrychowicz et al., 2017) is introduced as a method that

improved the replay buffer in this comparison. Replay buffer in

HER method uses future choosing strategy. It is difficult to predict

the timing of collision occurrence in the simulation, thus the update

of the replay buffer in HER method is to encourage the tracking of

target points by the agent. OURS method is the enhanced pseudo-

inverse method of reinforcement learning with an improved replay

buffer proposed in this paper.

The max number of steps for each episode is 1000. There are

three outcomes for each episode, successful arrival at the target

position (Success), exceeding the step limit but no collision (Run

out), and Collision. The results of this simulation are summarized

in Figure 3 and Table 3. The number of the three results in a

single simulation is counted in the Success, Run out, and Collision

columns respectively. Avg steps column counts the average number

of steps spent in the episode of Success. The avg reward column

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

FIGURE 3

Ability of the end-e�ector to reach a single target position under control of di�erent approaches. Yellow dots indicate successful arrival at the target.

Green dots indicate that the number of steps is used up and the target is not reached (except NEO). Purple dots indicate collisions (except NEO).

counts the average reward per step. In this simulation, the reward

is calculated according to Equation (11), reflecting the tracking

performance of the end-effector on the target point under the

control of different methods.

In Figure 3, yellow dots indicate the positions where the end-

effector can reach the target successfully. Green dots indicate

positions that cannot be reached before the steps run out. Purple

dots indicate collisions when reaching these positions. The NEO

method did not collide, so points indicating Run out are marked in

purple for clarity in observation. The figure shows that moving the

end-effector from the initial position to the back of the robot arm is

challenging for the controller. The RLmethod without an improved

replay buffer does not have an advantage over the traditional

numerical method. The optimization-based collision avoidance

approach NEO has difficulty in finding a suitable solution for

avoiding irregularly moving robotic arm links, especially when a

well-defined path is given.

According to the data in Table 3, it can be seen that our method

has the highest arrival rate (99.72%), but the Avg reward is slightly

lower. This could be attributed to a decrease in the end-effector

movement speed under Agent control (resulting in a higher average

number of steps compared to PI) and slight deviations from the

planned trajectory, leading to a reduction in rewards. NEO is able to

avoid collisions completely in this simulation but has more Run out

cases. In the simulation, it was observed that NEO causes the robot

arm to get stuck in certain poses and cannot continue tracking

the target. Also, the NEO method prefers to find the trajectory

freely, so it cannot track the target well under strict constraints

on the trajectory, which is reflected by having a lower Avg reward.

Attributed to encouraging target tracking, HER has lower Avg steps

and higher Avg reward but does not do better in avoiding collisions

and reaching the final target.

Figures 4A, B show how our method avoids self-collisions

during tracing the target. The blue curve in the figure shows

the trajectory of the end-effector. It can be seen that the end-

effector maintains a smooth motion path under both methods.

In Figure 4A, the PI method is employed to control the motion

of the robotic arm. This resulted in a collision between the end-

effector and the robot arm linkage at the red circle. In Figure 4B,

our method controls the robot arm to rotate its own mechanism to

move away from the motion path of the end-effector. Because of

this behavior, our method can avoid self-collisions.

5.3 Three target positions arrival simulation

In each episode of this simulation, three final target positions

are randomly generated. The controller needs to guide the end-

effector to reach the three positions consecutively. Unlike the

single target experiment, the initial of each segment of the moving

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

TABLE 3 Details of the end-e�ector reaching single position under the control of di�erent methods.

Methods Success Run out Collision Avg steps Avg reward

PI 1,025 5 41 97.68441 -0.04706

TJ 961 33 77 514.761 -0.18328

NEO 1,023 48 0 222.2605 -0.10953

RL 1,021 0 50 219.8609 -0.05474

HER 1,014 0 57 162.2745 -0.0493

OURS 1,068 0 3 234.6667 -0.06235

FIGURE 4

Path under di�erent control methods. The cyan line depicts the motion trajectory of the end-e�ector, while the red sphere indicates the target

position of the end-e�ector. Red circles highlight locations where collisions occur under the control of the pseudoinverse method. (A) PI posture. (B)

Ours posture.

robot arm cannot be predicted. The experiment is executed for

1,000 episodes. The upper limit of steps per episode is 3,000.

