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generator for imitating the
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behavior of the lower limb
exoskeleton
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Shuang Liang, Yi Huang and Shengxue Wang

School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences,

Chongqing, China

Introduction: Periodicity, self-excitation, and time ratio asymmetry are the

fundamental characteristics of the human gait. In order to imitate these

mentioned characteristics, a pattern generator with four degrees of freedom is

proposed based on cardioid oscillators developed by the authors.

Method: The proposed pattern generator is composed of four coupled cardioid

oscillators, which are self-excited and have asymmetric time ratios. These

oscillators are connected with other oscillators through coupled factors. The

dynamic behaviors of the proposed oscillators, such as phase locking, time ratio,

and self-excitation, are analyzed via simulations by employing the harmonic

balance method. Moreover, for comparison, the simulated trajectories are

compared with the natural joint trajectories measured in experiments.

Results and discussion: Simulation and experimental results show that the

behaviors of the proposed pattern generator are similar to those of the natural

lower limb. It means the simulated trajectories from the generator are self-

excited without any additional inputs and have asymmetric time ratios. Their

phases are locked with others. Moreover, the proposed pattern generator can

be applied as the reference model for the lower limb exoskeleton controlling

algorithm to produce self-adjusted reference trajectories.

KEYWORDS

cardioid oscillators, asymmetric time ratio, pattern generator, lower limb exoskeleton,

invariant set

1 Introduction

Lower limb exoskeletons (LLEs) are significant assist devices that can be used to

improve the movement ability of people with walking disabilities by controlling the

movement of exoskeleton joints in reference to the trajectories of the healthy human

lower limbs (Wu et al., 2018; Pamungkas et al., 2019; Xue et al., 2019; Glowinski et al.,

2020; Wei et al., 2020; Yihun et al., 2020; Ma et al., 2021). As the fitted trajectories

from the gait data of the healthy human are invariant and non-adjustable, LLEs that are

developed using trajectory tracking control methods cannot adjust their reference swing

angle curves according to the environment changes (Nandi et al., 2008, 2009; Guo et al.,

2010; Ekkachai and Nilkhamhang, 2016; Xu et al., 2016; Fu et al., 2017). On the contrary,

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1379906
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1379906&domain=pdf&date_stamp=2024-03-27
mailto:tianhong.luo@163.com
https://doi.org/10.3389/fnbot.2024.1379906
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1379906/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Fu et al. 10.3389/fnbot.2024.1379906

the reference trajectory generated by the central pattern generators

(CPGs), a biological neural circuit that generates rhythmic

behaviors in animals, is periodical and self-excited. It is important

to note that these trajectories possess the locked phase relationships

and can be adjusted according to environment changes, thereby

attracting significant research attention (Conradt, 2003; Acebrón

et al., 2005; de Pina Filho et al., 2005; Morimoto et al., 2008; Saito

et al., 2009; Katayama, 2012; Mora et al., 2012; Dingguo et al.,

2017; Ferrario et al., 2018; Fu et al., 2018; Payam et al., 2018; Xie

et al., 2019; Mokhtari et al., 2020; Pasandi et al., 2022; Wei et al.,

2022).

Recently, CPG models, such as neuron-based CPG model

(Saito et al., 2009; Katayama, 2012; Dingguo et al., 2017; Ferrario

et al., 2018; Payam et al., 2018; Xie et al., 2019; Mokhtari et al.,

2020; Pasandi et al., 2022; Wei et al., 2022) and oscillator-based

CPG model (Conradt, 2003; Acebrón et al., 2005; de Pina Filho

et al., 2005; Morimoto et al., 2008; Mora et al., 2012; Fu et al.,

2018), are used for imitating the swing angles of human lower

limbs. The former utilizes an oscillator to imitate the functions

of neural cells, while the latter utilizes an oscillator to imitate

periodic motions/torques. Therefore, the CPG models based on

non-linear oscillators are more widely used for describing human

walking than those based on neurons because of their simpler

structure. Conradt (2003) proposed a CPG model based on the

Kuramoto oscillator for a serpentine robot and achieved walking

control during various environments. Morimoto et al. (2008)