The performance of the six methods is compared. The target

positions are pre-generated to ensure that each method faces the

same challenge.

The results of the simulation are shown in Table 4. Similar to

Section 5.2, the controller guides the end-effector to reach the three

final target positions in sequence and is recorded as Success. Failure

to reach any target position or collision in the middle of the episode

is recorded as run out or collision. The table also shows the average

steps per episode and the average reward per step.

The data in the Table 4 shows that our method has a

higher successful arrival percentage than the method without

the improved replay buffer, which indicates that the improved

replay buffer enhances the performance of the RL algorithm.

Our method also has an advantage over the traditional method,

which indicates that the combined reinforcement learning and

pseudo-inverse methods give the robot arm a better ability to

avoid self-collision. The lower average reward for all methods

compared to the single target position experiments is due to

the longer average number of steps, thus generating more

negative rewards.

5.4 Ablation experiments

The purpose of this section is to evaluate whether the

improvements for different challenges improve performance. To

this end, we repeat the experiments of the Section 5.2 section and

keep all other parameter settings identical.

To verify the effectiveness of the reward adjustment in Equation

(12), we select different γ for training and tested the training results

in simulation. The results of the test are shown in Table 5.

As can be seen from the table, the adjusted reward has a

positive effect on avoiding self-collision of the robot arm, but

the effect does not increase linearly with γ . The success rate of

tracking showed two peaks when γ is close to 0.2 and 0.7. In

addition, the algorithm shows better stability when γ is set to 0.2 in

repeated training.

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

TABLE 4 Details of the end-e�ector reaching three di�erent positions under the control of di�erent methods.

Methods Success Run out Collision Avg step Avg reward

PI 778 0 222 260.327 -0.08718

TJ 796 112 92 1294.823 -0.14426

NEO 742 160 98 528.74 -0.10586

RL 751 23 226 463.561 -0.08597

HER 723 5 272 393.234 -0.07653

Ours 931 0 69 504.456 -0.05887

TABLE 5 Details of simulated data with di�erent success and failed bu�er ratios.

γ Success Run out Collision Avg step Avg reward

0.99 1,061 0 10 171.2754 -0.0412

0.95 1,041 0 30 164.7703 -0.05292

0.9 1,058 0 13 170.605 -0.04269

0.7 1,061 0 10 172.6872 -0.05023

0.5 1,050 1 20 168.5556 -0.04323

0.2 1,061 0 10 172.6872 -0.05024

0.1 1,042 0 29 166.549 -0.04163

0.05 1,053 0 18 169.4585 -0.04364

0.01 1,041 20 10 168.8571 -0.06217

To verify the effectiveness of the dynamic balancing

mechanism, a set of simulations with different ratios of success and

failed replay buffer are performed. The results of the simulation are

shown in Table 6.

This simulation compares the tracking of end-effectors with

four different ratios. In the No balance simulation, there is no limit

on the percentage of successful and failed replay, and the percentage

of failed replay is about 32.37% (135,480 of 418,525). The remaining

simulations limit the percentage of failed replay to about 50%, about

75%, and 100%.

As can be seen in Table 6, Balancing successful and failed replay

by 50%-50% can effectively reduce the probability of self-collision

of the robot arm, although this increases the average number of

steps and slightly reduces the average reward. Slightly more failed

replay (75%) also reduces the likelihood of self-collision, but not

as effectively as keeping it at 50%. The probability of collision

increases when using failed replays entirely, due to the lack of

successful samples resulting in the agent’s inability to properly

evaluate the environment.

Two conclusions can be drawn from the simulation results

as follows. A) The dynamic balance replay proposed in this

paper is effective in avoiding self-collision of the robotic arm. B)

Appropriate discarding of some replay may have a positive impact

on the behavioral strategy of the agent.

To examine the impact of distinct weights for Rl and Rr on

the agent as stipulated in Equation (11), the reward function is

configured as Equation (14)

Rs = αRl + (2− α)Rr . (14)

The performance of the proposed apporach is evaluated under

varying α values, and the results are presented in Table 7.

From Table 7, it can be observed that the proposed method

performs favorably when α is set to 1. Therefore, in this paper, α

is chosen to be 1, as indicated in Equation (11).

5.5 Motion smoothness demonstration

To verify that the method in this paper not only smooths

the end-effector motion but also keeps the velocity of the robotic

arm joints smooth. All joint velocities for 200 consecutive steps

were collected to verify the smoothness of the robot arm joint

motion.

Let the Action of step t be q̇t . The acceleration ȧt is calculated by

approximating the velocity of two adjacent steps as Equation (15)

ȧt = q̇t+1 − q̇t . (15)

To represent the acceleration as a single value, a first order

norm for ȧt has been taken. After that, divide it by the number of

joints to get the average acceleration at of the joints at step t. The

formula is expressed as Equation (16)

at = |ȧt|/n. (16)

To visualize the results, the acceleration curves of Our method

(Combined deterministic algorithm TD3 and pseudo-inverse) and

SAC (Combined stochastic algorithm and pseudo-inverse) have

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

TABLE 6 Details of simulated data with di�erent success and failed bu�er ratios.

Percent Success Run out Collision Avg step Avg reward

No balance 1,042 0 29 166.3119 -0.04251

50% 1,061 0 10 172.3688 -0.05038

75% 1,056 0 15 170.0355 -0.04462

100% 819 0 252 118.535 -0.04596

TABLE 7 Details of simulated data with di�erent success and failed bu�er ratios.

Ratio α Success Run out Collision Avg step Avg reward

0.25 1,029 1 41 173.6502 -0.05646

0.5 1,038 0 33 174.3946 -0.05828

1 1,056 0 15 173.4608 -0.05111

1.5 1,032 0 39 172.9067 -0.05961

1.75 1,027 0 44 172.9543 -0.05935

FIGURE 5

Average acceleration of robot arm joints under di�erent methods of control.

TABLE 8 The average acceleration of each joint of the robot arm under

di�erent methods.

Methods Average Maximum Variances

Ours 8.8e-3 0.17 2.8e-4

SAC 0.22 0.71 2.3e-2

PI 5.6e-3 0.05 3.7e-5

DLS 2.4e-3 0.03 9.9e-6

TJ 1.7e-4 5e-4 2.3e-8

been plotted. As a comparison, the acceleration curves of PI, DLS,

and TJ are also plotted. The results are shown in Figure 5, and

detailed data are shown in Table 8.

As can be seen in Figure 5, the curves of both our method and

the SAC method produce significant fluctuations. This indicates

that the control of the reinforcement learning method caused the

jitter of the robot arm joints. However, the acceleration range of

our method is closer to that of PI, which is two orders of magnitude

lower than that of the SAC method. This is because our controller

employed a deterministic reinforcement learning algorithm and

calculate the final result by numerical methods. The PI, DLS, and

TJ methods have smoother acceleration profiles because they are

calculated in a purely mathematical way, with large fluctuations

only in the case of target changes.

In Table 8, the mean, maximum, and variance of the

acceleration for each of the five methods in 200 steps are calculated.

These data are used to reflect the variation of acceleration for the

above methods.

Our method is closer to the numerical methods PI and DLS in

terms of average acceleration and maximum acceleration as shown

in Table 8. The average acceleration of our method is 3 orders of

magnitude lower, while the variance of acceleration is 2 orders of

magnitude lower than the SAC method. Therefore, when the robot

arm is controlled by our method, not only the trajectory of the end-

effector is smooth, but also the motion of the other joints of the

robot arm is steady.

The TJ method has the best acceleration performance.

However, as it is known from previous experiments, the TJ method

requires more steps to reach the target, so its lower acceleration is

due to its slow movement speed.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

FIGURE 6

The upper row is the right view of the motion process, the lower row is the front view of the motion process.

5.6 Experiment

In this experiment, our method is deployed on a real Franka

Emika Panda robot. The goal of the experiment is to move

the end-effector along a straight line to the rear of the robotic

arm to examine the ability of the algorithm to avoid collisions.