designed a CPG model of a humanoid robot and was able to

simulate biped walking. Mora et al. (2012) designed a rhythmic

gait generator for a mechanical walking apparatus by establishing a

CPGmodel based on the van der Pol (VDP) oscillator and imitated

hip and knee motions during walking. Nandi et al. (2008, 2009)

proposed a CPG method for modeling a biped robot. de Pina

Filho et al. (2005) applied a CPG model based on the Rayleigh

oscillator for prosthesis control. However, the abovementioned

CPG models are unable to precisely imitate asymmetric time

ratios of human hip motions in their sagittal plane because they

generate trajectories with a symmetrical time ratio. The asymmetric

time ratios of hip joint mean that the duty of the forward

progress is different from the duty of the backward progress within

one period.

In this article, to achieve the asymmetric time ratio of the

trajectories of human hip joints and to simulate the coupling

relationship between human hip motion and knee motion,

a cardioid oscillator based on a cardioid oscillator-based

CPG (COCPG) model is designed by the authors (Fu et al.,

2018) to imitate the swing angles of human lower limbs.

The dynamic characteristics, such as the symmetry, self-

excitation, astringency, and anti-interference of the COCPG,

are numerically analyzed. Furthermore, the influence of the

COCPG model’s parameters on the frequency, amplitude,

and offset are also numerically simulated and analyzed.

Additionally, the trajectories generated by the COCPG model

are compared with those experimentally measured from a tester

in experiments and generated by the CPG model based on the

Rayleigh oscillator.

2 Cardioid oscillator-based CPG
model of lower limbs

2.1 Principle of the central pattern
generator for lower limb exoskeleton

For convenience, human lower limbs are usually considered

as two double pendulums with four degrees of freedom (DOF) as

shown in Figure 1A. As Figure 1A shows, the motions of the lower

limbs include the swing angles of two hip joints and two knee joints,

which are marked as Ang_H_Right, Ang_H_Left, Ang_K_Right,

and Ang_K_Left, respectively. The motions of the lower limbs are

asymmetric and coordinated, which means that four swing angles

have asymmetric time ratios and pairwise coupling. Therefore, to

imitate the motion of lower limbs, the COCPG model, whose

principle is shown in Figure 1B, is proposed in this article.

As shown in Figure 1B, the proposed COCPG model is

composed of a hip motion generator and a knee motion generator

for imitating the motions of two hip joints and two knee joints,

respectively. In particular, to imitate the behaviors of the Hip_Left

joint and the Hip_Right joint, which are coupled with another, a hip

motion generator is designed using two coupled cardioid oscillators

(COs) through the oscillating terms L1 and L2 to generate the

trajectories of Ang_H_Right and Ang_H_Left with locked phases.

The cardioid oscillator shown in Figure 1B is an oscillator with an

asymmetric limit cycle about the center proposed by the authors

in a previous study (Fu et al., 2018). Correspondingly, the knee

motion generator established by two mapping functions G1 and

G2 generates two swing angles of the knee joints, Ang_K_Right

and Ang_K_Left. Since the two mapping functions G1 and G2 are

introduced from the Hip_Left CO and the Hip_Right CO, which

are coupled, the functions G1 and G2 are coupled with one another.

2.2 Cardioid oscillator

The CO shown in Figure 1B is a non-linear oscillator whose

limit cycle is a cardioid curve. Since the cardioid curve is a kind

of asymmetric curve about its center, the CO can generate the

trajectories with asymmetric time ratios.

2.2.1 Designing of the cardioid oscillator
A dynamic system A can be written as

{

ẋ1 = g1 (x1, x2)

ẋ2 = g2 (x1, x2)
(1)

where x1 and x2 are the states of the system A, g1 (x1, x2) and

g2 (x1, x2) are the state equations on its states x1 and x2.

Assume that the set � is a non-zero set of the system A, which

is given by

� = {(x1, x2)|F (x1, x2) = 0} (2)

where

C : F (x1, x2) = 0 (3)
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FIGURE 1

COCPG model for imitating the motions of lower limbs: (A) the simplified model of lower limbs and (B) the principle of the COCPG model.

is a closed cure of the system A.