The initial position of the end-effector is [0.5, 0.0, 0.36], and

the target arrival position is [-0.4, 0.13, 0.46], measured in

meters. The motion trajectory is a straight line connecting the

initial position to the target position. To ensure that the end-

effector moves along the designated path, 383 waypoints were

inserted along the motion trajectory. Our method provides inverse

kinematics (IK) solutions at a frequency of 10Hz, while the

Franka Panda robotic arm receives control signals at a frequency

of 1,000 Hz. To accommodate this, we performed B-spline

linear interpolation along the trajectory, resulting in a total

of 38,500 points in the final path, including the starting and

ending points.

Figure 6 shows the motion process of the robotic arm from

two views. Under the guidance of our controller, the robotic

arm adjusts the linkage position and bypasses the end-effector to

avoid collisions.

6 Conclusion

Introducing reinforcement learning into the field of robot

control remains challenging. This encompasses searching for

suitable solutions within complex solution spaces and ensuring

smooth robot motions. This paper proposes a reinforcement

learning-enhanced pseudo-inverse method for robotic arm control,

aiming to maintain the smoothness of robot motions with self-

collisions avoided. Although our current work is focuses solely on

the inverse kinematics of the end effector position, there is potential

for broader applications in the context of redundant robotic arms,

such as in human-robot collaboration or medical scenarios.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

TH: Writing – original draft, Writing – review & editing. WL:

Writing – review & editing. KH: Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

work was supported in part by the National Natural Science

Foundation of China under Grant 62206317, in part by the

Guangdong Basic and Applied Basic Research Foundation under

Grant 2022A1515012186, and in part by the Guangzhou Basic and

Applied Basic Research Foundation under Grant 202201011523.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hong et al. 10.3389/fnbot.2024.1375309

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnbot.2024.

1375309/full#supplementary-material

References

Agarwal, A., Nasa, C., and Bandyopadhyay, S. (2016). Dynamic singularity
avoidance for parallel manipulators using a task-priority based control scheme.
Mechan. Mach. Theory 96, 107–126. doi: 10.1016/j.mechmachtheory.2015.07.013

Al-Hafez, F., and Steil, J. J. (2021). “Redundancy resolution as action bias in policy
search for robotic manipulation,” in Conference on Robot Learning (Atlanta: PMLR),
981–990.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., et
al. (2017). “Hindsight experience replay,” in Advance Neural Information Processing
System, 30.

Bing, Z., Brucker, M., Morin, F. O., Li, R., Su, X., Huang, K., et al. (2022a). Complex
robotic manipulation via graph-based hindsight goal generation. IEEE Trans. Neural
Netw. Learn. Syst. 33, 7863–7876. doi: 10.1109/TNNLS.2021.3088947

Bing, Z., Cheng, L., Huang, K., and Knoll, A. (2022b). Simulation to real: learning
energy-efficient slithering gaits for a snake-like robot. IEEE Robot. Autom. Magaz. 29,
92–103. doi: 10.1109/MRA.2022.3204237

Bing, Z., Knak, L., Cheng, L., Morin, F. O., Huang, K., and Knoll, A. (2023a). “Meta-
reinforcement learning in nonstationary and nonparametric environments,” in IEEE
Transactions on Neural Networks and Learning Systems, 1–15.

Bing, Z., Lerch, D., Huang, K., and Knoll, A. (2023b). Meta-reinforcement learning
in non-stationary and dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell.
45, 3476–3491. doi: 10.1109/TPAMI.2022.3185549

Bing, Z., Zhou, H., Li, R., Su, X., Morin, F. O., Huang, K., et al. (2023c).
Solving robotic manipulation with sparse reward reinforcement learning via graph-
based diversity and proximity. IEEE Trans. Industr. Electron. 70, 2759–2769.
doi: 10.1109/TIE.2022.3172754

Boyd, S., and Vandenberghe, L. (2004). Convex Optimization. Cambridge:
Cambridge University Press.