According to the definition of the invariant set, we have

{

Ḟ (x1, x2) = 0
∣

∣(x1, x2) ∈ �
}

. (4)

Rewriting Equation (4) as

Ḟ (x1, x2) =
∂F

∂x1
ẋ1 +

∂F

∂x2
ẋ2 = 0. (5)

Substituting Equation (1) into Equation (5) leads to

∂F

∂x1
g1 (x1, x2) +

∂F

∂x2
g2 (x1, x2) = 0. (6)

Rewriting Equation (2) as

F (x1, x2) = (x1 + a)2 + x2
2 + bx2 + c(x1

2 + x2
2)

2
(7) (7)

where a, b, c are the parameters for adjusting the asymmetric of

the curve.

When a, b, and c are equal to 5, 200, and−4, respectively, curve

C in phase plane is shown in Figure 2.

Substituting Equation (7) into Equation (3) leads to

� =
{

(x1, x2)
∣

∣F (x1, x2) (x1 + a)2 + x2
2

+bx2 + c(x1
2 + x2

2)
2
= 0

}

. (8)

According to Equation (8), defining g1 (x1, x2) and g2 (x1, x2) in

Equation (1) as

{

g1 (x1, x2) = g11 + γ g12F (x1, x2)

g2 (x1, x2) = g21 + γ g22F (x1, x2)
(9)

FIGURE 2

Cardioid curve with a = 5, b = 200, and c = −4.

where g11, g12, g21, and g22 are the state equation of x1 and x2, γ is

a positive constant for the convergence rate.

Substituting Equation (9) into Equation (6) gives

Ḟ (x1, x2) =

(

∂F

∂x1
g11 +

∂F

∂x2
g21

)

+

(

∂F

∂x1
g12 +

∂F

∂x2
g22

)

F (x1, x2) = 0. (10)
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FIGURE 3

The cardioid oscillator with verified b: (A) the graphs and (B) the limit

cycles.

Since F (x1, x2) is equal to zero when (x1, x2) ∈ �, then

Equation (10) can be rewritten as

∂F

∂x1
g11 +

∂F

∂x2
g21 = 0. (11)

The Lyapunov function V of the system A is given by

V =
1

2

[

(x1 + a)2 + x2
2 + bx2 + c(x1

2 + x2
2)

2
]2

. (12)

Differentiating Equation (12) and substituting Equations (1, 9)

lead to

V̇ =

(

∂F

∂x1
g11 +

∂F

∂x2
g21

)

F (x1, x2) +

(

∂F

∂x1
g12 +

∂F

∂x2
g22

)

F2 (x1, x2) . (13)

According to Equations (11, 13), we have

V̇ = γ

(

∂F

∂x1
g12 +

∂F

∂x2
g22

)

F2 (x1, x2) . (14)

FIGURE 4

Limit cycles and graphs of the CO: (A) the limit cycles and (B) the

graphs.

From Equation (12), it can be seen that when state (x1, x2)

converges to infinity, V correspondingly converges to infinity.

When

V̇ ≤ 0 (15)

(x1, x2) →
{

(x1, x2)
∣

∣V̇ = 0
}

as t → ∞.

Substituting Equation (14) into Equation (15) leads to

∂F

∂x1
g12 +

∂F

∂x2
g22 ≤ 0. (16)

According to Equations (11, 16), g11, g12, g21, and g22 can be

given by



















g11 = − ∂F
∂x2

g12 = − ∂F
∂x1

g21 =
∂F
∂x1

g22 = − ∂F
∂x2

. (17)
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Substituting Equation (17) into Equation (9), the system A can

be written as



















ẋ1 = −
[

2x2 + b+ 2cx2
(

x1
2 + x2

2
)]

− γ
[

2x1 + 2a+ 4cx1
(

x1
2 + x2

2
)]

F (x1, x2)

ẋ2 =
[

2x1 + 2a+ 4cx1
(

x1
2 + x2

2
)]

− γ
[

2x2 + b+ 2cx2
(

x1
2 + x2

2
)]

F (x1, x2)

. (18)

Consequently, the curve C is the invariant set of the system A

expressed by Equation (18).

2.2.2 Coupling of cardioid oscillators
Two cardioid oscillators can be coupled via the coupling terms,

which are represented by the following equations:

{

ẋi1 = g1
(

x1
i, x2

i
)

+ σ i
∑N

j=1 L1
ij(x1

i, x2
i, x1

j, x2
j)

ẋi2 = g2
(

x1
i, x2

i
)

− σ i
∑N

j=1 L2
ij(x1

i, x2
i, x1

j, x2
j)

(19)

where i and j are the sequences of the coupled oscillator; N is the

count of the coupled COs; σ i is the gain of the ith oscillator related

to the coupling time; L1
ij(x1

i, x2
i, x1

j, x2
j) is the coupling gain

between the state x1
i of the ith oscillator and the state x1

j of the

jth oscillator, L2
ij(x1

i, x2
i, x1

j, x2
j) is the coupling gain between the

state x2
i of the ith oscillator and the state x2

j of the jth oscillator,

which are expressed by

{

L1
ij
(

x1
i, x2

i, x1
j, x2

j
)

=
(

x1
j + x2

j
)

x2
ix2

i

L2
ij
(

x1
i, x2

i, x1
j, x2

j
)

= (x1
j + x2

j)x1
ix2

i . (20)

2.3 CPG model for the lower limb
exoskeleton

Coordinate transformation of Equation (18) yields







x1
′

x2
′

1






=







D11 0 P1
0 D22 P2
0 0 1













x1
x2
1






(21)

where







D11 0 P1
0 D22 P2
0 0 1






is the homogeneous transfer matrix,D11

and D22 are the scale coefficients, and P1 and P2 are the translate

coefficients. We have

[

ẋ1
′

ẋ2
′

] [

D11 0

0 D22

] [

ẋ1
ẋ2

]

. (22)

Substituting Equations (21, 22) into Equations (18, 19, 20), and

separating the frequency parameter ω yields















ẋ1
′
= −

k

{[

2x2
′
+b−2cx2

′
(

x1
′ 2
+x2

′ 2
)]

−kγ

[

2x1
′
+2a−4cx1

′
(

x1
′ 2
+x2

′ 2
)]

F
(

x1
′
, x2

′
)

}

+σ i

(

x1
′ j
+ x2

′ j
)

x2
′ i
x2

′ i

D11ω

ẋ2
′
=

k

{[

2x1
′
+2a−4cx1

′
(

x1
′ 2
+x2

′ 2
)]

−kγ

[

2x2
′
+b−2cx2

′
(

x1
′ 2
+x2

′ 2
)]

F
(

x1
′
, x2

′
)

}

−σ i(x1
′ j
+ x2

′ j
)x1

′ i
x2

′ i

D22ω

. (23)

FIGURE 5

Limit cycles of the CO with di�erent initial conditions.

FIGURE 6

Partial graphs of the CO with di�erent γ values.

Considering the states x1
′
and x2

′
of the CO as the hip angle

and velocity of the CPG model, respectively, we have

Ang_H = x1
′

(24)

Vel_H = x2
′

. (25)

Fitting the hip angle and the knee angle of a natural gait, the

mapping function G between the hip motion and the knee motion

can be defined as

G
(

Ang_H ,Vel_H
)

=
(

Vel_H − Ang_H + θ
)2

(26)

where θ is a constant.
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From Equations (22–26), the

COCPG model can be expressed as































































































ẋ1
′

= −
k

{[

2x2
′
+b−2cx2

′
(

x1
′ 2
+x2

′ 2
)]

−kγ

[

2x1
′
+2a−4cx1

′
(

x1
′ 2
+x2

′ 2
)]

F
(

x1
′
, x2

′
)

}

+σ

(

x3
′
+ x4

′
)

x2
′ 2

D11ω

ẋ2
′

=
k

{[

2x1
′
+2a−4cx1

′
(

x1
′ 2
+x2

′ 2
)]

−kγ

[

2x2
′
+b−2cx2

′
(

x1
′ 2
+x2

′ 2
)]

F
(

x1
′
, x2

′
)

}

−σ (x3
′
+ x4

′
)x1

′
x2

′

D22ω

ẋ3
′

= −
k

{[

2x4
′
+b−2cx4

′
(

x3
′ 2
+x4

′ 2
)]

−kγ

[

2x3
′
+2a−4cx3

′
(

x3
′ 2
+x4

′ 2
)]

F
(

x3
′
, x4

′
)