Cao, H., Chen, G., Li, Z., Feng, Q., Lin, J., and Knoll, A. (2023a). Efficient grasp
detection network with gaussian-based grasp representation for robotic manipulation.
IEEE/ASME Trans. Mechatr. 28, 1384–1394. doi: 10.1109/TMECH.2022.3224314

Cao, H., Chen, G., Li, Z., Hu, Y., and Knoll, A. (2022). Neurograsp: Multimodal
neural network with euler region regression for neuromorphic vision-based grasp pose
estimation. IEEE Trans. Instrum. Meas. 71, 1–11. doi: 10.1109/TIM.2022.3179469

Cao, H., Qu, Z., Chen, G., Li, X., Thiele, L., and Knoll, A. (2023b). Ghostvit:
Expediting vision transformers via cheap operations. IEEE Trans. Artif. Intellig. 2023,
1–9. doi: 10.1109/TAI.2023.3326795

Cheng, F. T., Lu, Y. T., and Sun, Y. Y. (1998). Window-shaped obstacle avoidance
for a redundant manipulator. IEEE Trans. Syst. Man. Cybern. B Cybern. 28, 806.
doi: 10.1109/3477.735390

Colomé, A., and Torras, C. (2015). Closed-loop inverse kinematics for redundant
robots: Comparative assessment and two enhancements. IEEE/ASME Trans.
Mechatron. 20, 944–955. doi: 10.1109/TMECH.2014.2326304

Denavit, J., and Hartenberg, R. S. (1955). A kinematic notation for lower-pair
mechanisms based on matrices. J. Appl, Mech, 22, 215–221. doi: 10.1115/1.4011045

Dereli, S., and Köker, R. (2018). Iw-pso approach to the inverse kinematics problem
solution of a 7-dof serial robot manipulator. Sigma J. Eng. Natural Sci. 36, 77–85.

Dereli, S., and Köker, R. (2020). A meta-heuristic proposal for inverse kinematics
solution of 7-dof serial robotic manipulator: quantum behaved particle swarm
algorithm. Artif. Intellig. Rev. 53, 949–964. doi: 10.1007/s10462-019-09683-x

Duguleana, M., Barbuceanu, F. G., Teirelbar, A., and Mogan, G. (2012). Obstacle
avoidance of redundant manipulators using neural networks based reinforcement
learning. Robot. Comp. Integrat. Manufact. 2, 28. doi: 10.1016/j.rcim.2011.07.004

Fujimoto, S., Hoof, H., and Meger, D. (2018). “Addressing function approximation
error in actor-critic methods,” in Proceedings of the 35th International Conference
on Machine Learning, eds J. G. Dy, and A. Krause (Stockholm: PMLR), 1582–1591.
Available online at: http://proceedings.mlr.press/v80/fujimoto18a.html

Guo, Z. Y., and Hsia, T. C. (1990). Joint trajectory generation for redundant
robots in an environment with obstacles. IEEE Trans. Biomed. Eng. 35, 153–60.
doi: 10.1109/ROBOT.1990.125964

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor,” in
Proceedings of the 35th International Conference on Machine Learning (Stockholm:
PMLR), 1861–1870.

Haviland, J., and Corke, P. (2021). Neo: a novel expeditious optimisation algorithm
for reactive motion control of manipulators. IEEE Robot. Automat. Lett. 6, 1043–1050.
doi: 10.1109/LRA.2021.3056060

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proceedings of the
IEEE International Conference on Computer Vision (Santiago: IEEE), 1026–1034.

James, S., Freese, M., and Davison, A. (2019). Pyrep: Bringing v-rep to deep robot
learning. arXiv. Available online at: http://arxiv.org/abs/1906.11176

Köker, R., and Çakar, T. (2016). A neuro-genetic-simulated annealing approach to
the inverse kinematics solution of robots: a simulation based study. Eng. Comput. 32,
553–565. doi: 10.1007/s00366-015-0432-z

Li, X., Liu, H., and Dong, M. (2022). A general framework of motion planning
for redundant robot manipulator based on deep reinforcement learning. IEEE Trans.
Indust. Informat. 8, 18. doi: 10.1109/TII.2021.3125447

Martin, P., and Millán, J. R. (1997). “Combining reinforcement learning and
differential inverse kinematics for collision-free motion of multilink manipulators,”
in Biological and Artificial Computation: From Neuroscience to Technology,
International Work-Conference on Artificial and Natural Neural Networks, eds J.
Mira, R. Moreno-Díaz, and J. Cabestany (Canary Islands: Springer), 1324–1333.
doi: 10.1007/BFb0032593

Momani, S., Abo-Hammour, Z. S., and Alsmadi, O. M. (2016). Solution of inverse
kinematics problem using genetic algorithms. Appl. Mathem. Informat. Sci. 10, 225.
doi: 10.18576/amis/100122

Nakamura, Y., and Hanafusa, H. (1986). Inverse kinematic solutions with
singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control 108,
163–171. doi: 10.1115/1.3143764

Paul, R., and Shimano, B. (1978). “Kinematic control equations for simple
manipulators,” in IEEE Conference on Decision and Control including the 17th
Symposium on Adaptive Processes (San Diego, CA: IEEE), 1398–1406.