}

+σ

(

x1
′
+ x2

′
)

x4
′ 2

D11ω

ẋ4
′

=
k

{[

2x3
′
+2a−4cx3

′
(

x3
′ 2
+x4

′ 2
)]

−kγ

[

2x4
′
+b−2cx4

′
(

x3
′ 2
+x4

′ 2
)]

F
(

x3
′
, x4

′
)

}

−σ

(

x1
′
+ x2

′
)

x3
′
x4

′

D22ω

Ang_H_Right = x1
′

Ang_K_Right =
(

0.05
(

x2
′
− 0.8x1

′
)

+ θ

)2
+ P3

Ang_H_Left = x3
′

Ang_K_Left =
(

0.05
(

x4
′
− 0.8x3

′
)

+ θ

)2
+ P3

. (27)

As Equations (11, 22, 27) show, the parameters a, b, and c

of the COCPG model can be used to adjust the shape of the

limit cycle, γ can be used to adjust the convergence rate of the

trajectory generated by the COCPG model, ω can be used to adjust

the frequency, D11 and D22 are used to adjust the amplitude,

and P1 and P3 can be used to adjust the offset. Therefore, by

choosing appropriate values of the mentioned parameters, the

rhythmic motions of lower limbs with different frequencies and

amplitudes can be imitated by the proposed COCPG model given

by Equations (21, 22, 27).

3 Numerical simulations and analyses

3.1 Behaviors of the cardioid oscillator

In this section, the behaviors of the CO, such as asymmetry,

self-excited oscillation, anti-interference, and convergence, are

analyzed using numerical simulations.

3.1.1 Asymmetry
From Equation (18), it is clear that the shape of the CO can be

adjusted through parameters a and b. When a equal to 5, c equal to

−4, and b equal to−50,−5, 5, 50, respectively, the graphs and phase

planes are shown in Figure 3. It can be seen from Figure 3A that as

b increases from−50 to 50, the proportion of the forward progress

significantly increases by 24%. Meanwhile, the shape of the limit

cycle becomes increasingly asymmetric, as shown in Figure 3B.

3.1.2 Anti-interference and self-excitement
Figures 4A, B show the phase plane and graph of the CO, which

is perturbed by a disturbance signal with the amplitude of 45. From

Figure 4, it is clear that the states of the CO deviate from the limit

cycle when the CO is disturbed by the pulse signal and return

to the limit cycle in a short time. From Figure 5, it can be seen

that when the initial conditions of the CO equal to (−14, 152),

(10, 90), and (19,−120), their states autonomously converge to the

limit cycle, even though these initial conditions deviate from the

limit cycle.

The results indicate that the CO has a stable limit circle to lead

a stable trajectory of the lower limb.

3.1.3 Convergence rate of the cardioid oscillator
According to Equation (18), when an initial condition is (30, 0),

a = 5, b = 200, and c = −4, Figure 6 shows the partial graphs of

FIGURE 7

Trajectories of the joints of the lower limb generated by the COCPG

model with di�erent ω: (A) the hip joint and (B) the knee joint.
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FIGURE 8

Trajectories of the hip and knee joints generated by the COCPG

model with di�erent D11 and D22: (A) the hip joint and (B) the knee

joint.

the CO with γ of 0.005, 0.02, and 0.05. When γ is equal to 0.005,

it takes 15ms for state x1 converging from the initial condition

where x1 =30 to the limit cycle where x1 =20. As γ increases to

0.02, the required time of the converging process decreases to 5ms.

Furthermore, when γ is increases to 0.05, the required time of the

converging process decreases to 2 ms.

The results indicate that the COCPG model provides a strong

response to the environment changes.

3.2 Numerical simulations and analyses of
the COCPG model

In this section, when modeling the motions of lower limbs

with different frequencies and amplitudes, the influence of the

parameters of the COCPG model on the frequency, amplitude,

and offset of the trajectories generated by the COCPG model are

numerically simulated and analyzed. When modeling the motions

FIGURE 9

Trajectories of the hip and knee joints generated by the COCPG

model with di�erent P1 and P3: (A) the hip joint and (B) the knee

joint.

of lower limbs, the parameters a, b, and c in Equation (27) are equal

to 5, 200, and 2, respectively, k is 0.64, and γ is 0.02.

3.2.1 Frequency
As Equation (27) shows, the frequency of the COCPG model is

determined by ω. Figure 7 depicts the trajectories of the hip and

knee joints generated by the COCPG model with ω of 1, 2, and

3Hz, respectively. From Figure 7, it is obvious that the frequency

of the COCPG model increases with increasing ω. Therefore, the

frequency of the COCPG model is determined by the value of ω.

3.2.2 Amplitude
From Equation (27), it can be inferred that the angle amplitude

of the hip joint of the COCPG model is only determined by D11,

and the angle amplitude of the knee joint of the COCPG model

is determined by D11 and D22. Figure 8 shows the trajectories of

the joints of the lower limb generated by the COCPG model with
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different D11 and D22. Figure 8A shows the trajectories of the hip

joint generated by the COCPG model when D11 is equal to 0.2267,

0.17, and 0.136, respectively. Figure 8B shows the trajectories of the

knee joint generated by the model with D11 of 0.17 when D22 is

equal to 0.028, 0.021, and 0.0168, respectively. From Figure 8, it

is obvious that the amplitudes of the trajectories generated by the

COCPG model decrease with increasing D11 and D22. Therefore,

the trajectories of the joints of the lower limb with different

amplitudes can be achieved by adjusting D11 and D22.

3.2.3 O�set
Going by Equation (27), the offset of the trajectories generated

by the COCPGmodel are determined by P1 and P3. Figure 9 shows

the trajectories of the joints of the lower limb generated by the

COCPG model with different P1 and P3, respectively. Figure 9A

shows the trajectories of the hip joint generated by the COCPG

model with P1 of 1, 2, and 3, and Figure 9B shows the trajectories

of the knee joint generated by the COCPG model with P3 of −10,

0, and 10. It is clearly seen from Figure 9 that the offsets of the

trajectories of the joints of the lower limb generated by the COCPG

model increases along with the increase in the absolute value of P1
and P3.

4 Experiments and results

4.1 Experimental setup

In order to evaluate the modeling accuracy of the COCPG

model proposed in this article, the trajectories of the joints of

the lower limb during walking are measured on an experimental

setup, which is a test platform for prosthetic knees built by the

authors (Wang et al., 2013). The test platform is presented in

Figure 10. As shown in Figure 10, the experimental setup comprises

a treadmill, two angle sensors, a data acquisition unit, and a tester.

Two angle potentiometers, which are attached on the hip joint and

the knee joint of the tester by three linkages, are used for measuring

the angular displacements of the hip and knee joints. The host

computer interrogates the voltage signals from the potentiometers

via the data acquisition unit (type: DS1103, from the dSPACE

GmbH, Germany) with a sampling frequency of 1 kHz.

4.2 Results and analysis

Figures 11A, B show the limit cycles and trajectories of the hip

joint generated by the COCPG model (Equation 27) and measured

from the tester on the test platform. For comparison, the limit cycle

and trajectory of the hip joint generated by the CPG model based

on the Rayleigh oscillator (ROCPG) are simultaneously provided.

The Rayleigh oscillator is expressed as (de Pina Filho et al., 2005)

ÿ+ d
(

l− ẏ2
)

ẋ+ k2y = 0 (28)

where y is the output of the Rayleigh oscillator, d, l, and k

are the parameters of the Rayleigh oscillator. In this article, the

ROCPG model is based on Equation (28) with d = 0.14, l = 0.013,

and k = 1.

Figure 11A shows that the limit cycle of the COCPG model is

an asymmetric closed curve about its center, which is consistent

with the measured limit cycle of the hip joint of the tester. However,

the limit cycle of the ROCPG model is a symmetrical closed curve

about its center, which differs from the measured limit cycle of the

FIGURE 10

Test platform updated from Wang et al. (2013) [1-angle sensor (AS3); 2-angle sensor (AS4); 3-treadmill; 4-PC; 5-dSPACE DS1103].
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FIGURE 11

Hip motions measured from the tester on the test platform and

generated by the COCPG model and the ROCPG model: (A) the

limit cycles and (B) the trajectories.

hip joint of the tester. Additionally, as shown in Figure 11B, the

forward trajectory of the hip joint of the COCPG model accounts

for 60% of one period and the forward progress of the hip joint

generated by the ROCPG model accounts for 50%. Thus, the

trajectory of the hip joint of the COCPG model is closer to that

of the natural gait than that of the ROCPG model. Therefore,

compared with the ROCPG model, the COCPG model is able to

accurately imitate the rhythmic motions of the hip joints.