Rokbani, N., and Alimi, A. M. (2013). Inverse kinematics using particle
swarm optimization, a statistical analysis. Procedia Eng. 64, 1602–1611.
doi: 10.1016/j.proeng.2013.09.242

Schappler, M., and Ortmaier, T. (2021). “Singularity avoidance of task-
redundant robots in pointing tasks: on nullspace projection and cardan angles
as orientation coordinates,” in Proceedings of the 18th International Conference
on Informatics in Control, Automation and Robotics, eds O. Gusikhin, H.
Nijmeijer, and K. Madani (SCITEPRESS), 338–349. doi: 10.5220/001062110338
0349

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
MIT press. Available online at: https://www.worldcat.org/oclc/37293240

Tsai, L.W., andMorgan, A. P. (1985). Solving the kinematics of themost general six-
and five-degree-of-freedom manipulators by continuation methods. J. Mech. Design
107, 189–200. doi: 10.1115/1.3258708

Wolovich, W., and Elliott, H. (1984). “A computational technique for inverse
kinematics,” in The 23rd IEEE Conference on Decision and Control (Las Vegas, NV:
IEEE), 1359–1363. doi: 10.1109/CDC.1984.272258

Zaplana, I., and Basanez, L. (2018). A novel closed-form solution for the
inverse kinematics of redundant manipulators through workspace analysis.
Mech. Mach. Theory 121, 829–843. doi: 10.1016/j.mechmachtheory.2017.
12.005

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1375309
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1375309/full#supplementary-material
https://doi.org/10.1016/j.mechmachtheory.2015.07.013
https://doi.org/10.1109/TNNLS.2021.3088947
https://doi.org/10.1109/MRA.2022.3204237
https://doi.org/10.1109/TPAMI.2022.3185549
https://doi.org/10.1109/TIE.2022.3172754
https://doi.org/10.1109/TMECH.2022.3224314
https://doi.org/10.1109/TIM.2022.3179469
https://doi.org/10.1109/TAI.2023.3326795
https://doi.org/10.1109/3477.735390
https://doi.org/10.1109/TMECH.2014.2326304
https://doi.org/10.1115/1.4011045
https://doi.org/10.1007/s10462-019-09683-x
https://doi.org/10.1016/j.rcim.2011.07.004
http://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1109/ROBOT.1990.125964
https://doi.org/10.1109/LRA.2021.3056060
http://arxiv.org/abs/1906.11176
https://doi.org/10.1007/s00366-015-0432-z
https://doi.org/10.1109/TII.2021.3125447
https://doi.org/10.1007/BFb0032593
https://doi.org/10.18576/amis/100122
https://doi.org/10.1115/1.3143764
https://doi.org/10.1016/j.proeng.2013.09.242
https://doi.org/10.5220/0010621103380349
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1115/1.3258708
https://doi.org/10.1109/CDC.1984.272258
https://doi.org/10.1016/j.mechmachtheory.2017.12.005
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	A reinforcement learning enhanced pseudo-inverse approach to self-collision avoidance of redundant robots
	1 Introduction
	2 Related work
	3 Mathematical model
	4 Proposed RL enhanced controller
	4.1 Observation space
	4.2 Action space
	4.3 Single-step reward
	4.4 Episode rewards
	4.5 Dynamic balancing replay buffer
	4.6 Network and training

	5 Simulation and experiment
	5.1 Convergence validation simulation
	5.2 Single target positions arrival experiment
	5.3 Three target positions arrival simulation
	5.4 Ablation experiments
	5.5 Motion smoothness demonstration
	5.6 Experiment

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