Figure 12 shows the differences between the measured

trajectory of the hip joint of the tester and the trajectories of

the hip joints generated by the COCPG and the ROCPG models.

These differences can be defined as modeling errors. As shown in

Figure 12, the maximum modeling error of the motion trajectory

of the hip joint of the COCPG model is about 5◦. Meanwhile,

the maximum modeling error of the ROCPG model is about 15◦,

which is three times that of the COCPG model. The main source

of the modeling error of the COCPG model is the flexible binding

method of the measure unit. On the contrary, the main source of

the modeling error of the ROCPG model is the asymmetry of the

FIGURE 12

Di�erences between the measured trajectory of the hip joint of the

tester and the trajectories of the hip joint of the COCPG model and

the ROCPG model.

limit circle of the Rayleigh oscillator. As a result, the modeling

accuracy of the output trajectories of the hip joint of the COCPG

model is higher than that of the ROCPG model.

Figure 13 shows the time histories of the multi-periodic

trajectories of the lower limb generated by the COCPG model

and measured from the tester on the test platform. Figure 13A

shows the trajectories of the hip joint and Figure 13B shows the

trajectories of the knee joint. Figure 13C shows the differences

between the measured trajectories of the tester and generated

trajectories of the COCPG model. The maximum error between

the hip joint trajectories and the models is 5◦, while the maximum

error between the knee joint trajectories and the models is 15◦.

The maximum error of the hip joint appears at the backward of

the swing phase, and the maximum error of the knee joint appears

at the stance phase. From Figure 13, it is clear that the trajectories

of the COCPG model are consistent with those of the measured

trajectories. Therefore, the COCPG model is suitable for imitating

the rhythmic motions of the hip joint of the lower limb. However,

the modeling error of the trajectory of the knee joint with the

COCPGmodel still exists, which may be because the posture of the

tester is deformed while walking on the treadmill and/or the angle

potentiometers are not assembled on the sagittal plane.

5 Conclusions

In this article, to achieve the asymmetric time ratio of the

trajectories of human hip joints and to simulate the coupling

relationship between hip motions and knee motions, based on the

CO with a central asymmetric limit cycle, the COCPG model for

simulating asymmetric swing angles of lower limbs is proposed

and developed. Based on the proposed method, the behaviors, such

as frequency, amplitude, and offset, are analyzed by simulations.

Additionally, in order to verify the accuracy of the COCPG model,

experiments are conducted for comparing the outputs of the

COCPG model with the measured trajectories from the tester on

the test platform. The research results show that the trajectories
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FIGURE 13

Time histories of the multi-period trajectories of the lower limb

generated by the COCPG model and measured from the tester on

the test platform: (A) the trajectories of the hip joint, (B) the

trajectories of the knee joint, and (C) di�erences between the

measured trajectories of the tester and the COCPG model.

of the hip joint generated by the COCPG model proposed in this

article follow the asymmetric time ratio. The time ratios of the

trajectories of the COCPG varied from 38 to 62%. Meanwhile,

the time ration of the trajectories of the ROCPG are invariable.

Compared with the ROCPGmodel, the COCPGmodel can imitate

the hip motion with higher accuracy and the trajectories of the

knee joint generated by the COCPG model is coupled with the hip

motion. The maximum modeling error of the COCPG is 5◦, which

is introduced from the binding method of the measure unit. On the

contrary, as a result of the symmetric limit circle, the maximum

modeling error of the ROCPG increases to 15◦. Moreover, the

motion of the lower limb with different frequencies and amplitudes

can be achieved by adjusting the parameters of the COCPG

model. Therefore, the proposed pattern generator can be applied

as the reference model for the lower limb exoskeleton controlling

algorithm to produce the self-adjusted reference trajectories.

Although the proposed COCPG is an effective model for

imitating the asymmetric and coupled behaviors of the lower limb,

the coupling between the COCPG model and humans should

be studied to promote its application in controlling a lower

limb exoskeleton.
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